Закон Ома
Экспериментально доказано, что во сколько раз увеличивается напряжение на участке цепи, во столько же раз увеличивается и сила тока на этом участке. То есть сила тока в проводнике прямо пропорциональна напряжению на концах этого проводника.
График зависимости силы тока от напряжения будет представлять собой прямую линию, проходящую через начало координат . Его называют вольт-амперной характеристикой цепи.
Зависимость силы тока от сопротивления показывает, что чем больше сопротивление проводника, тем меньше сила тока при одном и том же напряжении между концами проводника. Поэтому сила тока в проводнике обратно пропорциональна сопротивлению проводника
Для участка цепи величина I рассчитывается по формуле немецкого физика Георга Ома, открывшего в 1926 г. закон взаимосвязи между силой тока, напряжением и сопротивлением проводника:
I=U/R,
- U – напряжение (или падение напряжения, или разность потенциалов), измеряется в вольтах – обозначение В или V;
- R – сопротивление проводника, измеряется в омах – обозначение Ом или W.
Или по формуле I=UG, где обозначение G – это проводимость или электропроводность (величина, обратная сопротивлению, измеряется в сименсах, обозначение – См или S).
Расчет для полной цепи происходит по формуле I=e/R+r, где:
- e – ЭДС или электро-движущая сила в цепи, измеряется в вольтах;
- R – суммарное сопротивление всех приборов, включенных в цепь;
- r – внутреннее сопротивление источника напряжения.
Сила тока зависит от электрического напряжения (или разности потенциалов, или ЭДС). В случаях, когда r<>R, можно считать, что она обратно пропорциональна либо сопротивлению цепи, либо сопротивлению источника.
Закон Ома для полной цепи.
Значение I связано с показателем скорости преобразования электрической энергии – мощностью P (единицы измерения ватты -обозначение Вт или W). Для линейной цепи, в которой соблюдается закон Ома, расчет P производится по формуле:
P=IU или P=I2R=U2/R.
Что такое фаза и ноль в электричестве
Фактически ток — это движение электрических зарядов, из коих двигаться по проводу могут только свободные электроны. Необходимым условием появления тока является замкнутость цепи. В то время я уже осваивал 6П3С, подключённую к аноду выходной лампы вещательного приёмника, и в этом постулате нисколько не сомневался. Особенно после пары ударов этим током. Дни бегут, складываются в года. Пошли первые проявления старческого маразма и видимо от этого что-то засомневался я в приобретённых школьных знаниях. Вот имеем источник тока и замкнутую цепь с нагрузкой
Выбежал, неважно с какой клеммы, розовощёкий, уверенный в своих силах ток и помчался к нагрузке
Синусоидальный ток и его основные параметры
Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.
Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Величина обратная частоте называется периодом колебания T=1/f (с). Определение периода звучит так период это время полного колебания. Если представить себе маятник часов, то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.
Амплитуда синусоидального тока — это максимальное значение тока, которое он достигает за период колебания. Опять же, если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.
Начальная фаза синусоидального тока — это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.
Математически синусоидальный ток описывается уравнением:
где i — мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.
Im — амплитуда тока.
j — начальная фаза.
w — угловая частота выражается как угловая частота —
Синусоидальный ток характеризуется амплитудой Im и периодом T.
Электрическая цепь и закон Ома
Три величины — напряжение, электрический ток и сопротивление — могут быть четко представлены в электрической цепи. В простейшем случае она состоит из источника постоянного напряжения и резистора. Резистор подключен к источнику напряжения, а для упрощения возьмем, что сопротивление проводов равно 0 Ом.
Электрическая цепь
Направление электрического тока.
В электротехнике ток течет от плюса до минуса (смотрите рисунок ). Другими словами, как только возникает замкнутая цепь, ток начинает течь от положительного полюса к отрицательному полюсу источника напряжения. Мы говорим о замкнутой цепи, когда два полюса источника напряжения соединены друг с другом сопротивлением.
Как и чем измерять ток и напряжение?
Есть два способа определения силы тока и напряжения. С одной стороны, их можно определить арифметически с помощью закона Ома для участка цепи. С другой стороны, две переменные также могут быть определены путем измерения.
Однако для арифметического определения тока или напряжения должны быть известны две другие величины (напряжение и сопротивление либо ток и сопротивление).
С другой стороны, метрологический метод также работает с любой электрической цепью. Для этого в электрическую цепь необходимо вставить амперметр и вольтметр . Они используются для измерения силы тока и напряжения. Но здесь также применяется закон Ома, поскольку сопротивление нельзя измерить напрямую, но его можно будет рассчитать, когда будут измерены значения тока и напряжения.
Итак, ток измеряется так амперметром, который последовательно подключается к потребителю (резистору, лампе накаливания и т. д.), Через который нужно определять ток. На принципиальной схеме он изображен как A внутри круга (см. рисунок 1). Амперметр имеет очень низкое внутреннее сопротивление, чтобы не влиять на ток, который должен протекать через потребителя. В идеале, внутреннее сопротивление амперметра принимается равным 0 Ом и поэтому просто опускается.
Измерение напряжения производится с помощью вольтметра, который замеряет разность потенциалов между двумя его точками подключения. На электрической схеме он обозначен буквой V внутри круга (см. рисунок 1). В отличие от амперметра, вольтметр подключается параллельно нагрузке, на которой измеряется напряжение. Добавление вольтметра параллельно некоторому потребителю (например, резистору) создает току еще один «обходной» путь, что резко изменяет параметры цепи. Чтобы избежать этих нежелательных последствий, надо применять вольтметры с максимально большим сопротивлением.
Вольт-амперная характеристика (ВАХ).
Вольт-амперная характеристика или характеристика UI резистора может быть записана путем приложения к нему различных напряжений и последующего измерения тока. Обычно при омическом сопротивлении достаточно одной точки измерения, которая затем соединяется с началом системы координат. Однако на практике, для целей контроля, выполняют серию измерений с тремя точками измерения.
Затем эти точки измерения отмечаются в системе координат и соединяются. Напряжение откладывают по оси абсцисс, а ток — по оси ординат. Пример ВАХ смотрите на рисунке ниже
Вольт-амперная характеристика
ВАХ может быть использована для определения тока через резистор при определенном напряжении.
Предыдущая
РазноеЭнергия конденсатора
Следующая
РазноеАвтоматические выключатели
Каким образом течет электричество?
- ” onclick=”window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,w > Печать
Дата Категория: Физика
Электрический ток может приводит в действие машины только тогда, когда он циркулирует в цепи. Электрическая цепь — это канал, по которому течет электричество. Начинается цепь в источнике питания (например, в батарейке), к которому соединительным проводом подключен потребитель, например, лампа накаливания.
Цепь не оканчивается на потребителе, а возвращается по кольцу снова к источнику питания. Сила, поддерживающая течение электрического тока в цепи, называется электродвижущей силой, или напряжением. Так как потребители ослабляют ток в цепи, они называются сопротивлениями.
Понимание взаимосвязи между электрическим током, напряжением и сопротивлением может быть облегчено путем проведения аналогии между электрическим током и водой, текущей по каналу (рисунок вверху). Батарейка может быть представлена в виде водяного насоса, а электрический ток — в виде определенного объема воды. Аналогами двух электрических сопротивлений (двух ламп накаливания) являются два водослива в канале.
В такой модели каждый раз, когда вода (электрический ток) встречает водослив (сопротивление), она падает на более низкий уровень (меньшее напряжение). Объем воды остается неизменным, однако ее уровень (энергия) уменьшается. То же самое происходит с электрическим током. Когда электрический ток проходит через сопротивление, его энергия отводится в окружающую среду, а напряжение уменьшается.
Вычисление падения напряжения
Когда электрический ток проходит через сопротивление, например, через лампу накаливания, силовое воздействие на заряды (напряжение) уменьшается. Это уменьшение называется падением напряжения. Изменение напряжения может быть определено численно, путем умножения величины сопротивления на силу тока.
Электрический ток и поток электронов
Электроны (синие шарики) текут по направлению к положительному полюсу источника тока, т.е. навстречу электрическому току, который движется от положительного полюса к отрицательному (большая голубая стрелка). Сила тока зависит от того, сколько электронов пройдет через поперечное сечение проводника в единицу времени.
Электрический ток в параллельной цепи
В параллельной цепи электрический ток (синие стрелки), прежде чем вернуться к своему источнику (красная батарейка), разделяется на две отдельные ветви.
Вид цепи и напряжение
Последовательная цепь содержит два сопротивления (R), которые поочередно снижают напряжение (V). Падение напряжения определяется суммой сопротивлений.
В параллельной цепи электрический ток проходит по различным путям. Такое расположение сопротивлений (R) вызывает одновременное падение напряжения.
Переменный синусоидальный ток
Переменный ток — это ток, который периодически изменяется как по модулю, так и по направлению. Появляется переменный ток благодаря электромагнитной индукции . Электромагнитная индукция это явление возникновения тока в замкнутом контуре при изменении магнитного потока проходящего через него. Чтобы понять, как именно возникает ток, представим себе рамку (кусочек проволоки прямоугольной формы), которая находится под воздействием магнитного поля B . Пока рамка находится в покое, тока в ней нет. Но как только мы начнём её поворачивать, электроны, которые находятся в рамке, начнут перемещаться вместе с ней, то есть двигаться в магнитном поле. Вследствие этого магнитное поле начинает действовать на электроны, заставляя их двигаться по рамке. Чем больше линий магнитного поля пронизывает рамку, тем сила действующая на электроны больше, следовательно, и электрический ток тоже. Получается, что ток достигает максимума в момент, когда рамка перпендикулярна магнитному полю (наибольшее количество линии пронизывает рамку) и равен нулю, когда параллельна (наименьшее количество линии пронизывает рамку). Соответственно и сила, которая действует на электроны, тоже изменяется. После прохождения момента, когда рамка параллельна вектору магнитной индукции B, ток в ней начинает течь в обратную сторону.
Ток, который получается при вращении рамки, изменяясь во времени, описывает синусоиду, то есть является синусоидальным. Переменный синусоидальный ток является частным случаем периодического переменного тока. Закон, описывающий изменение тока, имеет вид:
Амплитуда Im – это наибольшая абсолютная величина, которую принимает периодически изменяющийся ток.
Начальная фаза ψ — аргумент синусоидального тока (угол), отсчитываемый от точки перехода тока через нуль к положительному значению.
Время, за которое ток в проводнике дважды изменяет своё направление, называют периодом T. Период измеряется в секундах.
Циклической частотой f называется величина обратная периоду . Измеряется в Герцах, в домашней розетке циклическая частота тока равна 50 Гц, её также называют промышленной частотой. При такой частоте период тока равен
, это значит, что за две сотых секунды ток в нашей розетке меняет свое направление два раза.
Угловая частота ω показывает с какой скоростью изменяется фаза тока и определяется как
Среднее значение Iср синусоидального тока за период Т определяют из геометрических представлений: площадь прямоугольника с основанием T/2 и высотой Iср приравнивают площади ограниченной кривой тока:
После упрощения получаем формулу:
Действующее значение синусоидального тока определяется из энергетических представлений: действующий ток равен по величине такому постоянному току I, который в активном сопротивлении R за период Т выделяет такое количество энергии, как и данный ток i. То есть действующее значение, это своеобразная аналогия между переменным и постоянным током. Для синусоидального тока действующее значение определяется по формуле:
Это основное что нужно знать о переменном синусоидальном токе.
Источник
Статьи, Схемы, Справочники
В металлических проводниках такими частицами являются электроны проводимости, которые начинают упорядоченно двигаться под воздействием поля. Интересно, что скорость упорядоченного движения частиц под действием электромагнитного поля очень мала, гораздо меньше скорости случайного теплового движения данных частиц. Небольшая поправка: электромагнитное поле распространяется не в проводнике, а в пространстве вокруг него. В идеальном проводнике электрическое поле вообще равно нулю, а в реальном проводнике отлично от нуля только в очень тонком скин-слое вблизи поверхности проводника. Моя лента Новые Топ. Поиск Задать вопрос Войти.
Поиск данных по Вашему запросу:
Дождитесь окончания поиска во всех базах.По завершению появится ссылка для доступа к найденным материалам.
Перейти к результатам поиска >>>
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: ПОЧЕМУ ГУДИТ ТОК В ПРОВОДАХ И ТРАНСФОРМАТОРЕ
Говорим о напряжении
Не менее важно понять что такое напряжение. Давайте сразу начнем с аналогии и снова используем воду
Пусть в воронке находится вода. Она просачивается через узкое горлышко, которое создает сопротивление. Если представить, что на воду уложили груз, движение воды ускорится. Этот груз — и есть напряжение. И теперь тоже понятно, почему чем выше напряжение, тем сильнее ток — чем сильнее давление, тем быстрее будет двигаться вода. То есть, зависимость прямая: больше напряжение — больше ток. И именно это положение отражает закон Ома — «давление» стоит в числителе (в верхней части дроби).
Можно попробовать представить напряжение по-другому. Есть все те же электроны, которые скопились на одном краю источника питания. На втором краю их мало. Так как каждый из электронов имеет какой-то заряд, там, где их много, суммарный заряд больше, где мало — меньше. Разница между зарядами и есть напряжение. Это тоже несложно представить. С точки зрения электричества — это более корректное представление, хоть и не точное.
На тему закона Ома есть немало забавных картинок, позволяющих чуть лучше понять все эти явления. Одна из них перед вами и иллюстрирует, как ток зависит от напряжения и сопротивления. Смотрите что получается: сопротивление старается уменьшить ток (обратная зависимость), а с ростом напряжения он увеличивается (прямая зависимость). Это и есть закон Ома, но переданный простыми словами.
Благодаря картинке просто понять зависимость тока от напряжения и сопротивления
Если вы хотите убедиться и в этой зависимости, тоже надо создать простенькую цепь. Но нужен будет либо регулируемый источник питания, либо несколько батареек, которые выдают разное напряжение. Или можно последовательно включать несколько батареек — тоже вариант. Но менять/подпаивать батарейки надо при разорванной цепи (выключенном тумблере).
В этой схеме используются два измерительных прибора: амперметр включается последовательно с нагрузкой (резистор на схеме ниже), вольтметр параллельно нагрузке.
Схема для иллюстрации закона Ома
Так как другие параметры цепи остаются в норме, при увеличении напряжения мы увидим увеличение силы тока. Чем больше напряжение подаем, тем больше отклоняются стрелки вольтметра и амперметра. Если задаться целью построить график, он будет в виде прямой. Если поставить другое сопротивление, график также будет в виде прямой, но угол наклона ее изменится.
Синусоидальный ток и основные характеризующие его величины.
Синусоидальный ток и основные характеризующие его величины.
Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):
(3.1)
Максимальное значение функции называют амплитудой.
Амплитуду тока обозначаютIm.Период Т
— это время, за которое совершается одно полное колебание.
Частота f —
число колебаний в 1 с (единица частотыf — герц (Гц) или с -1 ): (3.2) Угловая частота (единица угловой частоты — рад/с или с -1 )
Аргумент синуса, т. е. ( t
+ ), называютфазой — характеризует состояние колебания (числовое значение) в данный момент времениt .
Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.
Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ).
Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают ихе иj (илиe(t) иj (t )).
Среднее и действующее значения синусоидально изменяющейся величины.
Под средним значением
синусоидально изменяющейся величины понимают ее среднее значение за полпериода. Среднее значение тока
(3.4)
т. е. среднее значение синусоидального тока составляет 2/ = 0,638 от амплитудного. Аналогично,
Широко применяют понятие действующего значения
синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока
Что такое переменный ток. Определение переменного тока
Переменный ток — это направленное движение заряженных частиц, направление движения которых меняется на противоположное через равные промежутки времени. Если постоянный ток течет в одном направлении и не меняется по величине, то переменный ток может быть в данный момент положительным, а через определенный промежуток времени отрицательным.
Получение переменного тока
Вырабатывают переменный ток генераторы переменного напряжения, которые преобразуют механическую энергию в электрическую. Форма переменного тока может быть различной и зависит от его назначения. Форма переменного тока промышленного назначения и для бытовых нужд населения носит синусоидальный характер.
Он имеет такие характеристики как амплитуда, частота и период. Периодом синусоидального тока является его полный цикл колебания и измеряется временем совершения одного цикла колебания. Такие циклы повторяются и поэтому переменный ток еще называют циклическим.
Период обозначается буквой Т и выражается в секундах. Другим параметром синусоидального тока является частота, которая обратно пропорциональна периоду т. е. F = 1/Т. Если период переменного тока равен 1 секунде, то частота его будет равна 1 Гц.
Период, частота и амплитуда переменного тока
Существует два стандарта переменного тока — это 50 Гц и 60 Гц. В России используется частота сети 50 Гц, а в Канаде и США 60 Гц. Такой параметр как амплитуда, определяется его наибольшей величиной в определенный промежуток времени, она может иметь отрицательное или положительное значение.
Особенности нейтрального провода
Нулевой провод предотвращает нежелательные ситуации при аварийных режимах работы. Без его наличия в случае фазного короткого замыкания двух фаз напряжение в третьей фазе мгновенно возрастет в √3 раз. Это губительно скажется на оборудовании, которое питает этот источник. В случае наличия нуля в такой ситуации, напряжение не изменится.
При обрыве одной из фаз в трехфазной трехпроводной системе (без нуля), напряжение на двух оставшихся фазах уменьшится. Они окажутся соединенными последовательно, а при этом виде соединения напряжение распределяется между потребителями в зависимости от их сопротивления.
При обрыве одной из фаз в трехфазной четырёхпроводной системе, напряжение в двух оставшихся фазах своего значения не изменит.
Так как большую часть времени работы электроустановок ток в этом проводе либо равен нулю, либо незначителен, нет смысла изготавливать его такого же сечения, как и сечение фазных. Чаще всего, из соображений экономии, он имеет меньшее сечение жилы, нежели сечение жил фаз в одной электроустановке. Если защитный провод не совмещен с нулевым, его сечение выполняют вдвое меньше, нежели, у фазного провода.
Различия фазного и нулевого провода
Фазный провод (фаза) предназначен для подачи электричества к потребителю.
Назначение нулевого провода (нейтрального или нуля) состоит в выравнивании асимметрии напряжений при разном значении нагрузки в фазах.
Он присоединён к нулевым точкам источника и потребителя при их соединении в «звезду».
Присоединение нейтрального провода (трехфазная четырехпроводная сеть) является возможным только в том случае, когда источник и нагрузка соединены в «звезду».
При соединении в «треугольник» необходимость в нём отпадает, так как линейное и фазное напряжения в фазах одинаковы.
Чтобы понять разницу между линейным и фазным напряжением, необходимо понимать, что в трехфазной трехпроводной цепи линейное (напряжение между двумя фазными проводами) в основном составляет 380 В, а фазное — напряжение между фазой и нулем — в √3 раз меньше приблизительно 220 В.
Нейтральный провод заслужил свое название тем, что при работе устройств ток в нём, при одинаковой нагрузке трёх фаз, равен нулю. Сопротивление его невелико. Поэтому при перегрузке одной или нескольких фаз, ток в нем быстро возрастет. В схеме освещения его наличие является обязательным условием. В ином случае не гарантируется равномерность освещения.
В зависимости от роли, нулевой провод может быть рабочим, защитным, совмещенным.
Защитный обозначается РЕ. Он предназначен для безопасности в случае попадания потенциала на корпус электроприбора. В нормальном режиме он обесточен, а при поломке является проводником, который отведет от электроприбора опасный потенциал в землю. Цвет этой жилы желто-зеленый.
В некоторых системах нулевой провод совмещен с защитным. В таком случае маркировка будет обозначена как PEN и окраска этой жилы будет синей с полосками на концах желто-зеленого цвета.
Направление электрического тока ⋆ diodov.net
Направление электрического тока принято считать от плюса к минусу генератора или источника питания, и принимается, что он протекает в металлических проводниках. Однако I образуется не только в проводниках, но и в газах и жидкостях.
Атомы металлов связаны в прочную кристаллическую решетку, поэтому свободно перемещаться могут только свободные электроны; ионы остаться неподвижными. Атомы газов и жидкостей могут свободно перемещаться, поскольку не имеют прочных связей.
Следовательно, носителями зарядов служат ионы и эл-ны.
Поэтому при определении силы тока I в газах и жидкостях, необходимо учитывать сумму положительных и отрицательных зарядов, прошедших через площадь поперечного сечения за единицу времени. Например, в металлическом проводнике I = 1 А, если через проводник за одну секунду проходят 6,2818 эл-нов (1 Кл).
Различия токов
Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.
Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.
Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.
Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.
Передача тока на большие расстояния
У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.
Построение графика переменного тока
Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?
Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.
Особенности передачи
Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.
Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.
График разности постоянного и переменного тока
Генерирование
Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.
Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.
Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.
Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингаузом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.