Максимальная плотность тока в обмотках трансформатора

Выбор размеров окна сердечника и укладка обмоток на стержнях трансформатора

Форма окна сердечника трансформатора оказывает значительное влияние на величину намагничивающего тока, расход стали на сердечник и меди на обмотки трансформатора. Излишняя высота окна сердечника H повышает намагничивающий ток Iμ и увеличивает расход стали и вес трансформатора. Заниженная высота окна повышает нагрев обмотки и увеличивает расход меди на них.

Как показывает опыт, наивыгоднейшая форма окна сердечника трансформатора получается при отношении высоты окна H к его ширине b в пределах 2,5 – 3 (рисунки 2, 3 и 4).

Если при расчете сердечника трансформатора принята стандартная форма П-образных или Ш-образных пластин из таблицы 2, то размеры H и b берутся из этой же таблицы.

При расположении обмоток на стержнях сердечника трансформатора нужно иметь в виду следующее: чем меньше диаметр обмоточного провода, тем выше его стоимость. Поэтому для уменьшения общей стоимости трансформатора целесообразно обмотку с более тонким проводом располагать на стержне первой.

Для уточнения ширины окна сердечника b необходимо вычислить радиальную толщину обмоток трансформатора.

Число витков первичной обмотки в одном слое:

где d1н – берется из позиции 5; ε1 – расстояние от обмотки до ярма, обычно ε1 = 2 – 5 мм.

Число слоев первичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):

Полученное значение m1 округляется до ближайшего большего целого числа.

В случае однофазного двухкатушечного трансформатора стержневого типа число витков на стержне будет (рисунок 5, а):

Толщина первичной обмотки:

где γ1 – толщина изоляционной прокладки между слоями. Изоляционные прокладки следует применять лишь при напряжении между слоями свыше 50 В. Толщина изоляционных прокладок обычно не превышает 0,03 – 0,10 мм; d1н – берется из позиции 5.

Рисунок 5. Формы катушек маломощных двухобмоточных трансформаторов: а – стержневого двухкатушечного; б – стержневого однокатушечного; в – броневого

Число витков вторичной обмотки в одном слое:

Число слоев вторичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):

Полученное значение m2 также округляется до ближайшего большего числа.

В однофазном двухкатушечном трансформаторе стержневого типа число витков на стержне W2 / 2 (рисунок 5, а):

Толщина вторичной обмотки:

где d2н берется из позиции 5.

Ширина окна сердечника однофазного трансформатора с одной круглой катушкой (рисунок 5, б):

b = ε0 + ε2 + δ1 + δ12 + δ2 + ε3 ,

где

– зазор от стержня до катушки (рисунок 5, б); ε0 = 1,0 – 2,0 – толщина изоляции между катушкой и стержнем, выполняемой обычно из электрокартона; δ12 – толщина изоляции между обмотками, выполняемая обычно в маломощных трансформаторах из электрокартона и лакоткани толщиной 0,10 – 1,0 мм; ε3 – расстояние от катушки до второго стержня, принимаемое обычно в пределах ε3 = 3 – 5 мм; δ1 и δ2 – толщина соответствующих обмоток, мм.

Ширина окна однофазного трансформатора с двумя круглыми катушками, а также трехфазного трансформатора с аналогичными катушками (рисунок 5, а):

b = 2 × (ε0 + ε2 + δ1 + δ12 + δ2) + ε3 .

Ширина окна однофазного трансформатора с одной прямоугольной катушкой (рисунок 5, в):

b = k2 × (ε0 + δ1 + δ12 + δ2) + ε3 ,

где k2 = 1,2 – 1,3 – коэффициент увеличения толщины катушки за счет неплотностей прилегания слоев, в результате чего катушка приобретает овальный вид.

Ширина окна однофазного трансформатора с двумя прямоугольными катушками, а также трехфазного трансформатора с аналогичными катушками:

b = 2 × k2 × (ε0 + δ1 + δ12 + δ2) + ε3.

Принцип работы трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Если на первичную обмотку подать переменное напряжение , то по виткам обмотки потечет переменный ток , который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток , который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – и . И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения , которое будет приблизительно равно наведенной ЭДС (рис. 3).

 
Рис. 3 – Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток , образующий в магнитопроводе переменный магнитный поток изменяющийся с той же частотой, что и ток . Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток , создающий в свою очередь противодействующий согласно закону Ленца магнитный поток , стремящийся размагнитить порождающий его магнитный поток (рис. 4).

 
Рис. 4 – Работа трансформатора с нагрузкой

В результате размагничивающего действия потока в магнитопроводе устанавливается магнитный поток равный разности потоков и и являющийся частью потока , т.е.

Результирующий магнитный поток обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу , под воздействием которой во вторичной цепи течет ток . Именно благодаря наличию магнитного потока и существует ток , который будет тем больше, чем больше . Но и в то же время чем больше ток , тем больше противодействующий поток и, следовательно, меньше .

Из сказанного следует, что при определенных значениях магнитного потока и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС , тока и потока , обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков и не может быть равна нулю, так как в этом случае отсутствовал бы основной поток , а без него не мог бы существовать поток и ток . Следовательно, магнитный поток , создаваемый первичным током , всегда больше магнитного потока , создаваемого вторичным током .

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение, которое выдает нам трансформатор на вторичной обмотке, зависит от количества витков, которые намотаны на первичной и вторичной обмотке!

где  – напряжение на вторичной обмотке – напряжение на первичной обмотке – количество витков первичной обмотки – количество витков  вторичной обмотки – сила тока первичной обмотки –  сила тока вторичной обмотки

Из этой формулы можно сделать вывод: увеличиваем напряжение – уменьшается ток, уменьшаем
напряжение – увеличивается ток.

Отношение напряжений между первичной и вторичной обмотками называют коэффициент трансформации.

В трансформаторе соблюдается закон сохранения энергии, то есть  какая мощность в трансформатор заходит, такая и выходит.

Для переменного тока мощность определяется также, но только вместо постоянного напряжения берется среднеквадратичное напряжение.

Мощность трансформатора зависит от размеров сердечника, рабочей частоты преобразования.

Трансформаторы, которые выдают одинаковые напряжения на выходе и на входе, называют разделительными (развязывающими) (рис. 5).

 
Рис. 5 – Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим (рис. 6). У повышающего трансформатора вторичная обмотка наматывается
более тонким проводом, чем первичная, так как максимальный ток вторичной обмотки будет меньше тока первичной обмотки.

 
Рис. 6 – Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим (рис. 7). Первичная обмотка понижающего трансформатора всегда будет намотана более тонким проводом, чем вторичная. Связано это с тем, что при понижении напряжения возможно увеличение тока во вторичной обмотке, следовательно, нужен провод большего сечения.

 
Рис. 7 – Схематичное изображение понижающего трансформатора

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

  • входное напряжение — U1;
  • выходное напряжение — U2;
  • ширину пластины — а;
  • толщину стопки — b ;
  • частоту сети — Гц;
  • габаритная мощность — В*А;
  • КПД;
  • магнитную индуктивность магнитопровода — Тл;
  • плотность тока в обмотках — А/мм кв.

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт

Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;

U
_2
— напряжение на выходе трансформатора, нами задано 36 вольт
;

I
_2
— ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1

, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:S
— площадь в квадратных сантиметрах,
P
_1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S
определяется число витков w
на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8
витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,

округляем до 173 витка
.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,

принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где
: d — диаметр провода
.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.

Площадь поперечного сечения провода диаметром 1,1
мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.

Округлим до 1,0
мм².

Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.

Или два провода: — первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,
— второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».

Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Формулы и измерение

Формулы для расчета индуктивности катушек довольно сложны и имеет различный вид для различных типов исполнения обмоток:

  • линейный проводник;
  • одновитковая катушка;
  • плоская катушка;
  • соленоидальная обмотка;
  • тороидальная форма.

Наибольшие сложности возникают при расчетах многовитковых многослойных катушек, то есть тех, которые составляют обмотку трансформаторов.

Формулы  для расчета индуктивности трансформатора основаны на расчетах соленоида:

L=µµN2S/l, где

µ0 – магнитная постоянная;

µ – магнитная проницаемость сердечника;

N – количество витков;

S – площадь одного витка;

l – длина обмотки.

Для измерения индуктивности существует несколько методик и приборов, созданных на их основе. В большинстве случаев измерение производится путем вычислений индуктивного сопротивления катушки при подаче образцового напряжения заданной частоты и измеренного значения тока через обмотку.

В специализированных приборах вычисления производятся автоматически, и пользователь только считывает показания шкалы прибора, выраженные в единицах индуктивности – Гн, мГн или мкГн.

Примеры реальных расчетов

В качестве примера можно выбрать питающую подстанцию жилого района. Нагрузка подстанции является III  категории, поэтому коэффициент загрузки допустимо выбирать из большего значения – 0.9-0.95.

Характер потребления тока бытового сектора зависит от времени суток и сезона, но с учетом высокого коэффициента загрузки допустимо учитывать среднее значение потребляемой мощности. Для повышения надежности работы в период максимального потребления рекомендуется использование маслонаполненных трансформаторов, которые отличаются большой перегрузочной способностью в течение длительного периода времени (30% перегрузки в течение 2-х часов).

Этапы пусконаладочных испытаний ↑

Первичные тестирования на работоспособность проводятся сразу по нескольким направлениям. К обязательным относятся:

  • Замеры данных по потерям холостого хода.
  • Замеры омического сопротивления всех имеющихся обмоток.
  • Определение коэффициента трансформации.
  • Тестирование группы соединения обмоток.
  • Проверка изоляции.

В данном случае важную роль играет последовательность произведения всех видов вышеназванных испытаний.

Инженерный имеет все необходимые инструменты для качественного проведения диагностики трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать диагностику трансформаторов или задать вопрос, звоните по телефону.

Допустимая плотность тока для медного провода

Подключение счетчика через трансформаторы тока

При создании сетей в современных объектах недвижимости предпочитают использовать именно такие проводники. При одинаковом сечении они меньше перегреваются, по сравнению с алюминиевыми аналогами. В многожильном исполнении медные кабели хорошо подходят для создания сетевых соединительных шнуров, удлинителей. Их можно использовать для создания поворотов с малым радиусом.

Тепловой нагрев

Для расчета количества тепла (Q), выделяемого проводником, пользуются формулой I*2*R*t, где:

  • I – сила тока, в амперах;
  • R – сопротивление одного метра медного проводника;
  • t – время испытания в определенных условиях.

Рассеивание тепла при работе кабеля

Тонкие проводники эффективно отдают тепловую энергию окружающей среде. На процесс оказывают существенное влияние конкретные условия. Как отмечено выше, контакт оболочки с водой существенно улучшает охлаждение.

По мере увеличения сечения часть энергии расходуется для нагрева прилегающих слоев. Этим объясняется постепенное снижение допустимой плотности тока в расчете на единицу площади.

Распределение температур в кабельной продукции

На рисунке хорошо видно, как при уменьшении изоляционного слоя улучшается теплоотдача.

Падение напряжения

Этот параметр несложно рассчитать по закону Ома (U=R*I) с учетом электрического сопротивления соответствующего материала. Удельное значение для меди берут 0,0175 Ом *мм кв./ метр. С помощью формул вычисляют на участке определенной длины падение напряжения. При сечении 1,5 мм кв. на каждый метр потери составят 0,01117 Вольт.

Допустимая плотность тока

Этот относительный параметр показывает разрешенный нормативами ток на один мм кв. площади сечения. Отмеченные выше тенденции по изменению теплоотдачи при увеличении размеров проводника подтверждаются расчетами и данными лабораторных испытаний.

Таблица допустимых значений плотности тока для разных условий в медном проводнике

Поперечное сечение, мм кв.Ток (А)/ Плотность тока (А/ мм кв.)
Для трассы в зданииМонтаж на открытом воздухе
673/ 12,276/ 12,6
10103/ 10,3108/ 10,8
25165/ 6,6205/ 8,2
50265/ 5,3335/ 6,7

Пути повышения допустимого тока

Существенное значение имеют действительные условия эксплуатации трассы электроснабжения, трансформаторов, установок. Снизить рассматриваемые нагрузки можно с помощью хорошей вентиляции, естественной или принудительной. Хороший отвод тепла получится с применением перфорированных металлических коробов, которые не затрудняют прохождение конвекционных потоков и одновременно выполняют функции радиатора.

В некоторых ситуациях пригодится квалифицированно составленный временной график. Стиральная машина при нагреве воды и в режиме сушки потребляет много электроэнергии. Ее можно настроить на автоматическое выполнение рабочих операций в ночные часы. Если снабжающие организации предлагают соответствующую тарификацию, получится дополнительная экономия денежных средств.

Вентилятор обеспечивает эффективное охлаждение проводников, которые установлены в микроволновой печи

Допустимый ток и сечение проводов

Лучшие показатели теплообмена при остальных равных условиях характерны для проводников с относительно меньшей площадью поперечного сечения.

Таблица токовых параметров для кабелей с медными жилами

Сечение, мм кв.Плотность тока, А/ мм кв.Ток, А
11515
1,513,320
2,510,827
165,792
254,9123

Как определить мощность вторичной обмотки трансформатора?

Мощность, отдаваемая вторичной обмоткой трансформатора в общем случае равна

где Р – электромагнитная мощность трансформатора,

φ — угол между векторами ЭДС и тока,

рК2 и рS2 – потери активной и реактивной мощности во вторичной обмотке.

При работе трансформатора на активную нагрузку φ = 0, и потери реактивной мощности рS2 = 0 (у трансформаторов малой мощности они незначительны). Поэтому выражение мощности отдаваемой вторичной обмоткой будет следующее

Данное выражение наиболее общее для обычных условий работы основное уравнение вторичной мощности.

В следующей статье я продолжу рассматривать параметры трансформатора, такие как, плотность тока в обмотках трансформатора, электромагнитную индукцию сердечника и т.д.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

Трансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

U1/U2=n1/n2, где:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Советуем изучить Стабилизатор напряжения Ресанта

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

S=1,15 * √P

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

Разновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока

Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц. Обозначение трансформатора на схеме

Обозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Как узнать мощность и ток трансформатора по его внешнему виду

Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить. Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.

Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.

Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).

Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.

Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.

Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.

Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после — умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.

Итак, давайте найдем площадь сечения окна.

Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.

В этой формуле: j — плотность тока в А/кв.мм, f — частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.

Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:

Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв.мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:

Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.

Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.

Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.

Источник



Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий