Каскадные трансформаторы тока применение

Описание и принцип действия

Трансформатор тока – электромагнитное преобразовательное устройство, конструктивно, состоящее из:

  • цельный магнитопровод;
  • две обмотки, обязательно изолированные между собой и от земли (первичная и вторичная);
  • пластиковый запаянный неразборный корпус;
  • контактные клеммы для подключения прибора для измерений;
  • крепежные элементы для монтажа прибора;
  • табличка на корпусе, бумажный паспорт.

Обмотки преобразователя делятся между собой на первичную и вторичную, включаются в энергетическую цепь строго по определенным правилам.

Первичная обмотка подключается к электрической цепи последовательно (рассекая токопровод). Вторичная обмотка замкнута на определенную нагрузку измерительных элементов, релейной аппаратуры и автоматики. Она пропускает через себя величину тока, которая пропорциональна токовому значению первичной обмотки.

Его суть – преобразование величины тока, протекающего через силовую цепь энергетической установки, к которой подключается первичная обмотка трансформатора тока с определенным количеством витков, во вторичное пониженное значение тока, соблюдая при этом пропорциональность значения.

Эта пропорциональная величина электротока на выходных клеммах вторичной обмотки трансформатора необходима для нормальной работы измерительной, релейной аппаратуры, приборов учета электроэнергии в системах силовых энергетических установках до и выше 1000 вольт.

Прослеживается прямая зависимость номинальной работы всех измерительных систем, приборов контроля и управления от правильного выбора трансформаторов тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра. Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточный, тороидальный и стержневой.

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы. Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач. Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

ОСНОВНЫЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ

Сфера применения преобразующих устройств типа ТТ тесно связана с их основными параметрами и техническими решениями конструкции. В соответствии с ГОСТ 7746-2015 (общие техусловия), различают следующие ключевые параметры.

Номинальное напряжение.

Показатель рабочей величины напряжения в измеряемой электросети.

Номинальный ток.

Различают два типа этого показателя для первичной и вторичной цепи. Они протекают соответственно по первичной и вторичной обмотке устройства. При этом, номинальный рабочий электроток является константой и равен 1 или 5 А.

Вторичная нагрузка.

Показатель суммарного сопротивления всех устройств внешней цепи, подключенной к вторичной обмотке: счетчики электроэнергии, амперметры, устройства релейной защиты, таковые преобразователь. Параметр измеряется в омах (Ом).

Коэффициент трансформации.

Соотношение показателей первичного и вторичного тока. Данный параметр принято разделять на номинальный и реальный (действительный).

Электродинамическая стойкость.

Выражается в виде максимального показателя амплитуды электрического тока при коротком замыкании за единицу времени (как правило, за одну секунду). Обмотки трансформатора тока должны выдерживать указанное значение без пробоев или каких-либо других повреждений.

Показатели электродинамической стойкости не касаются разъёмных, встроенных или шинных ТТ.

Термостойкость.

Максимальное значение силы тока при коротком замыкании за единицу времени (1 сек), при котором нагрев токоведущих частей трансформатора не превышает критических температур и не вызывает повреждений.

Когда нужны трансформаторы тока?

Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

  1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
  2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
  3. Используются для учета электроэнергии с помощью счетчика.

На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

https://youtube.com/watch?v=FoZehRt5jEU

Классификация и расчет

Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

  1. Для измерения показателя счетчика.
  2. Для защиты электрооборудования.

Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:

  • предназначенные для работы на открытом воздухе;
  • функционирующие в закрытом помещении;
  • используемые в качестве встроенных элементов электрооборудования;
  • накладные, предназначенные для для проходного изолятора;
  • переносные, дают возможность осуществлять расчет в любом месте;

Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

  • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
  • бумажно-масляную;
  • газонаполненную;
  • залитую компаундом;

Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

  • номинальное напряжение сети;
  • параметр номинального тока первичной и вторичной обмотки;
  • коэффициент трансформации;
  • класс точности;
  • особенности конструкции;

При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.

Подключение счетчика через трансформаторы тока представлено на это фото

Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

Как осуществляется подключение измерительного ТТ тока для счетчика?

Обозначение на схеме

Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

Подключение счетчика через трансформаторы

Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме. Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

Монтаж трансформатора тока

Задача и особенности заземления трансформаторов.

Перед тем как выполнить непосредственно сам монтаж трансформатора тока необходимо провести его ревизию и проверку сопротивления изоляции. Если она низкая то есть менее 1 кОм на 1 Вольт, то для начала хорошенько просушите его с помощью тепловентилятора или другой тепловой пушки. Сопротивление изоляции стоит при этом проверять каждые полчаса. Во время ревизии также проверяют комплектность устройства, элементов крепежа, состояние фарфоровых диэлектрических частей и корпуса. Осмотреть нужно:

  • колодку вторичных выводов для цепей защиты и контроля;
  • наличие их обозначений, маркировку;
  • паспортную таблицу;
  • состояние резьбы на болтовых соединениях выводов;
  • наличие гаек и шайб.

Перед тем как непосредственно начать монтаж трансформатора тока, конечно же, всё начинается с отключения высоковольтной установки, проверки отсутствия напряжения на токоведущих частях, а также установки переносных заземлений. Всё это является основными мерами безопасности персонала, производящего монтаж. Затем производится разметка в месте установки, и если необходимо то выполняются сверлильные работы в местах крепления конструкции. Если в помещении сыро, то стоит принять меры, препятствующие образованию коррозии (установка сушек и покраска контактных соединений). Запрещается установка трансформатора и монтаж, таким образом, чтобы их корпуса находились вплотную к друг, к другу. Расстояние должно быть не менее 100 мм.

Желательно если есть возможность то таблички с маркировкой должны быть видны из-за ограждений.

Главное правило подключения любого трансформатора тока, это запрет включения его в цепь без нагрузки на вторичной обмотке. Если нет возможности подключить прибор, то их необходимо соединить между собой, чтобы не возникло большое напряжение на ней, которое почти всегда приводит к выходу из строя измерительного устройства.

Схема трансформатора тока

Схема трансформатора тока состоит из следующих важных элементов:

  1. Нескольких магнитных проводов;
  2. Первичной обмотки;
  3. Вторичной обмотки;
  4. Клеммов;
  5. Выводов;
  6. Стального сердечника;
  7. Реле;

Обмотки трансформатора тока располагаются на повальном сердечнике (что играет роль в возникновении явления электромагнитной индукции).

Если говорить о сердечнике, то он выполняется при помощи электротехнического материала и играет роль магнитного провода.

Клеммы, в свою очередь, имеющие определенную маркировку, главным образом обеспечивают процесс входа и выхода тока с первичной и вторичной обмоток.

А вот реле трансформатора тока, подключенное к кабелю, обеспечивает правильное функционирование устройства, снижая величину тока до необходимого значения.

Где приобрести трансформатор тока?

Как вы уже поняли из ранее прочитанного материала — трансформатор тока является очень востребованным прибором. Его широкое применение, прежде всего, объясняется качественными характеристиками, которые позволяют устройству выполнять различные электротехнические “задачи”.

Итак, трансформатор тока может понадобиться любому из нас. На случай, если это коснется и вас, то посоветую вам приобрести данный электромагнитный прибор (или его аналог) Там, как всегда, хороший и богатый выбор, а также выгодные цены на товары.

А вот вашему вниманию старое, но познавательное видео:

Конструкция и устройство трансформатора тока

Итак, если говорить о конструкции трансформатора тока, то следует начать с его внешнего вида.

Прежде всего, обратим внимание на шину, сердечник и диэлектрический корпус, а точнее, на его наличие. Для кого-то это покажется странным, но без него в конструкции трансформатора не обойтись

При этом этот корпус по форме может отличаться: он может быть представлен и в цилиндрическом виде, и в прямоугольном, и в квадратном.

В середине корпуса располагается небольшой промежуток, служащий охвату проводов, которые выступают в качестве первичной обмотки.

Раз уж мы коснулись обмотки, то нельзя не сказать о внутреннем устройстве трансформатора и двух видах обмотки (смотреть рисунок).

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

Полная звезда:

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

Неполная звезда:

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Схема «треугольник и звезда» — для дифференциальной защиты.

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:

  • при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
  • проверяют первичный ток на термо- и электродинамическую стойкость;
  • есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.

Правила, как выбрать трансформатор тока в общих чертах:

  • номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
  • первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
  • оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
  • оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.

Проверка после расчета

Правила:

  • после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
  • по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
  • макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
  • если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий