Что такое чиллер: особенности устройства, правила выбора и монтажа

Аппараты с верхней загрузкой

Aqua Work 0.7-TW

Один из самых простых аппаратов. Устройство предназначено лишь для извлечения воды из ёмкости, подогрева и охлаждения нет.

Характеристики:

  • метод установки аппарата – настольный;
  • способ установки бутыли – сверху;
  • высота –- 30 см;
  • ширина – 25 см;
  • глубина – 29 см;
  • масса – 1,6 кг.

Возможна подача воды нажатием кружкой; из обоих кранов идет вода комнатной температуры. Средняя цена – 1900 рублей.

Aqua Work 0.7-TK

Компактный кулер для дома или офиса для размещения на столе. Средняя цена – 3200 рублей.

Характеристики:

  • способ охлаждения – не предусмотрено;
  • способ установки – сверху;
  • мощность нагревательного устройства – 700 Вт;
  • высота – 30 см;
  • ширина – 29 см;
  • глубина – 25 см;
  • масса – 2,3 кг.

A.E.L. TD-AEL-68

Настольный кулер чёрного цвета. Средняя цена – 3850 рублей.

Характеристики аппарата:

  • метод охлаждения воды – электронный;
  • способ установки бутыли – сверху;
  • нагрев воды – есть;
  • мощность нагревательного элемента – 500 Вт;
  • мощность модуля охлаждения – 75 Вт;
  • высота – 40 см;
  • ширина – 30 см;
  • глубина – 30,5 см.

Smixx 16LD/E

Напольный аппарат для офисов и крупных кухонных помещений.

Характеристики:

  • метод охлаждения – электронный;
  • способ установки бутылей – верхний;
  • мощность нагревательного элемента – 500 Вт;
  • мощность модуля охлаждения – 70 Вт;
  • высота – 95 см;
  • ширина – 31 см;
  • глубина – 34 см
  • вес – 8 кг.

Дополнительно: емкость бака для холодной воды – 3 л, а отделение для горячей воды – 1,5 л. Высота аппарата указана без бутыли. Средняя цена – 6300 рублей.

Резюме

Круги Эйлера – это очень полезная методика решения задач и установления логических связей, а заодно и занимательный и интересный способ провести время и потренировать мозг. Так что, если вам хочется совместить приятное с полезным и поработать головой, предлагаем пройти наш курс «Нейробика», включающий в себя самые разные задания, в том числе и круги Эйлера, эффективность которых научно обоснована и подтверждена многолетней практикой.

Советуем также прочитать:

Математическое мышление
ТРИЗ-упражнения в педагогике
Как переключиться на творчество: тренировка правого полушария от Бетти Эдвардс
Золотое сечение
Евгеника: простыми словами о самом важном
Научитесь учиться: некоторые советы из курса LH2L от Coursera
Когнитивное развитие. Часть 1
7 популярных лженаук
Решение нестандартных задач Ферми
Логические парадоксы. Ключевые слова:1Когнитивистика

Ключевые слова:1Когнитивистика

Устройство чиллера: основные элементы

Существуют чиллеры разного типа. Их классифицируют, например, исходя из способа охлаждения – водяного или воздушного. Но схема работы чиллера и его устройство будут примерно одинаковыми в любых моделях, независимо от типа охлаждения, производителя и т.д. Основными компонентами этого оборудования являются:

  1. Испаритель – это устройство, в котором происходит теплообмен, в нем теплоноситель отбирает тепло у охлаждаемого вещества.
  2. Компрессор – это устройство, обеспечивающее давление фреона в чиллере. Именно под давлением и при высокой температуре происходит циркуляция хладагента в системе. Компрессоры могут быть разного типа – винтовые, поршневые, центробежные и т.д.
  3. Конденсатор – это часть системы, предназначенная для охлаждения паров фреона.

Схема чиллера включает в себя еще один компонент – это хладагент. Самый распространенный вариант – это фреон, хотя есть системы, в которых для этих целей используют воду, тосол или этиленгликоль. Еще один компонент схемы — теплоноситель. Чаще всего для этих целей используется вода. Она нагревается до температуры в +12-15 градусов и подается в испаритель, где передает тепло хладагенту при непосредственном контакте. Принцип действия чиллера как раз на этом и построен – охлажденная вода подается на охлаждаемое оборудование. Хладагент при передаче тепла быстро закипает, происходит его испарение, он переходит в газообразное состояние и охлаждается.

Современное оборудование построено таким образом, что тепло, которое выделяется при охлаждении фреона, может потом использоваться в фанкойлах для того, чтобы нагревать воздух в помещении.

Принцип работы

Теоретической базой, на которой создано и успешно функционирует современное холодильное оборудование – морозильные шкафы, кондиционеры и другие установки, в том числе и чиллеры, является второй принцип термодинамики. Хладагент, находящийся в форме пара в холодильных агрегатах, совершает так называемый обратный цикл Ренкина, что является одной из форм обратного цикла Карно. При этом основной процесс перехода энергии основан не на сжатии или расширении – его обеспечивают фазовые переходы жидкости в пар и обратный процесс конденсации.

В состав промышленного чиллера входит три основных узла. Это компрессор и два теплообменных контура – конденсатор и испаритель. Основной функцией испарителя является отвод тепла от охлаждаемого объёма. Для решения этой задачи через него организован поток воды и хладагента. При этом растет температура холодильного агента, он закипает и забирает тепловую энергию у жидкости. Благодаря этому вода или любой другой носитель тепла теряют температуру, одновременно с повышением и закипанием хладагента.

Далее фреон в газообразной форме поступает в компрессор, где вступает в контакт с обмотками электродвигателя, обеспечивая их охлаждение. На данном этапе горячий газ сжимается и нагревается до температуры в 80-90 ºС, параллельно смешиваясь с маслом от компрессора.

На следующем этапе нагретый газ подаётся в конденсатор, где охлаждается потоком холодного воздуха. Затем фреон теплообменного контура конденсатора поступает в охладитель, где теряет температуру, переходит в жидкое состояние и проходит через фильтр-осушитель, где избавляется от влаги и начинается новый цикл.

В завершающей части цикла хладагент проходит через терморегулировочный вентиль (ТРВ), где его давление снижается. При выходе из ТРВ фреон находится в виде смеси жидкости и пара низкого давления. В этой форме он поступает в испаритель, где завершается цикл и фреон закипает, превращаясь в пар и забирая тепловую энергию у воды. Далее нагретый пар покидает теплообменник и процесс повторяется.

Классификация

Фанкойлы делятся на 3 класса:

  • Универсальные (настенные, напольные и потолочные).
  • Канальные.
  • Кассетные.

Независимо от класса могут изготавливаться в двух- и в четырехтрубном исполнении. Категория определяется в зависимости от того, разрешено ли в помещении смешивать хладагенты, которые используются для охлаждения и нагрева. Если можно, устанавливают двухтрубный фанкойл, если нельзя – четырехтрубный.

Универсальные фанкойлы

Предназначены для установки в горизонтальном или вертикальном положении. По внешнему виду практически не отличаются от внутреннего блока обычного бытового кондиционера, однако при этом имеют функциональные отличия:

  • в теплообменнике осуществляется циркуляция жидкости;
  • установлен трехходовой клапан, регулирующий подачу хладагента или теплоносителя.

Обычно устанавливают в помещениях без подвесных потолков. Для монтажа используют разнообразный крепеж и установочные элементы (ножки, кронштейны и пр.), тип которых определяется вариантом исполнения.

Холодопроизводительность большинства универсальных фанкойлов невелика – от 1 до 8 кВт. Устройства большей мощности выглядят громоздкими и непривлекательными для открытой установки.

Четырехтрубные агрегаты предназначены для установки под окна. Их подключают к системам кондиционирования и центрального отопления. В зимнее время года установленный под окнами квартиры фанкойл кондиционирует и обогревает воздух, выполняя роль батареи отопления.

Кассетные фанкойлы

Обеспечивают равномерное распределение кондиционированного воздуха в 2-х или 4-х направлениях. Предназначены для размещения в подпотолочном пространстве помещений большой площади, например, торговых и выставочных залов. Для достижения большего эффекта рекомендуется подключать воздуховоды приточной вентиляции.

Чтобы обеспечить комфортную скорость перемещения холодного воздуха, необходимо устанавливать кассетные фанкойлы на высоте не менее 2,7 м от пола. По завершении монтажных работ место установки закрывается декоративной фальш-панелью оригинального дизайна.

Чаще всего холодопроизводительность кассетных устройств не превышает 5-ти кВт. Выпускаются они в компактных корпусах с габаритными размерами 600х600 мм. Более мощные устройства имеют габариты 800х800 мм, 850х850 мм и 600х1200 мм.

Преимущество кассетных фанкойлов – простая система отведения образовавшегося конденсата, созданная на базе встроенных дренажных насосов.

Составные части схемы чиллер-фанкойл

Роль охлаждающего устройства отведена чиллеру — внешнему блоку‚ производящему и подающему холод по трубопроводам с циркулирующей по ним водой или этиленгликолем. Этим она и отличается от других сплит-систем, где в качестве теплоносителя закачивают фреон.

Для движения и передачи фреона, хладагента, нужны дорогие медные трубы. Здесь же с этой задачей прекрасно справляются водопроводные трубы с теплоизоляцией. На ее работу не влияет температура наружного воздуха, тогда как сплит-системы с фреоном теряют работоспособность уже при -10⁰. Внутренним теплообменным агрегатом является фанкойл.

Он принимает жидкость с низкой температурой, затем передает холод в воздушную среду помещения‚ а нагретая жидкость возвращается назад в чиллер. Фанкойлы устанавливают во всех комнатах. Каждый из них работает по индивидуальной программе.

Обычно такие системы применяют в гипермаркетах‚ торговых комплексах‚ сооружениях‚ возведенных под землей‚ гостиницах. Иногда их используют в качестве отопления. Тогда по второму контуру в фанкойлы подают нагретую воду или переключают систему на котел отопления.

Чиллер-фанкойл: принцип работы системы

Рассмотрим, как работает система на обогрев помещений. В режиме охлаждения она выполняет аналогичные функции, но в обратном, реверсивном режиме.

Работа чиллера

Вентилятор направляет поток воздуха на конденсатор, в котором находится охлажденный фреон. Хладагент нагревается и переходит в компрессор.

Компрессор сжимает хладагент (в зависимости от модели возможна полная или частичная конденсация). Температура фреона повышается, он посредством насоса прокачивается в накопительный бак, где нагревает теплоноситель.

Хладагент охлаждается и переходит в испаритель, где его давление падает, из жидкого агрегатного состояния он переходит в газообразное и возвращается в конденсатор.

Назначение чиллера – обеспечить охлаждение или нагрев хладагента (фреона, хладона). А он будет охлаждать или подогревать воду или антифриз, которые будут теплоносителем или хладоносителем для фанкойлов.

Работа фанкойлов

Теплоноситель попадает в насосную станцию, которая поддерживает давление в системе. По магистральной разводке насос прокачивает его к фанкойлам.

В фанкойлах теплоноситель отдает тепло воздуху и возвращается по отдельному трубопроводу в насосную станцию.

При использовании канальных фанкойлов можно обеспечить одинаковый температурный режим в разных помещениях. Такое оборудование прогревает воздух в вентиляционном коробе, который может разветвляться и вести в несколько помещений.

Варианты с другим устройством фанкойла предусматривают установку в отдельных помещениях. На больших площадях их может быть установлено несколько, чтобы обеспечить равномерный прогрев или охлаждение.

Подробнее читайте в статьях:

Типы фанкойлов, их отличия и особенности;

Фанкойлы: что это такое, их принцип работы и особенности.

Фанкойл кассетного типа, установленный на производстве.

Схема работы

1. Компрессор

Компрессор играет важнейшую роль в цикле фреонового чиллера. Сначала он сжимает и перемещает пары холодильного агента. В процессе сжатия давление и температура фреона повышаются. Затем газ в сжатом виде перемещается в конденсатор (о нём ниже), где охлаждается и преобразовывается в жидкость. После хладагент уже в жидком состоянии перемещается в испаритель (о нем так же расскажем) и закипает, переходя в газообразное состояние. В результате забирается тепло от воды, проходящей через испаритель.

2. Конденсатор

Конденсатор — это, по сути, теплообменник. Именно здесь тепло, поглощенное фреоном, выделяется наружу. Обычно фреон перемещается в конденсатор в сжатом виде. Газ охлаждается до необходимой температуры и конденсируется, превращаясь в жидкость. Если система не моноблочная, конденсатор устанавливается снаружи, зачастую на крыше.

3. Реле повышенного давления

Необходимо для защиты системы от повышенного давления во фреоновом контуре.

4. Манометр повышенного давления

Необходим для отслеживания повышенного давления хладагента.

5. Жидкостной ресивер

Предназначен для хранения хладагента в системе.

6. Фильтр

используется для удаления излишков влаги и загрязнений из холодильного агента. Избыток влаги или грязь могут негативно повлиять на работу всей системы кондиционирования.

7. Соленоиндный клапан

Это обычный запорный клапан, который управляется электрически. Используется для регулировки потоков хладагента. Клапан автоматически закрывается, если компрессор останавливает свою работу. Если компрессор включен, клапан открывается и хладагент может дальше перемещаться по системе.

8. Смотровое стекло

Через него можно вести наблюдение за потоками хладагента. Например, через него можно отследить появления видимых пузырьков во фреоне, это свидетельствует о нехватке хладагента в системе. Также смотровая часть нередко оснащается индикатором влажности, это не менее важный показатель, за которым необходимо периодически следить. Если индикатор горит желтым цветом, значит в системе обнаружено избыточное количество влаги и требуется провести техническое обслуживание.

9. Вентиль терморегуляции

Он предназначен для подачи определённого количества хладагента. Дело в том, что фреона должно быть ровно столько, сколько может испариться в системе при текущих условиях работы. Вентиль терморегуляции как раз определяет, сколько именно фреона можно подать в систему для его полного испарения.

10. Пусковой клапан горячего газа

Часто его называют просто регулятором производительности. Он не входит в стандартную комплектацию, но порой встречается в чиллерах. Такой клапан необходим для снижения пропускной способности системы. При открытии он пускает горячий газ фреона с нагнетания в жидкостной поток, который поступает в испаритель.

11. Испаритель

Один из важнейших компонентов системы наряду с компрессором и конденсатором. Именно здесь хладагент закипает, при испарении поглощая тепло у проходящей охлаждающей жидкости, зачастую воды.

12. Манометр пониженного давления

Необходим для отслеживания пониженного давления хладагента.

13. Защита от пониженного давления

В названии ясна суть: этот компонент необходим для защиты системы от пониженного давления фреона в холодильном контуре. Благодаря ему вода не замерзает в испарителе.

14. Насос охлаждающей жидкости

Насос, предназначенный для перекачки жидкости (воды) в охлаждающем контуре.

15. Защита от замерзания

Еще одна защита от замерзания жидкости в испарителе.

16. Термодатчик

Показывает температуру охлаждающей жидкости.

17. Манометр

Еще один манометр, отслеживающий давление теплоносителя.

18. Автоматическое добавление воды

Если уровень воды опускается ниже допустимого, этот компонент доливает жидкость. Это возможно во многом благодаря соленоидному клапану, который открывается и пускает в систему дополнительное количество воды, после чего закрывается.

19. Поплавковый включатель

Необходим для отслеживания уровня жидкости. Включается, когда уровень воды понижается ниже допустимого значения.

20. Второй термодачик

Отслеживает температуру нагретой жидкости (воды).

21. Защита от замерзания при низком протоке

Еще одна защита от замерзания испарителя. Включается в те моменты, когда проток воды ниже допустимого уровня. Также отслеживает, когда в чиллере с водяным охлаждением совсем нет жидкости.

Промышленный чиллер

Что это такое

Такое громоздкое климатическое оборудование имеет сходство с мульти- сплит системой, а точнее с его наружной частью, которая и выполняет функцию центрального кондиционера. В качестве внутренних кондиционеров применяются вентиляторы, фанкойлы. Такую систему по-другому называют  чиллер-фанкойл. Устройство чиллера дает возможность подключения любых видов фанкойлов.

Работа чиллера несколько отличается от работы традиционного кондиционера. В последних роль охладителя играет фреон или хладон.

В составе чиллера используется вода и фреон. Иногда вместо воды применяют гликоль или его смесь с водой. Главный блок чиллера и фанкойлы связывает магистраль из труб, по которой движется вода.

Сжатие фреона происходит в конденсаторе под воздействием компрессора,  давление повышается и фреон приобретает жидкое состояние, причем его температура увеличивается.

В жидком виде фреон подается конденсатор, где отдает свое тепло воде или воздуху и перемещается в испаритель.

Испаритель регулирует количество охлаждающего вещества. В нем фреон переходит в газообразное состояние и его температура понижается. На выходе из термо расширителя хладагент представляет собой пар смешанный с жидкостью.

Фреон, попадая в теплообменник,  охлаждает воду, которая поступает в фанкойлы. Воздух затем охлаждается в радиаторах фанкойлов.

При работе на обогрев этапы сохраняются, но цикл имеет обратный порядок. Проходящий воздух нагревается теплой водой.

Чрезмерное давление хладагента может вызвать повреждение системы. Чтобы этого избежать применяют реле высокого давления и манометр. Эти приборы помогают следить за системой. Непосредственно хладагент хранится в жидкостном ресивере.

Важной частью чиллера является фильтр-осушитель. Он устраняет из хладагента водяные пары и иные загрязнения

Соленоидный вентиль предназначен для контроля за потоком хладагента. Если происходит сбой компрессора, он автоматически останавливает работу системы. Таким образом, испаритель защищен от попадания в него жидкого фреона.

На производствах в дополнение к чиллерам часто устанавливают автоматические системы контроля уровня воды. Подача воды обеспечивается специальными насосами.

ОТЛИЧИЯ ЧИЛЛЕРА ОТ ТРАДИЦИОННОГО КОНДИЦИОНЕРА

— способность охлаждать и обогревать крупногабаритные помещения при минимальной затрате средств

— возможность автоматической работы

— возможность установки и поддержания  индивидуальных параметров для разных частей здания

— допускается расстояние до 100 м между чиллером и фанкойлами (в обычных сплит системах до 10 м)

— низкие шумовые показатели

— экологичность

— возможность гибкой планировки

— круглогодичное использование

— низкий риск утечки жидкости

ОТЛИЧИЯ МЕЖДУ КОНДИЦИОНЕРОМ И ФАНКОЙЛОМ

Однако имеются существенные различия между бытовыми кондиционерами и фанкойлами. В последних охлаждение осуществляется водой, а не фреоном.

Иные отличия заключаются в следующем:

— Для установки  фанкойла понадобится больше оборудования

— Монтаж фанкойла сложнее, чем бытового кондиционера

— Расстояние между частями чиллера и фанкойлом может быть больше, чем между частями сплит системы

-Возможность установки индивидуальных параметров для разных помещений. Причем одно помещение моет обогреваться, а другое – охлаждаться.

-КПД распространяется на значительно большую площадь, чем у традиционного кондиционера

Правила установки

Чиллер подобрать несложно, значительно труднее осуществить монтаж. Данная задача должна ложиться на плечи профессионалов, обычный человек не сможет самостоятельно подключить приспособление. Модульный чиллер со встроенной емкостью для охлаждения жидкости монтируется в магистраль. Устройство с закрытым водяным баком закольцовывается на бак с водой достаточного объема. При необходимости радиатор выносится на улицу, происходит установка медных трубок с фреоном до радиатора. С задачей справится только профессионал, потому как нужно знать инженерскую схему установки и способ применения множества деталей.

Советы по монтажу:

  • передвигать устройство к месту, где оно будет поставлено, допускается только при помощи крана;
  • разрешено заливать только воду либо специальный раствор с концентрацией до 50%;
  • вокруг оборудования должно быть пространство, чтобы специалист по обслуживанию имел к устройству доступ;
  • нельзя монтировать агрегаты, у которых есть поломки;
  • обязательно провести пусковые испытания, а также настройку.

Если при монтаже будут учтены все требования по безопасности, прописанные производителем, тогда устройство будет исправно работать.

При выборе чиллера следует обращать внимание только на качественные модели и не искать варианты дешевле, чтобы оборудование прослужило долго. Источники. Источники

Источники

  • https://akak7.ru/chiller-chto-eto-takoe-princip-raboty-sxema-foto.html
  • https://VTeple.xyz/chiller-chto-eto-takoe-i-kak-on-rabotaet/
  • https://proventilation.ru/ventilyatsiya/chiller-chto-ehto
  • https://rulandia.ru/communications/ventilation/cto-takoe-ciller-princip-raboty-agregata-i-tehnologia-montaza.html
  • https://prochiller.ru/chiller/
  • https://VentingInfo.ru/konditsionery/ohlazhdayushhij-chiller
  • https://kachestvolife.club/o-vozduhe/chiller-chto-eto-takoe-princip-raboty-shema-foto
  • http://crio.pro/xolodilnoe-oborudovanie/princip-raboty-chillera/
  • https://vozduhstroy.ru/kondicionery/chiller-chto-eto-takoe.html

Системы охлаждения

Машина для холода транспортирует с помощью компрессора теплоэнергию от холодного тела к тёплой среде. Работа чиллеров основана на термодинамическом цикле. Адсорбционные и абсорбционные чиллеры не имеют механического привода (двигателя). Целью чиллера является охлаждение до температурного уровня ниже температуры окружающей среды. Чиллеры похожи на тепловые насосы, но последние используют выделяемое тепло.

Схема чиллера

Чиллеры работают в соответствии со следующими принципами:

  • Системы холодного пара используют испарительное получение холода с использованием хладагентов, которые имеют подходящие температурки испарения для желаемого диапазона температур и давления. Хладагент постоянно подвергается фазовому переходу жидкость-газ в контуре и наоборот.
  • Машины, использующие эффект Джоуля-Томсона, обходятся без разжижения и используют эффект охлаждения газов во время релаксации. Применяется также процесс Линде. С многоступенчатыми системами получают низкие термопоказатели, например, для сжижения воздуха.

Первый в мире функционирующий чиллер построен в 1845 году американским доктором Джоном Горри во Флориде, который искал способы улучшить возможности лечения пациентов больницы в жаркой и влажной Флориде. Согласно медицинской доктрине «плохой воздух» был основным фактором болезней, а зимний лёд, привезённый из северных Великих озёр, был единственным вариантом охлаждения.

Машина Горри, в которой использовался обратный принцип двигателя Стирлинга, использовалась для производства льда и в то же время для охлаждения помещения (кондиционирование воздуха). Прототип был построен. В дальнейшем произошёл финансовый сбой. Д. Горри умер обедневшим.

В 1870-х годах холодильные установки стали экономичными. Первыми основными потребителями были пивоваренные заводы. Немецкий промышленник Карл фон Линде являлся крупным производителем.

Мощность чиллера

Мощность и эффективность – это не только количество кВт, но совокупность в сумме различных слагаемых. При расчете мощности чиллера учитываются следующие показатели:

  1. Тепло, проникающее в окна, через ограждения.
  2. Тепло, исходящее от людей, присутствующих в помещении.
  3. Тепловая энергия, вырабатываемая освещением и другим оборудованием.

Все притоки тепла суммируются, и таким образом определяется общая тепловая нагрузка, которую несет помещение. Затем суммируются нагрузки всех помещений, которые обслуживает чиллер.

Поскольку процесс охлаждения сопровождается выделением конденсата, и влагосодержание воздуха при этом изменяется, расчет мощности производят по специальной формуле, предусматривая до 20% запаса по мощности.

Контур хладагента

Учитывая все вышесказанное, одним из важнейших компонентов охладителя считается хладагент (фреон). Он представляет собой специальное вещество холодильного цикла, претерпевающее целый ряд фазовых изменений. Фреон циркулирует исключительно в чиллере. Движущей силой фреона является нагнетатель, который играет роль своеобразного насоса. Благодаря действию нагнетателя, фреон характеризуется высокой температурой (около 70°С) и высоким давлением (около 30 атмосфер).

Поступая в конденсатор, температура рабочего вещества уменьшается. Это обусловлено тем, что он обдувается наружным воздухом. В результате такого воздействия, рабочее вещество меняет свое состояние. Теперь они принимает жидкое состояние. Для того чтобы снизить давление на фреон, он должен пройти регулирующий вентиль.

Процесс движения рабочего вещества по компонентам охладителя можно сравнить с принципом поступления кислорода для аквалангиста. Он заключается в том, что газ, находящийся под высочайшим давлением, поступает к аквалангисту уже с нормальными показателями. Стоит заметить, что температура кислородной смеси значительно снижается.

Подобное действие оказывает и регулирующий вентиль. Он уменьшает давление и снижает температурные показатели. Как правило, после прохождения этого элемента чиллера температура хладона едва превышает отметку 0°С. За счет этого эффекта осуществляется остужение потоков теплой воды. Как говорилось выше, процесс происходит в теплообменнике. Выполнив свою работу, хладон возвращается в нагнетатель и начинает новый цикл.

В качестве фреона чаще всего используется бесцветный газ с незначительным запахом хлороформа. Хладон такого типа имеет ряд преимуществ:

  • нетоксичен;
  • не взрывоопасен;
  • отличается низкой температурой нагнетания;
  • имеет отличные термодинамические и теплофизические характеристики.

Самым распространенным хладагентом считается R-22. Но ввиду того, что данный хладон нельзя охарактеризовать как экологически чистый. В последнее время в чиллерах начали применять альтернативные варианты. Одним из таких вариантов является R-134A. Этот бесцветный газ считается одним из наиболее экологичных. Хладагент имеет максимально низкий потенциал разрушения озонового слоя. Для функционирования чиллеров также могут эксплуатируются хладоны из синтетических полиэфирных масел. Примером такого хладона является R-410A.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий