Какие виды релейной защиты существуют

Принципы построения релейной защиты

Существует несколько видов реле, каждый из которых соответствует характеристикам электроэнергии (в данном случае – реле тока, напряжения, частоты, мощности и т.д.). Такая система отслеживает несколько показателей, выполняя непрерывное сравнение величин с ранее определенными диапазонами, которые называются уставки.

Реакция защиты может проявляться на все повреждения, которые могут возникнуть в защищаемой зоне или только на отдельно взятые отклонения от нормального режима работы.

В связи с этим, защищаемый участок оснащен не одной защитой, а сразу несколькими, дополняющими и резервирующими друг друга. Основные защиты должны воздействовать на все неисправности, возникающие в рабочей зоне или охватывать их значительную часть. Они обеспечивают полную защиту всего участка, находящегося под контролем и должны очень быстро срабатывать при возникновении неисправностей. Все остальные защиты, не подходящие под основные условия, считаются резервными, выполняющими ближнее и дальнее резервирование. В первом случае резервируются основные защиты, работающие в закрепленной зоне. Второй вариант дополняет первый и резервирует смежные рабочие зоны на случай отказа их собственных защит.

Виды

Сначала опишем отдельно логическую защиту для шин, сокращенно — ЛЗШ. Принцип: сравнивает состояние защит питающих частей и отходящих фидеров (отводов кабеля). Образец алгоритма: защита на одном из последних отключилась, значит, на нем КЗ; не стартовала на них вообще — КЗ на шинных элементах. При КЗ на отводе активируются защиты (токовые расцепители) на нем и на узлах питания участка (вводы ТТ, выключатели сегмента).

Далее, по факту сработки происходит блокировка отключения питающих частей без паузы. При КЗ на шинных частях распределительной схемы запуск РЗ на отводах не происходит, и при активации таковой на питающих узлах она допускается без выдержки.

Остальные виды релейной защиты:

ВидОписание
Макс. токовая (МТ)Фактор сработки — определение числа Ампер (уставка).
Направленная макс. (МТЗ)Дополнительно контролирует направленность мощностей.
Газовая (ГЗ)Для деактивации ТТ, ТН при появлении внутренних поломок, сопровождающихся образованием газов.
ДифференциальнаяНа генерирующих узлах, ТН, ТТ, шинах. Токи сравниваются на вх. в охраняемую конструкцию и на вых., система регистрирует разницу и если нарушаются предельные рамки уставки, срабатывает.
Дистанционная (ДЗ)Активируется при понижении сопротивления, что характерно при КЗ.
ДЗ с ВЧ блокированиемВместе с РЗ от замыканий на землю (ЗЗ). Для более быстрого обесточивания при КЗ. При наличии на обслуживаемой ВЛ с вх. и вых. ДЗ и ЗЗ, то КЗ на такой линии стандартно деактивируется 1–3 уровнями этой системы с паузой от 0 до нескольких сек. А ВЧ-блокировка ДЗ и ЗЗ создает 2-сторонее отключение участка без паузы при всех возможных КЗ в любых локациях.
ДЗ с блокировкой по оптокабелюКачественная замена предыдущему варианту. Исключается потребность обслуживать оснащение ВЧ, увеличивается надежность, так как оптические инструменты более стабильные, менее подвержены наводкам.
ДуговаяДля предупреждения воспламенения КРУ, КТП 6,3 и 10,5. Монтируется в местах присоединений, срабатывает на повышение освещения посредством оптических обнаружителей, а также на чрезмерное давление посредством датчиков (клапанов) для этого параметра. Возможно реагирование защиты по току (его контроль), применяемое, чтобы исключить ложные активации.
Дифференциально-фазная (ДФЗ)Она же высокочастотная. Принцип состоит в контроле фаз и срабатывании, когда число Ампер на них нарушает уставку.

Защита радиальных линий.

В сельских электрических сетях распространены наиболее простые радиальные линии с односторонним питанием. Для этих линий применяется максимальная токовая защита, которая реагирует на междуфазные повреждения и на повреждения между фазой и землей (в сетях с заземленной нейтралью). Эта защита устанавливается на каждом участке линии со стороны ее питания. Необходимая избирательность действия максимальной токовой защиты обеспечивается таким подбором ее выдержек времени, чтобы сначала отключался только поврежденный участок, а остальные (неповрежденные) участки оставались в работе. Принципиальная схема максимальной токовой защиты радиальной линии показана на рис. 41. Токовое реле Т подключается ко вторичной обмотке трансформатора тока ТТ. Для создания требуемой выдержки времени, обеспечивающей необходимую избирательность действия защиты, предусмотрено реле времени В. Для контроля срабатывания защиты служит указательное реле У. Защита действует на отключение масляного выключателя МВ, установленного вначале линии со стороны питания.

В ряде случаев для предотвращения контактов защитных реле от обгорания и схему защиты включают промежуточные реле, выполняющие роль выходных реле защиты. В этом случае отключающие катушки масляных выключателей подключаются контактами промежуточных реле более мощными, чем контакты защитных реле.
Ступень выдержки времени между срабатыванием максимальной токовой защиты на участках сети принимают равной 0,4 — 0,5 с при использовании электромагнитных реле и 0,6—0,7 с при установке индукционных. Мгновенная максимальная токовая защита (токовая отсечка) также применяется в радиальных сетях. Однако зона надежного действия такой защиты не превышает 20—30% общей длины защищаемой линии, считая от точки питания. Поэтому такую защиту применяют очень ограниченно.

Контрольные вопросы

  1. Что называется релейной защитой и какие к ней предъявляют требования?
  2. Как классифицируются реле по способу включения? Расскажите о преимуществах и недостатках отдельных типов реле.
  3. Как классифицируются реле по способу воздействия на отключение высоковольтного выключателя? Приведите пример включения вторичного реле косвенного действия.
  4. Поясните устройство и действие электромагнитного реле тока, индукционного реле тока, указательного (сигнального) и газового реле.
  5. Поясните схему защиты трансформатора и воздушной линии с односторонним питанием. Объясните назначение отдельных реле в указанной схеме.
  • Назад
  • Вперёд

Классификация

Всё разнообразие приборов релейной защиты классифицируется по следующим основным признакам:

По типу подключения они бывают первичными и подключаются непосредственно в электрическую сеть. Вторичные приборы подсоединяются в неё с помощью трансформатора, дающего гальваническую развязку.

По исполнению они выпускаются электромеханическими: в них сеть замыкается и размыкается с помощью механических контактов. В современных электронных аппаратах цепью управляют полупроводники, при этом не происходит физического размыкания контактов.

По назначению оно может выполнять две задачи: логическую и измерительную функции. Логические приборы принимают решение на основе изменяющихся внешних характеристик системы. Измерительные аппараты производят только замер её значений.

По методу работы приборы классифицируются на прямые и косвенные изделия. Изделия прямого действия механически связаны с блоком отключения, а косвенные управляют механизмом отключения электропитания.

Цифровые электронные системы

В настоящее время в работе находится немало систем, спроектированных и смонтированных десятки лет назад на основе простейших электромагнитных реле. Такая ситуация связана с длительным сроком службы и удовлетворительной надёжностью электромеханических устройств. Системы последних поколений производятся на базе электроники и цифровой техники. К их преимуществам можно отнести множество отличий от классических:

  • содержат в себе меньше измерительных трансформаторов и позволяют использовать линейные преобразователи, такие как оптические трансформаторы тока и делители напряжения;
  • обладают небольшим энергопотреблением в режиме контроля;
  • предлагают большую точность и гибкость настроек;
  • оснащены качественными интерфейсами и пультами дистанционного управления;
  • как правило, дешевле при равных функциональных возможностях с электромеханическими.

Защита становится всё более сложной. Для неё разрабатывается специализированное программное обеспечение, и она строится на модульной основе. Современные продукты предполагают возможность коммуникации через интернет (в том числе и беспроводную) и программирование по USB. Конечно, использование высокотехнологичных защит предполагает обслуживание и поддержку от квалифицированных специалистов. В большинстве случаев проектирования и монтажа речь идёт о комплексном пакете, включающем оборудование, устройство его на месте работы, программирование и техническое обслуживание.

Конструкция РЗ

Релейная защита в своём строении имеет такие элементы как:

  1. Для контроля процессов в электроприборах и выявления аварий в электроцепи применяют специальные пусковые элементы – это: реле, реагирующее на изменение мощностей; реле, реагирующее на изменение силы тока и реле, реагирующее на изменение в напряжении.
  2. Запустить другие приборы, подать сигнал в следствие выявления неполадок и быстро сработать на выключение устройств – всё это позволяют сделать измерительные элементы. Они также способны располагаться в элементах пуска.
  3.  Область, в строении которой находятся таймеры, промежуточные и указательные реле, называется логической.
  4. Область, отвечающая за включение и выключение оборудования, называется исполнительной.
  5.  В определенных типах РЗ присутствуют передающие элементы. Их можно встретить при дифференциально-фазной.

В этой статье мы постарались подробно рассмотреть для чего нужна РЗ, какие требования к ней предъявляют и где она применяется.

Автоматика

Электроавтоматика, в отличие от РЗ, не только отключает оснащение, но и включает. В первую очередь, это автовключения: повторное (АПВ) и резерва питания (АВР).

Есть также разновидности с контролем персоналом оснащения релейной защиты, это автоматика:

  • регулировка задействования генераторов, синхронных моторов (АРВ);
  • для выключателей (АУВ), для резервирования их отказов (УРОВ);
  • контроль позиций переключателей ТТ (АРНТ);
  • настраивание дугогасящих обмоток (АРК), статконденсаторов;
  • трансформаторное охлаждение;
  • наладка (синхрон) генераторов;
  • частотный старт гидрогенераторов (АЧП);
  • выявление мест неполадок цепей (ОМП).

Противоаварийная:

  • режимная: частотн. разгрузка (АЧР)
  • задействование деактивированных АЧР систем (ЧАПВ);
  • авторегулирование частоты и действующей мощности (АРЧМ);
  • авторазгрузка по напряжению (ДАРН); по току (ДАРТ);

системная (на особо мощных ЭУ, электростанциях):

  • разгрузка;

исключение ассинхрона, повышения напряжения;
балансировочная.

Основные органы релейной защиты

Пусковые органы

Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.

Измерительные органы

Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.

Логическая часть

Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.

Пример логической части релейной защиты

Катушка реле тока K1

(контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора токаТА . При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения уставки релеK1 , оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами+EC и-EC замкнётся, и запитает сигнальную лампуHLW .

Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.

Шкафы РЗА

Современные микропроцессорные устройства РЗА выполняют не только свою прямые задачи защиты, но и другие смежные функции. Таким образом, сегодня большое количество устройств можно укомплектовать в одном шкафу, что значительно упрощает монтаж оборудования, непосредственную эксплуатацию, а также значительно освобождает пространство.

Типовые шкафы защиты имеют еще ряд дополнительных преимуществ: так как шкафы выполняются по стандартным схемам, проверенным в эксплуатации, вероятность ошибок в работе значительно снижается, а удобство в наладке и монтаже возрастает. Узнайте еще больше о РЗА и типовых решениях на нашем сайте.

Требования к РЗиА

Требования к релейной защите исчерпывающе прописаны в ПУЭ (Р. 3 Гл. 3.2), а также в многочисленных пособиях — смысла дублировать их в статье нет

Обобщим их так, чтобы читатель смог сориентироваться, на что обратить внимание, быстро найти и уточнить их в указанных источниках

Выполнением каких принципов обеспечивается работоспособность

Нарушения в работе РЗиА при некорректном подборе, монтаже, несоблюдении норм:

  • ложные тревоги при исправной ЭУ и сети;
  • ненужные активации, например, когда сработка исполнительных узлов излишняя;
  • повреждения конструкции РЗ.

ПУЭ и связанные нормативные акты предъявляют требования, с помощью которых исключается перечисленное выше (касаются проекта, монтажа, настройки и запуска, техобслуживания):

  • соблюдение по классам, уровням надежности;
  • чувствительность;
  • быстрота сработки;
  • селективность — обеспечение уровней активации защиты в правильном порядке. Этот параметр тесно связанный с предыдущими двумя.

Надежность

Определяется такими характеристиками:

  • безотказностью;
  • соблюдением количества заложенных при создании РЗ циклов сработки;
  • ремонтопригодностью;
  • продолжительностью службы, сохраняемость. Ее должен гарантировать производитель, конструктор согласно ТУ (которая обязательно согласовывается с ГОСТами, ПУЭ) продукции. Изделие должно иметь паспорт и сертификат.

Каждая позиция имеет свою оценку, указанную в техдокументации, в утвержденном согласно нормативным документам проекте.

Есть 3 позиции по надежности при ТО и эксплуатации РЗ по активации: при КЗ внутренних на рабочих локациях, за их границами, при функционировании без неисправностей. Надежность бывает 2 типов: эксплуатационная и аппаратная.

Чувствительность

Требования, предъявляемые к РЗА, релейной защите в первую очередь касаются функциональных настроек, так как фиксация пороговых значений, нарушения уставок подразумевают наличие у РЗ определенной чувствительности.

Надо правильно определить, какая предполагаемая степень нарушения режима, перегрузки является опасной, и подобрать под нее соответственно настроенный вариант РЗ.

Есть уравнение для чувствительности (ее числового значения) при возникновении КЗ. Применяется специальная характеристика — Кч, коэффициент.

Кч = Iкз min/Iсз

Расчет: отношение наименьшего тока КЗ рабочего участка к величине тока активации. РЗ нормально функционирует при Iсз < Iкз min. Наиболее оптимальная чувствительность (коэфф.) — 1.5–2.

Быстродействие

Быстрота обесточивания имеет 2 составляющие:

  • сработка защитных алгоритмов с командой на нижеуказанный узел;
  • задействование привода выключателя.

Реагирование по времени регулируемое в диапазоне мин.-макс. значения в зависимости от возможностей устройства релейной защиты, применяемых элементов. Задержка сработки создается внедрением специальных реле с возможностью настройки, такая опция используется для наиболее отдаленных защит. РЗ размещенные ближе к месту неполадки, к защищаемому участку настраиваются на более короткий временной интервал активации или применяются без него.

Селективность

Второе название данной характеристики — избирательность. Опция позволяет определить место повреждения в схемах любой сложности.

Генератором вырабатывается и подается электричество потребителям на сегментах 1–3 (каждый со своей защитой). При КЗ на приборе потребителя на 3 промежутке, ток течет по всем узлам РЗ, начиная от источника энергии. В таких условиях целесообразно отключать цепь сегмента с неисправностью, например, электромотора, оставляя задействованными остальных исправных потребителей. С этой целью есть возможность делать уставки РЗ для каждой цепи. Обычно такие особенности закладываются еще на стадии проектирования.

Защита 5 3-го сегмента должна фиксировать токи неполадок раньше, и оперативнее активироваться, отключая поврежденные сегменты от цепей. Поэтому величины токово-временных уставок на каждом промежутке снижаются от генератора к потребителю. Прицип: чем дальше от локации поломки, тем меньшая чувствительность. Так одновременно реализуется резервирование, учитывающее возможность эффективной защиты при неполадках любых приборов, включая и системы РЗ более низкой ступени. Описанная схема означает, что при поломке самой защиты 5 сегмента 3 при аварии должны активироваться приборы защиты 3 или 4 промежутка 2. А эти секции, в свою очередь, подстраховываются защитными узлами сегмента 1.

Релейная защита — назначение

Первостепенным назначением прибора является отключение неисправного элемента электролинии при возникновении короткого замыкания. Кроме этого реле способно своевременно обнаружить опасность и устранить ее.

В случае если неисправность не представляет большой опасности, реле об этом просигналит звуковым или световым обозначением. Ежели сбой в работе приведет к тяжелым последствиям для электрической сети и электрооборудования, то прибор мгновенно обесточит пораженный участок.

Защитное реле используются для контролирования направления мощности, обесточивания трансформаторов в случае выделения газа, защиты распределительных систем и трансформаторных станций от возникновения пожара. Одновременно с этим реле способно контролировать фазы на концах электрических цепей. При этом если токовая величина превышает установленное значение, защитное устройство сработает.

Требования предъявляемые к релейной защите

Селективность (избирательность)

Селективность — свойство релейной защиты, характеризующее способность выявлять именно поврежденный элемент электроэнергетической системы и отключать этот элемент от исправной части электроэнергетической системы (ЭЭС). Защита может иметь абсолютную или относительную селективность. Защиты с абсолютной селективностью действуют принципиально только при повреждениях в их зоне. Защиты с относительной селективностью могут действовать при повреждениях не только в своей, но и в соседней зоне. А селективность отключения поврежденного элемента ЭЭС при этом обеспечивается дополнительными средствами (например, выдержкой времени срабатывания).

Быстродействие

Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.

Чувствительность

Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы. Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).

Надёжность

Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов, при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено. Иными словами, надежность — это свойство релейной защиты, характеризующее её способность выполнять свои функции в любых условиях эксплуатации. Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).

Определение понятия Релейная защита

Релейная защита (РЗ) – это важнейший вид электрической автоматики, которая необходима для обеспечения бесперебойной работы энергосистемы, предотвращении повреждения силового оборудования, либо минимизации последствий при повреждениях. РЗ представляет собой комплекс автоматических устройств, которые при аварийной ситуации выявляют неисправный участок и отключают данный элемент от энергосистемы.

Во время работы РЗ постоянно контролирует защищаемые элементы, чтобы своевременно зафиксировать возникшее повреждение (или отклонение в работе энергосистемы) и должным образом отреагировать на случившееся.

При аварийных ситуациях релейная защита должна выявить и выделить неисправный участок, воздействуя на силовые коммутационные аппараты, предназначенные для размыкания токов повреждения (короткого замыкания, замыкания на землю и т.д.).

Релейная защита сопряжена с иными видами электрической автоматики, которые позволяют сохранять бесперебойную работы энергосистемы и электроснабжения потребителей.

На данный момент отрасль релейной защиты активно развивается и расширяется, уже сейчас используется микропроцессорная аппаратура и компьютерные программы не только для защиты, но и для комплексного управления оборудованием и системой в целом.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Watch this video on YouTube

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Структурная схема устройства релейной защиты

В настоящее время в нашей стране и мире находится в эксплуатации огромное множество устройств РЗА различных классов, типов и модификаций. С момента своего появления устройства РЗА эволюционировали от электромеханических до статических, и далее – цифровых, наиболее современных.

Внешний облик и составные элементы устройств в процессе их эволюции претерпели значительные изменения, однако общая структурная схема устройства остается неизменной и по сей день.

Рисунок 1. Структурная схема устройства РЗА

Измерительные (пусковые) органы обеспечивают непрерывный контроль состояния защищаемого объекта (линии, трансформатора, двигателя и др.) с помощью измерительных трансформаторов тока (ТТ) и напряжения (ТН), от которых к ним поступают сигналы вторичных токов и напряжений в реальном времени.

ТТ и ТН выполняют гальваническую развязку цепей защиты и измерения от сети высокого напряжения и уменьшают измеряемые сигналы до приемлемого уровня.

Измерительные органы вычисляют значения подаваемых на устройство РЗА токов и напряжений, а также производных параметров, таких как мощность, сопротивление и др. Далее устройство выполняет сравнение полученных значений с уставками и формирует признаки срабатывания пусковых органов.

Так, например, признак срабатывания пускового органа тока максимальной токовой защиты формируется, если любой из фазных токов превышает значение уставки, заданной в устройство РЗА.

Логическая часть получает информацию о признаках срабатывания пусковых органов, положении выключателя, состоянии защищаемого объекта и смежных с ним (если это необходимо).

В зависимости от состояния полученных сигналов и последовательности их поступления логическая часть формирует управляющие воздействия в соответствии с алгоритмом функционирования, заложенным в устройстве РЗА.

Например, логическая часть максимальной токовой защиты обеспечивает контроль состояния вольтметровой блокировки и реле направления мощности, задержку срабатывания защиты или ее отсутствие при опробовании присоединения, а также формирование сигнала отключения выключателя.

Исполнительные органы, роль которых чаще всего выполняют различные промежуточные реле, обеспечивают связь устройства РЗА с выключателем защищаемого присоединения, системой центральной сигнализации и другими объектами.

Местная сигнализации о срабатывании устройства РЗА осуществляется с помощью Сигнальных органов, выполняемых в виде световых индикаторов. Срабатывание сигнальных органов осуществляется непосредственно по сигналам логической части или через исполнительные органы.

Схемы питания цепей сигнализации

Па подстанциях с постоянным оперативным током цепи сигнализации вместе с цепями управления защиты и автоматики получают питание от аккумуляторной батареи. Для повышения надежности питания потребителей на подстанции обычно имеются две секции и две системы шин постоянного тока. На крупных подстанциях устанавливаются две аккумуляторные батареи. В этом случае каждая из систем шин питается от отдельной батареи. Обе батареи работают раздельно. Если на подстанции установлена одна аккумуляторная батарея, то системы шин питаются от разных секций щита постоянного тока. Нормально обе секции замкнуты между собой с помощью секционного рубильника, а зарядный агрегат отключен. Возможна такая схема питания, когда одна из секций получает питание от аккумуляторной батареи, а вторая — от зарядного агрегата.

1.4. Элементы защиты

Пусковые органы – непосредственно и непрерывно контролируют
состояние и режим работы защищаемого оборудования и реагируют на возникновение
КЗ и нарушение нормального режима работы.

Это различные реле
автоматические устройства, срабатывающие при определенном значении
воздействующей на него величины.

Логические органы – воспринимают команды пусковых органов и
в зависимости от их сочетания, по заданной программе производят заранее
предусмотренные операции.

Реле также подразделяются на основные и вспомогательные.

Типы основных реле: тока;

напряжения;

сопротивления;

мощности
(определяющие величину и направление (знак)).

Реле бывают максимальными
– действующие при возрастании контролируемой величины, и минимальными – при снижении этой величины.

Специальные реле: частоты;

тепловые.

Типы вспомогательных реле:времени;

указательные
(для сигнализации);

промежуточные (передающие действие основных защит на отключение выключателей).

Каждое реле конструктивно можно подразделить на две части – воспринимающую и исполнительную.

Воспринимающая часть представляет собой обмотку, питающуюся током
или напряжением.

Исполнительная часть – это механическая система, воздействующая на
контакты реле, заставляя их замыкаться или размыкаться.

Классификация реле по принципу работы

Большинство защитных устройств в виде реле работает по принципам электромагнитной индукции, однако контролируемые признаки и способ реакции могут быть разными. На данный момент к наиболее популярным можно отнести виды релейной защиты, работающие по следующим схемам:

  • Газовые. Также к этой группе можно отнести масляные датчики-контроллеры. В обоих случаях задача устройства заключается в фиксации утечек охлаждающих веществ трансформатора. В случае разгерметизации каналов подачи масла или газа реле автоматически отключает оборудование.
  • Дифференциальные. Такие реле используются также в трансформаторах, генераторах и на подстанциях, контролируя токовые величины. Стандартная модель реакции предполагает отключение устройства, если входные величины имеют большую разницу с выходными показателями.
  • Направленно максимальные. Простейшие реле, активизирующие защиту при фиксации избыточно высоких показателей напряжения, мощности или силы тока.
  • Дистанционные. Блокировочные реле, которые фиксируют короткие замыкания и помехи в цепи, после чего отключают аппаратуру.
  • Дуговые. Такие реле устанавливаются на комплектных трансформаторах и подстанциях. С помощью оптических датчиков и сенсоров давления они фиксируют признаки возгорания, запуская соответствующие системы пожаротушения.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий