Электричество постоянный ток формулы

Энергия и мощность электрического тока

2015-04-01 19424а) Энергия электрического тока.

Для создания электрического тока в цепи источник должен обладать необходимой энергией.

Величина этой энергии определяется по формуле:

Где: W – энергия электрического тока, Вт·ч

U – напряжение на зажимах цепи, В.

R – сопротивление цепи, Ом.

t – время протекания тока, час.

б) мощность электрического тока

Различные источники электрической энергии могут за один и тот же промежуток времени выдавать различное количество электрической энергии.

Способность источника выдавать в единицу времени определенное количество электрической энергии, а потребитель, соответственно, – потреблять эту энергию характеризуется мощностью источника (потребителя).

Значение мощности электрического тока определяется из выражения:

Где: W – энергия электрического тока, Вт·ч

t — время работы источника (потребителя), час.

Р – мощность источника (потребителя), Вт.

U – напряжение, В

R – сопротивление цепи, Ом.

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью .

Она определяется по формуле:

где: Pобщ — полная мощность, развиваемая источником тока во всей цепи, Вт;

Е — э. д. с. источника, В;

I — величина тока в цепи, А.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, её называют мощностью потерь Po = UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь

в) Коэффициент полезного действия электрической цепи

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η

Из определения следует:

При любых условиях коэффициент полезного действия η ≤ 1.

Рис.13.1 Энергетическая диаграмма электрической цепи

Рассмотрим элементарную электрическую цепь, содержащую источник ЭДС с внутренним сопротивлением r, и внешним сопротивлением R

Рис.13.2. Схема электрической цепи

КПД определяется как отношение полезной мощности к затраченной:

Обычно электрический к. п. д. принято выражать в процентах.

Источник

Разветвленная электрическая цепь

Самой простой электрической цепью является цепь, состоящая из двух двухполюсных элементов, соединенных «кольцом» с помощью проводников – одного источника тока и одного потребителя. Такая цепь работает, например, в карманном фонарике. Источником тока в ней является батарейка, потребителем – лампочка. В простой елочной гирлянде источником тока является бытовая электросеть, а все лампочки-потребители соединены последовательно, «кольцом», и работают вместе.

Чтобы цепь работала правильно, все электрические характеристики элементов должны быть заранее рассчитаны. Напряжение, подаваемое из бытовой сети, должно быть таким, чтобы в полную силу (но без перекала) зажечь все лампочки гирлянды.

Однако, такие простые цепи – это, скорее, исключение, чем правило. Практически любая современная электрическая цепь состоит из тысяч и даже миллионов элементов. И, хотя, источник тока в такой цепи чаще всего только один, остальные звенья соединены в сложную сеть, которая скорее напоминает «кружево», а не «кольцо». Такая цепь называется разветвленной.

Ток, идущий по любому звену разветвленной цепи, может быть как постоянным, так и переменным, при этом в цепи возможны переходные процессы. Однако, основным режимом является установившийся, и для расчета установившегося режима электрических цепей любой сложности хватает трех формул законов постоянного тока (правила Кирхгофа иногда называют законами):

  • правила Кирхгофа для узлов (первое);
  • правила Кирхгофа для контуров (второе);
  • Закона Ома для участка цепи.

Рассмотрим их.

Переменное однофазное напряжение

В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:

  1. Мгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
  2. Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
  3. Среднее значение (для синусоиды равно нулю).
  4. Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
  5. Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).

В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Физическая работа пробного заряда в электрическом поле

Итак, вы превратились в пробный электрический заряд q во много раз меньший чем заряд Q на обкладках конденсатора и начали свое путешествие между обкладок конденсатора. При этом вы будете испытывать действие кулоновых сил. Допустим, что вы являетесь отрицательно заряженной частицей подобно электрону, тогда вас будет притягивать в сторону обкладки +Q, и вас будет отталкивать от обкладки с зарядом -Q. Чем ближе вы будете к одной из обкладок, тем сильнее вы будете испытывать ее силовое действие.

Предположим, что вы вошли в конденсатор со стороны обкладки -Q и вас тут же начало отталкивать от нее в сторону обкладки +Q. Вы не стали сопротивляться такому воздействию и решили не противится природе и двигаться в полном согласии с влечением. Для этих целей как раз удобно расположены балки и лестницы, по которым вы можете свободно добраться до обкладки +Q любым маршрутом. Так как на вас действуют электрическая кулоновская сила, то вы начинаете свободно набирать скорость, словно вас несет ветром. В итоге вы преодолели расстояние по балке от одной лестницы до другой в направлении от точки A к точке B (смотрите рисунок выше). Лестницы — это эквипотенциальные линии, и соответственно, вы преодолели расстояние от одного значения потенциала к другому. В нашем случае вы двигались от того потенциала, который для вас больший по величине, к тому, что меньше. Если же вы были бы зарядом другого знака, то есть +q, тогда потенциалы поменяли бы свои знаки и больший стал бы меньшим, а меньший большим. Математически это означает умножение потенциалов на -1.

На вас действовала сила и вы переместились из точки A в точку B, другими словами вы двигались от потенциала φa (большего) к потенциалу φb (меньшему). Это подобно тому, как если бы вы плыли по течению реки на плоту, когда вам не нужно грести веслами и не требуется мотора для движения. Можно сказать, что вами совершена механическая работа, которая является вычисляется как произведение силы на расстояние. Совершив такое перемещение, вы потеряли часть потенциальной энергии, которая перешла в кинетическую (скорость вашего движения), а затем выделилась вероятно в виде тепла при торможении. Проделав обратный путь из точки B в точку A, вы будете двигаться как бы против течения, вам придется затратить энергию, грести веслами, использовать мотор и т. п. Переместившись обратно вы увеличите свою потенциальную энергию, потому как переместитесь в точку с большим потенциалом и ваше энергетическое состояние увеличится.

Разность этих двух потенциалов φa и φb и будет являться электрическим напряжением. Это равнозначные понятия, но в практической электротехнике чаще всего употребляют выражение не разность потенциалов, а напряжение. При рассмотрении электрических цепей употребляют такое выражение как падение напряжения на участке цепи, а для источников электричество та же самая разность потенциалов определяется как электродвижущая сила (ЭДС).

Разность потенциалов Δφ=φ12 всегда показывает какую работу A может совершить носитель заряда q при перемещении этого заряда из точки с одним потенциалом φ1 в точку с другим потенциалом φ2. При вычислении надо иметь в виду, что потенциалы могут быть как со знаком плюс, так и со знаком минус.

Если заряду для такого перемещения требуется затратить энергию, а значит увеличить свой потенциал, то тогда работа А будет со знаком (-), а если носитель заряда перемещается из области высокого потенциала в область с низким потенциалом, тогда происходит выделение энергии и работа А будет со знаком (+). Таким образом электрическое напряжение — это энергетическая характеристика электрического поля и представляет собой разность потенциалов Δφ. Это значит, что принципиально неверно утверждать, что напряжение — это потенциал. Электрическое напряжение — это всегда разность потенциалов и она возможна только между двумя точками электрического поля. Если имеется одна точка в пространстве электрического поля, тогда уместно говорить только о потенциале этой точки, но никак ни о ее напряжении.

Необходимо совершенно ясно представлять в чем заключаются различия между такими понятиями как: напряженность электрического поля E, потенциал φ, и, конечно, разность потенциалов — электрическое напряжение. Поняв эти различия, будет совершенно легко разобраться с тем, что такое электрический ток.

Мощность переменного тока

Закон Ома в той форме, как он был сформулирован ваше (I=U/R), справедлив только для цепей постоянного тока. Следовательно и формула мощности тока P=I*U, тоже действует только для цепей постоянного тока. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Мощность в цепи переменного тока выражается комплексным числом вида P+i*Q. При этом его действительная часть называется активной мощностью, мнимая часть реактивной мощностью.

Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока

Единицей измерения активной мощности является по прежнему ватт, а единицей измерения реактивной мощности — вольт-ампер реактивный (VAr, ВАр, вар).

Но практическое значение имеет полная мощность, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии.

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S=U*I; связана с активной и реактивной мощностями соотношением: S = sqrt , где P — активная мощность, Q — реактивная мощность, sqrt — символ квадратного корня.

Единица полной электрической мощности — вольт-ампер (V·A, В·А).

Создаем кратковременный ток и выясняем условия его существования

Можно создать электрический ток с помощью двух заряженных противоположно тел.

Ток – это движение зарядов. Поэтому, нужно обеспечить возможность зарядам двигаться. То есть, нужно создать между телами дорожку, по которой заряды начнут перемещаться из одного места пространства в другое.

Продемонстрировать возникновение тока на небольшой промежуток времени можно с помощью двух электрометров, заряженных противоположно.

Попробуем для начала соединить два заряженных тела куском диэлектрика (рис. 15).

Рис. 15. Если диэлектриком соединить два заряженных тела, электрический ток не возникает

Как видно, после соединения заряд каждого из электрометров не изменился.

Это значит, что ток не возник. Дело в том, что в диэлектрике все электроны связаны со своими атомами и свободных электронов нет.

Именно свободные заряды будут передвигаться и их согласованное направленное движение мы назовем электрическим током.

Поэтому, одним из условий существования тока будет наличие свободных зарядов. То есть, наличие проводника, содержащего такие заряды.

Однако, только лишь наличия проводника недостаточно. Действительно, в проводнике присутствуют свободные заряды. Но для того, чтобы эти заряды начали совместное движение в определенную сторону, нужно, чтобы на них подействовала сила, которая будет их передвигать в этом направлении.

Сила будет действовать на заряженную частицу, если ее поместить в электрическом поле.

Электрическое поле существует в пространстве вокруг заряженных тел.

Если соединить проводником два тела, имеющие противоположные заряды, то на свободные частицы в проводнике будет действовать электрическое поле. Это поле подхватит заставит двигаться электроны в определенном направлении.

Поэтому, еще одно условие для возникновения тока – это электрическое поле.

Рис. 16. После соединения проводником, заряженные противоположными зарядами электрометры разрядились

Рис. 17. Электроны двигаются против направления электрического поля

Ток течет в направлении движения положительных зарядов.

Соединив два заряженных металлических тела проводником, мы получим ток лишь на короткий промежуток времени. Это время будет составлять доли секунды.

Кроме того, в начальный момент времени сила тока будет самой большой. А далее будет убывать по мере того, как тела будут разряжаться и их потенциалы (ссылка) будут выравниваться.

Мы же хотим, чтобы ток протекал постоянно, или, по крайней мере, достаточно длительный промежуток времени, выбранный по нашему усмотрению. И чтобы во время протекания тока его сила не изменялась.

Как этого добиться? Мы вплотную приблизились к третьему условию существования постоянного электрического тока.

Применение постоянного тока

Оказывается, постоянный ток окружает нас со всех сторон, хотя мы этого подчас не замечаем. Стоит только взглянуть на электронные часы, фонари, персональные компьютеры, средства связи, разнообразные игрушки, электроинструмент с аккумуляторами, всевозможные медицинские приборы, как сразу станет видно, насколько наша жизнь наполнена химическими источниками электрического тока.

Но это далеко не всё. Постоянный электрический ток находит достаточно широкое применение:

  • в электронике, использующей его для питания своих схем повсеместно;
  • в гальванизации и гальванопластике для нанесения декоративных или защитных покрытий;
  • в электролизе при получении с его помощью из расплавов или растворов солей меди, алюминия, магния, никеля, хлора, натрия и калия;
  • при проведении сварочных работ методами электродуговой и электрогазовой сварки;
  • при преобразовании переменного тока с помощью инверторов в ток постоянный;
  • для питания локальных электрических сетей средств автотранспорта;
  • на целом ряде судов, где находит применение электрическая передача с двигателя внутреннего сгорания на движитель;
  • в медицинских и научных целях.

Постоянный ток на транспорте

Благодаря удачной вариабельности электродвигателей постоянного тока с последовательным возбуждением, заключающейся в получении повышенного момента вращения при малых оборотах или, наоборот, стабильной скорости при малых оборотах электродвигателя, системы постоянного тока нашли широкое применение на транспорте. С помощью изменения питающего напряжения или последовательного включения реостата можно регулировать число оборотов электродвигателя, задавая тем самым темп и скорость перемещения транспортного средства.

Вот почему двигатели такого типа используются в силовых установках тепловозов, трамваев, троллейбусов, электровозов, электропоездов и на грузоподъёмных машинах. При этом питающее напряжение трамвайных и троллейбусных линий составляет 550-600 В, а линий метрополитена – 750-900 В.

Линии передачи постоянного тока

Использование высоковольтных линий передач постоянного тока (HVDC) с каждым днём становится всё более и более актуальным. Объясняется это возможностью транспортировки на значительные расстояния огромных объёмов электрической энергии. И это при значительно меньших сетевых потерях, чем в процессе использования ЛЭП переменного тока.

Кроме того, такой способ электроснабжения позволяет избежать процесса синхронизации, доставляющего энергетикам множество проблем и хлопот. Существуют и достаточно интересные варианты передач электроэнергии на короткие расстояния с помощью постоянного тока.

Основным сдерживающим фактором здесь выступает необходимость двойного преобразования тока, что значительно усложняет и резко повышает стоимость изготавливаемых конструкций. При удачном решении данной проблемы всё может кардинальным образом измениться. В настоящее время в эксплуатации находятся ЛЭП постоянного тока: Волгоград-Донбасс, Экибастуз-Центр, вставка Выборг-Финляндия.

Электричество и единицы его измерения

Замечено, что в природе все заряженные частицы стремятся сбалансированно заполнить пространство. Перетекание электронов от одного предмета к другому при достижении равновесия принято считать электрическим током (измеряется в амперах). Электрическое напряжение потока — это разность потенциалов в предметах, разница количества отрицательных зарядов в них. Отрицательно заряженные электроны будут перетекать в направлении предмета, в котором их меньше, из того, где их больше, до достижения равновесия. К сожалению, этот процесс невозможно наблюдать наглядно, поэтому все отображается условными обозначениями. Наиболее наглядное подтверждение, из которого можно сделать выводы, что электрическое напряжение существует, просматривается в опытах с воздушными резиновыми шарами. Если натереть шарик о шерстяной свитер и приставить его к стене, он будет держаться. У многих возникает вопрос, почему это происходит? Ответ: благодаря потоку электронов электрического поля, которые накопятся в атомах шара во время трения.

На атомном уровне электрического поля можно представить, что такое напряжение, в следующем виде:

  • атом удерживает своим магнитным полем на орбите электроны, имеющие отрицательные заряды;
  • протоны с положительным зарядом располагаются в центре;
  • нейтроны электрического поля нейтральны, имеют сбалансированное положение, заряд отсутствует.

Схема движения атомов

До трения атомы электрического поля находились в нейтральном состоянии, потом появляются дополнительные электроны, они делают атом отрицательным по отношению к атомам стены.

Движение положительных и отрицательных атомов

В атомах шара больше электронов, и при приближении его к предметам с атомами, имеющими меньшее количество электронов, шар притягивается потоком силы электрического поля.

Схема обмена атомами между материалами
Перетекание электронов

Постепенно электроны в атомах стены и шара достигают сбалансированного состояния, их заряды, количество электронов и протонов уравниваются, напряженность электрического поля слабеет, электрическое напряжение становится равным нулю, и шар падает на пол. В этом случае напряжением можно назвать разницу суммарного заряда атомов шара и атомов стены в точке соприкосновения, измеряется в вольтах.

Математически это выражается формулой:

вольт = 1джоуль/1кулон.

Сила магнитного поля в 1 Дж, передвигающая заряд в 1 Кл из точки А в точку В, приравнивается к одному вольту.

В данном случае рассмотрен пример возникновения статического электричества, которое практически не используется как источник энергии. В большей части от него защищают электрооборудование и высокоточные приборы путем экранирования и заземления корпусов. Даже обычная ходьба по напольному покрытию из разных материалов создает большое напряжение тока, разность потенциалов достигает десятков тысяч вольт.

Электрическая цепь

Электрические цепи подразделяют на линейные и нелинейные. Линейные цепи — это такие, которые состоят только из линейных элементов — проводников, сопротивлений, конденсаторов, катушек индуктивности без ферромагнитных сердечников. У линейных элементов электрическое сопротивление постоянно и ток находится в прямо пропорциональной зависимости по отношению к напряжению, что выражается известным законом Ома:

Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры. То есть большинство реальных электрических цепей являются нелинейными.

Нелинейные цепи содержат элементы, электрическое сопротивление которых существенно зависит от тока или напряжения, в результате чего ток не находится в прямо пропорциональной зависимости по отношению к напряжению. Зависимость тока от напряжения в нелинейных цепях выражается так называемой вольт-амперной характеристикой, получаемой экспериментально и изображаемой некоторым графиком в системе координат «ток-напряжение».

Нелинейные элементы (усилители, генераторы и т.п.) придают электрическим цепям свойства, недостижимые в линейных цепях (стабилизация напряжения или тока, усиление постоянного тока и др.).

Определение

Ответ на вопрос, что представляет собой постоянный электрический ток, лежит в слове «постоянный» – неизменный в плане величины и направления. Физически под этим подразумевается однонаправленное движение неменяющегося во времени потока заряженных частиц. Направление постоянного тока совпадает с вектором движения положительно заряженных частиц, а при перемещении отрицательных зарядов направление тока будет противоположно направлению движения.

Итак, постоянный ток – это электрический ток, сохраняющий неизменность величины и направления движения в течение всего времени прохождения физического процесса. Это в теории.

А на практике обычно в качестве постоянного тока подразумевают электрический ток, имеющий столь незначительные изменения своей величины, что ими вполне можно пренебречь. Так как это не оказывает существенного влияния на ёмкостной и индуктивный характер эксплуатируемой электрической цепи.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий