Что такое активная и реактивная мощность переменного электрического тока?

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне

Активно применяются в промышленности.

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Что такое Сила тока. Ампер [А]

Сила тока представляет собой скорость, с которой электрический заряд течёт по проводнику. Один ампер равен заряду в один кулон, который проходит через проводник за одну секунду. Один кулон представляет собой очень большой заряд, поэтому в большинстве устройств эта величина измеряется в миллиамперах.

Сила тока зависит от сечения проводника и его длины. Это необходимо учитывать при планировке сооружений, а также выборе электрических приборов. Хотя большинству не следует задумываться на этот счёт, поскольку это задача инженеров и проектировщиков.

Сколько Ватт в 1 Ампере?

Для определения мощности цепи также важно понятие напряжения. Это электродвижущая сила, перемещающая электроны

Она измеряется в вольтах. Большинство приборов имеют в документации эту характеристику.

Чтобы определить мощность при силе тока в один ампер, необходимо узнать напряжение сети. Так, для розетки в 220 вольт получится: P = 1*220 = 220 Вт. Формула для расчёта: P = I*U, где I — сила тока, а U — напряжение. В трёхфазной сети нужно учитывать поправочный коэффициент, отражающий процент эффективности работы. В большинстве случаев он составляет от 0,67 до 0,95.

Перегрузки силовых трансформаторов

Перегрузки определяются преобразованием заданного графика нагрузки в эквивалентный в тепловом отношении (рис. 3.5). Допустимая нагрузка трансформатора зависит от начальной нагрузки, максимума нагрузки и его продолжительности и характеризуется коэффициентом превышения нагрузки:

Допустимые систематические перегрузки трансформаторов определяются из графиков нагрузочной способности трансформаторов, задаваемых таблично или графически. Коэффициент перегрузки передается в зависимости от среднегодовой температуры воздуха /сп вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки кн н и продолжительности двухчасового эквивалентного максимума нагрузки tmах.

Если максимум графика нагрузки в летнее время меньше номинальной мощности трансформатора, то в зимнее время допускается длительная 1%я перегрузка трансформатора на каждый процент недогрузки летом, но не более чем на 15 %. Суммарная систематическая перегрузка трансформатора не должна превышать 150 %. При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5 % выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.

Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются в соответствии с указаниями заводом — изготовителя. Так, трехфазные трансформаторы с расщепленной обмоткой 110 кВ мощностью 20, 40 и 63 М ВА допускают следующие относительные нагрузки: при нагрузке одной ветви обмотки 1,2; 1,07; 1,05 и 1,03 нагрузки другой ветви должны составлять соответственно 0; 0,7; 0,8 и 0,9.

Читать также: Что такое вид в черчении определение

Измерение электрической энергии

Исходя из выражения P= U*I можно сделать вывод, что энергию можно измерить с помощью приборов, предназначенных для замера напряжения и тока. Понадобится, используя амперметр и вольтметр, получить данные, а после, подставив их в формулу, рассчитать значение мощности. Суть измерения заключается в том, что одновременно в цепь параллельно подключается вольтметр, а в разрыв цепи амперметр. Такой метод называется косвенным, а использование двух приборов снижает точность полученного результата.

Поэтому были разработаны специальные тестеры, предназначенные для прямого измерения энергии — ваттметры. Такого рода измерители могут использоваться в однофазных цепях как постоянного, так и переменного тока. Но при этом ваттметры разделяются на две категории:

  1. Цифровые — в основе их схемотехники используется микропроцессорный блок, анализирующий полученный сигнал и по сложным алгоритмам вычисляющий результат, который выводится на экран прибора в цифровом виде. Их погрешность измерения составляет не более 0,1.
  2. Аналоговые — использующие в работе электродинамические и ферродинамические измерительные головки. Выполняются они в виде катушек, отклоняющих стрелку. Шкала отклонения проградуирована в ваттах. В зависимости от влияния поля, стрелка отклоняется на измеренную величину. Первого типа устройства имеют класс точности около 0,1−0,5, а второго — 1,5−2.

Аналоговые приборы практически уже мало где используются, в основном для нахождения мощности устройств, подключённых к промышленной сети с частотой 50 Гц. На постоянном токе их результаты посредственные, так как на измерительные катушки влияет гистерезис сердечников (эффект насыщения).

Отдельную подгруппу тестеров составляют варметры. Это специальные измерители, предназначенные для вычисления реактивной мощности. А также для косвенного метода используется электроизмерительный прибор, получивший название фазометр. С помощью его можно найти угол сдвига фаз сигнала, то есть фактически определить коэффициент мощности.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.


Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U2/R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:


Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I2*R = 25*6 = 150 Вт

Треугольник мощностей и косинус Фи

Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.

Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:

Буквой P – обозначена активная мощность, Q – реактивная, S – полная.

Формула полной мощности имеет вид:

Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.

Единицы измерения:

  • P – Вт, кВт (Ватты);
  • Q – ВАр, кВАр (Вольт-амперы реактивные);
  • S – ВА (Вольт-амперы);

Практическое применение и коррекция

Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.

Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.

КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.

Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.

Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии. Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя. При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.

Активная и реактивная электрическая мощность

Общая зависимость электрической мощности от электрического тока и напряжения известна давно: это произведение. Помножим ток на напряжение – получим значение этой величины, потребляемой цепью из сети.

Но на деле все может оказаться не так просто. Потому что, просто умножив напряжение на ток, мы получим значение полной мощности. Казалось бы – это то, что нужно! Ведь обычно нас интересует именно полное значение любой величины.

Однако на электрическую мощность такое отношение распространять нельзя, так как электроэнергия и мощность, на основании которых изменяются показания нашего квартирного счетчика – не полные, а активные.

Активная мощность

– это та мощность, которая потребляется в тот момент, когда в сети в один и тот же момент есть и напряжение, и синхронный с ним электрический ток. На самом деле, в цепях постоянного тока за исключением переходных процессов при включении-выключении так оно и бывает.

Постоянно «жмет» напряжение, если цепь замкнута – постоянно «давит» некоторый ток. В итоге полная и активная мощность становятся равны, поскольку ток и напряжение действуют согласованно.

Иное дело – цепи переменного тока. Напряжение в них меняет свое направление пятьдесят раз в секунду, а ток… иногда приотстает, а иногда опережает напряжение. К примеру, если в цепи имеется «индуктивность», то есть, катушка из провода, имеющая множество витков, то ток на таком элементе цепи «отстанет» от напряжения.

Причина заключается в противо-ЭДС самоиндукции, сопротивляющейся изменению тока в катушке. Получается, что напряжение к индуктивности уже приложено, а ток еще никак не может возрасти из-за помех со стороны противо-ЭДС.

В среде учащихся многих электротехнических ВУЗов бытует такое художественное сравнение: «Для тока требуется время, чтобы он мог пробежать через каждый виток, а напряжение – вот оно, уже на концах катушки».

ЭДС противоиндукции вызывает падение напряжения и снижение тока в цепи. То есть, катушка является источником индуктивного сопротивления. Но оно отличается от активного сопротивления тем, что на нем не выделяется никакого тепла и вообще не потребляется никакой мощности в привычном понимании.

Происходит просто «пустопорожнее» переливание электроэнергии от источника к индуктивности. И энергия, перенаправляемая туда и обратно как мяч в настольном теннисе, никуда из сети не уходит. Это реактивная энергия и потребителю в быту за нее не приходится платить энергосбытовой компании.

Реактивная энергия

, производимая в сети в единицу времени, может считаться реактивной мощностью. Вычисляется она так же, как и активная – произведением реактивной составляющей тока на напряжение.

Реактивной же составляющей тока является та, которая не совпадает с напряжением по своей фазе. Величина «несовпадения» характеризуется углом сдвига фаз. В случае с чистой индуктивностью сдвиг фаз составляет максимум – 90°. Это означает, что когда напряжение достигает самого большого своего значения, ток только начинает расти.

А если в цепи расположен конденсатор (емкость), то напряжение, напротив, будет отставать от тока на 90 градусов по причине того, что для возникновения падения напряжения конденсатору требуется зарядить свои обкладки.

Точно так же источник и конденсатор в одной цепи будут обмениваться реактивной энергией, которая ни на что не будет тратиться.

В реальной цепи не бывает чисто активной или чисто реактивной нагрузки, поэтому полная мощность всегда состоит из активной и реактивной составляющей, а угол сдвига фаз находится в пределах между нулем и 90°.

Реактивная составляющая тока равна его произведению на синус угла сдвига фаз, а активная – произведению на косинус этого угла:

Q=I*sin⁡φ; P=I*cosφ

Полную мощность можно найти по теореме Пифагора:

S=√(P^2+Q^2);

При этом, реактивную мощность, в отличие от активной, нельзя исчислять в ваттах, потому что она неэффективна. Поэтому для реактивной мощности придумали особую единицу измерения – вольт-амперы реактивные (ВАРы). А полная измеряется в вольт-амперах, без уточнения характера нагрузки.

Электроприборы, влияющие на качество потребления

Учимся легко считать потребляемую мощность электроприбора

Коэффициент мощности равен единице при подключении ламп и нагревателей. Он уменьшается до 0,7 и менее, когда в цепи добавляют преобладающие по потреблению энергии электромоторы, другие компоненты с реактивными составляющими.

Правильное применение определений и расчетов мощности помогает оптимизировать проект электрической сети с учетом особенностей подключаемых нагрузок. Приведенные выше сведения пригодятся на стадии определения параметров проводки, защитных автоматов. Комплексное использование этих знаний повысит надежность электроснабжения, предотвратит возникновение и развитие аварийных ситуаций.

Практическое истолкование коэффициента мощности

Многие замечают неувязку в случае практического рассмотрения реактивной мощности. Для снижения коэффициента рекомендуют параллельно обмоткам двигателя включать конденсаторы большого размера. Индуктивное сопротивление уравновешивает емкостное, ток вновь совпадает с напряжением фазой. Сложно понять вот по какой причине:

  1. Допустим, к источнику переменного напряжения подключили первичную обмотку трансформатора.
  2. В идеале активное сопротивление равно нулю. Мощность должна быть реактивной. Но это плохо: угол между напряжением и током стремятся сделать нулевым!

Коэффициент мощности

Величина энергии, запасаемой полем, определяется размером индуктивности или емкости. Прочитаете в любом учебнике физики для ВУЗов (Курс физики Жданова и Маранджяна, т. 2, стр. 234), точнее – пропорциональна квадрату величины. Теория реактивной мощности предполагает: некая энергия запасается каждый период паразитной индуктивностью, емкостью, потом уходит во внешнюю цепь. Получается своеобразная циркуляция внутри колебательного контура. Сильно нагреваются соединительные провода, если индуктивность находится слишком далеко от ёмкости.

Но! Колебательный процесс безучастен работе двигателей, трансформаторов. Теория реактивной мощности предполагает: колебания совершает вся энергия. До последней капли. В трансформаторе, двигателе из поля происходит активная “утечка” энергии на совершение работы, наведение тока вторичной обмотки. Энергия циркулировать между источником и потребителем не может.

Реальная цепь процесс согласования отдельных участков затрудняет. Для перестраховки поставщики требуют установить параллельно обмотке двигателя конденсаторы, чтобы энергия циркулировала в локальном сегменте, не выходила наружу, нагревая соединительные провода

Важно избежать перекомпенсации. Если емкость конденсаторов будет слишком велика, батарея станет причиной увеличения коэффициента мощности

Проверка правильности согласования ведется по факту отсутствия сдвига фаз между напряжением и током работающего электродвигателя. Лишняя энергия циркулирует меж избыточной индуктивностью обмоток, установленным конденсаторным блоком. Достигнута цель мероприятия – избежать нагрева проводников питающей устройство сети.

Определение мощности

Допустим, нам необходимо убрать урожай пшеницы с поля площадью 100 га. Это можно сделать вручную или с помощью комбайна. Очевидно, что пока человек обработает 1 га площади, комбайн успеет сделать намного больше. В данном случае разница между человеком и техникой — именно то, что называют мощностью. Отсюда вытекает первое определение.

Мощность в физике — это количество работы, которая совершается за единицу времени.

Рассмотрим другой пример: между точкой А и точкой Б расстояние 15 км, которое человек проходит за 3 часа, а автомобиль может проехать всего за 10 минут. Понятно, что одно и то же количество работы они сделают за разное время. Что показывает мощность в данном случае? Как быстро или с какой скоростью выполняется некая работа.

В электромеханике данная величина тоже связана со скоростью, а конкретно — с тем, как быстро передается ток по участку цепи. Исходя из этого, мы можем рассмотреть еще одно определение.

Мощность — это скалярная физическая величина, которая характеризует скорость передачи энергии от системы к системе или скорость преобразования, изменения, потребления энергии.

Напомним, что скалярными величинами называются те, значение которых выражается только числом (без вектора направления).

Мощность человека в зависимости от деятельности

Вид деятельности

Мощность, Вт

Неспешная ходьба

60–65

Бег со скоростью 9 км/ч

750

Плавание со скоростью 50 м/мин

850

Игра в футбол

930

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

  1. силу тока I;
  2. приложенное напряжение U;
  3. сопротивление участка цепи R.

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Единицы измерения

кВа в кВт — как правильно перевести мощность

В действующей системе единиц «СИ», утвержденной на международном уровне, мощность предлагается указывать в ваттах (один Вт = работе 1 Джоуль, сделанной за 1 секунду). Устаревшее обозначение «лошадиная сила» рекомендовано изъять из оборота. Для удобства применяют производные значения с определенными приставками (один киловатт (1кВт) = 10 в третьей степени ватт = 1 000 Вт).

Перевод 1 Вт в иные обозначения:

  • килограмм-сила-метр в секунду (кгс*м/с) – 0,102;
  • эрг в секунду (эрг/с) – 107;
  • лошадиная сила (л.с.) метрическая/ английская – 1,36*10-3/ 1,34*10-3.

Измерение мощности

Для каждого вида мощности собственный измеритель. Добавим, что принцип физический используется одинаковый, но устройство приборов отличается. К примеру, аналоговые модели работают на принципе, открытом зимой 1819-1820 гг. Гансом Эрстедом. Точнее говоря, влияние проводника на стрелку компаса замечали прежде, но не привлекали столько внимания, как случилось осенью 1820 года. Когда научный мир узрел, что электричество и магнетизм связаны.

Итак, в основе аналоговых измерительных приборов лежал мульпликатор Иоганна Швейггера (сентябрь 1820 года): ток проходил через катушку из проволоки и отклонял стрелку в установленном направлении. Показания считывались по циферблату и заносились в таблицы вручную.

Современные приборы работают иначе. В перспективе измеритель упростится до единственного процессора, выполняющего дискретные преобразования Фурье и вычисляющего необходимые величины

Понятно, что важно найти сдвиг фаз и ток, напряжение априорно задано. Создатели измерителей знают, что по ГОСТ вольтаж способен гулять на 10% в обе стороны

Следовательно, нельзя считать напряжение априорно заданным, величина также измеряется.

Потом остаётся лишь перемножить по формулам, приведённым выше. В аналоговых приборах коэффициенты задаются передаточными числами механизмов, числом витков и пр. В цифровых обходится без затруднений, в наличии масса алгоритмов для расчёта. Использованные формулы появились гораздо раньше, нежели создали первую ЭВМ. И мир находился в ожидании сообразных приложению вычислительных мощностей.

Аналоговый ваттметр включает основные части:

  1. Неподвижная катушка напряжения. Для Эрстеда это звучало бы странно, любая катушка создаёт магнитный поток при помощи тока. Напряжение ни при чём. Для измерительных цепей тщательно рассчитываются коэффициенты, параллельно участку цепи ставится высокоомное сопротивление (конструктивно входит в ваттметр), которым ограничивается ток. Не напряжение! Малый ток управляет магнитным потоком. Отклонение стрелки пропорционально напряжению. Это принцип измерения обоснован законом Ома для участка цепи.
  2. Неподвижная катушка тока включена прямо в цепь. Поэтому сопротивление предвидится минимальным. На высоких напряжениях сигнал снимается измерительным трансформатором. Передаточный коэффициент его рассчитан не по напряжению, как случается, а по току. Зная коэффициент пропорциональности, легко найти искомую величину. Следовательно, ваттметр настраивается на используемый трансформатор, либо априорно задано единственное значение. Тогда настройка не требуется, но приходится выбрать тот трансформатор, передаточный коэффициент которого соответствует требованиям.

Подвижная рамка со стрелкой показывает результат на циферблате. Неподвижные катушки расположены в перпендикулярных плоскостях. Рамка выполняется из металлического сплава, либо берется катушка индуктивности. Конструкция просчитана так, что отклонение стрелки приобретает нужный коэффициент пропорциональности и показывает либо синус угла сдвига фаз (для реактивной мощности), либо косинус (для активной мощности).

Треугольник мощностей и cos φ

Для наглядности изобразим полную мощность и её составляющие в виде векторов. Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.


Коэффициент мощности

Применяя теорему Пифагора, вычислим модуль вектора S:

Отсюда можно найти реактивную составляющую:

Реактивная составляющая

Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.

Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1

Если угол сдвига фаз принимает нулевое значение, то cos φ = 1, а это значит что P = S, то есть полная мощность состоит только из активной мощности, а реактивность отсутствует. При сдвиге фаз на угол π/2 , cos φ = 0, откуда следует, что в цепи господствуют только реактивные токи (на практике такая ситуация не возникает).

Из этого можно сделать вывод: чем ближе к 1 коэффициент Pf , тем эффективнее используется ток. Например, для синхронных генераторов приемлемым считается коэффициент от 0,75 до 0,85.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий