Зависимость максимального тока от минимального

Генератор напряжения формы в виде пилы.

Вышеописанный преобразователь необходимо быстро переделать в генерирующее устройство пилообразного потенциала. Надо лишь сделать различную периодичность зарядки и разрядки емкости по схеме суммирующего элемента. Изменения будут касаться цепи заряда-разряда конденсатора в интеграторе. Диоды позволят сделать заряд-разряд конденсатора различными токами. Все остальное действие генератора аналогично предыдущему. Схема его несимметрична. Частота при выходе этого пилообразного потенциала складывается из двух резисторов. Температурная нестабильность ограничивает стабильность частоты тока.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Параметры электрических приборов

Каждую современную квартиру нужно оснащать электрическими приборами. Для их подключения к сети необходимо составить принципиальную схему, где согласованно друг с другом распределятся нагрузки, подключенные к отдельным линиям. Нужно встраивать автоматический выключатель на основании ПУЭ для недопущения аварийных случаев.

Вначале уточняются параметры электропроводки. Затем проверяются по схеме группы для подключения к сети бытовых электроприборов.

Стандартные характеристики электрической мощности потребления (Вт):

  • стационарный компьютер – 170-1 250;
  • жидкокристаллический телевизор – 120 – 265;
  • ноутбук – 40-280;
  • кондиционер – 1 200 – 2 500;
  • утюг – 450-1850.

Для защиты сети необходим автомат, его выбираем с учетом всех существенных факторов. 

Автоматический выключатель для защиты электрической сетиИсточник vmasshtabe.ru

Важно уделить внимание нагрузкам, имеющим повышенные параметры реактивной энергии. 

Собственные шумы усилителя.

Что же такое шум?

В электронике шумом называют беспорядочные колебания амплитуды сигнала, которые глушат полезный сигнал. Сюда же относятся разного рода помехи. Собственные шумы усилителя — это шумы, которые зарождаются как внутри самого усилителя, так и могут быть вызваны внешним источником помех, либо некачественным питанием усилителя. Давайте рассмотрим основные виды шумов усилителя.

Фон

Этот шум вызван некачественным питанием усилителя. Если источник питания собран на сетевом трансформаторе, то шум  будет на частоте 100 Гц (2х50Гц, по схеме диодного моста). То есть на выходе такого усилителя мы услышим гудение, если подцепим к выходу динамик. Думаю, вы часто слышали такое выражение «что-то динамики фонят». Это все из этой серии.

Помехи и наводки

Это могут быть внешние источники, которые так или иначе действуют на усилитель. Это может быть наводка от сети 220 Вольт (очень часто ее можно увидеть, если просто прикоснуться к сигнальному щупу осциллографа), это также может быть какая-либо искра, которая образуется в свечах двигателей внутреннего сгорания.

Небольшое лирическое отступление. Помню, как смотрел диснеевские мультики по первому каналу, а через дорогу сосед пилил дрова с помощью бензопилы Дружба-2. Тогда на экране ТВ были такие помехи, что я  про себя тихо материл соседа.

Ну а как же без грозовых разрядов? Благодаря электромагнитному импульсу у нас появилось такое изобретение, как радио.

К источникам помех можно также отнести радио- и ТВ-станции, рядом лежащее и стоящее электрооборудование, типа мощных коммутационных механических ключей, разрядников и тд.

Ну и конечно, это шум самих радиоэлементов. Сюда относится тепловой шум (джонсоновский), дробовой шум, а также фликкер-шум.

Наиболее существенными являются шумы, которые возникают на входе усилителя в самом первом каскаде. Этот шум в дальнейшем усиливается также, как и входной полезный сигнал. В результате на выходе усилителя у нас будет усилен как полезный сигнал, так и шумовой. Поэтому, при проектировании качественных усилителей стараются как можно сильнее минимизировать шум на входе первого каскада усилителя.

Расчет сечения кабеля по мощности и длине

Правила устройства электроустановок описывают все факторы, оказывающие влияние на выбор сечения кабеля для монтажа электропроводки. Основным из них является нагрузка, используемая в сети. Получить ее можно, зная мощность электрооборудования.

Влияние оказывают и другие факторы:

  • Количество жил: от этого зависит, насколько сильно нагревается провод.
  • Способ укладки: кабели, уложенные под землей, выдерживают большую нагрузку. Провода, уложенные в короб, нагреваются друг о друга. Если в коробе находится больше четырех проводов, для расчета сечения применяется поправочный коэффициент, указанный в ПУЭ.
  • Процент падения напряжения.
  • Температура воздуха, при которой будет эксплуатироваться сеть.

К электрическим сетям предъявляются следующие требования:

  • безопасность;
  • надежность;
  • экономичность.

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода – это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( “Правила устройства электроустановок“). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность – в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину – 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно “Правилам устройства электроустановок“, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на порядок больше, чем у ВА.

Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.

При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:

  1. Длина провода, единица измерения – м. При её увеличении растут потери.
  2. Площадь поперечного сечения, измеряется в мм². При её увеличении падение напряжения уменьшается.
  3. Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.

Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:

  1. В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
  2. С помощью таблиц ПУЭ определяют сечение провода по току.
  3. Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ – удельное сопротивление материала, l – длина проводника, S – площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
  4. Находим падение напряжения из соотношения: ΔU=I*R.
  5. Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R<< r). Зависимость к.п.д. от силы тока в цепи с учётом формул (8), (9), (10) примет вид

(11)

Таким образом, к.п.д. достигает наибольшего значения h =1 в случае разомкнутой цепи ( I = 0), а затем уменьшается по линейному закону, обращаясь в нуль при коротком замыкании.

Зависимость мощностей Р1, Рполн = EI и к.п.д. источника тока от силы тока в цепи показаны на рис.1.

Рис.1. I0 E/r

Из графиков видно, что получить одновременно полезную мощность и к.п.д. невозможно. Когда мощность, выделяемая на внешнем участке цепи Р1, достигает наибольшего значения, к.п.д. в этот момент равен 50%.

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне

Активно применяются в промышленности.

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Вам это будет интересно Как воздействует электрический ток на организм человека

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Комплексная разновидность

КПД электрической цепи

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт)

Формулы мощности:

P = U * I = U2/R = I2 * R,

где

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной

Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:

P = A/∆t,

где:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

A=P∙∆t

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

η = A/Q *100%,

где:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её

Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.


КПД электрической цепи

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R0) и при Rэта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R0, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

R0 = r. (4)

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

. (6)

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

. (7)

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

= I2(R+r) = IE (8)

Применение

Применяют в случаях, когда одновременная работа всех потребителей приводит к перегрузке питающей сети (ввод электропитания рассчитан на меньшую мощность. чем мощность потребителей, введение лимитов потребления электроэнергии и т. п.). Потребители разбиваются на две группы: приоритетные, отключение которых от сети питания крайне нежелательно (компьютеры, теле- и видеоаппаратура, системы обработки данных и т. п.) и не приоритетные (электронагреватели, различного рода вспомогательное оборудование, электроплиты, электрочайник и т. п.). Ток срабатывания реле устанавливают таким образом, чтобы не допустить перегрузки питающей сети (отключения вводного автомата).

В устройствах релейной защиты наиболее широко распространены токовые реле, реагирующие на недопустимое увеличение тока в защищаемой цепи, и реле минимального напряжения, реагирующие на снижение ниже определенного значения или полное исчезновение напряжения. Токовые реле включаются последовательно, а реле напряжения — параллельно защищаемой цепи. Катушки токовых реле выполняются с малым количеством витков из провода большого сечения и поэтому имеют небольшое сопротивление, а катушки реле напряжения — с большим количеством витков из провода меньшего сечения, чем катушки токовых реле, и поэтому обладают большим сопротивлением.

Реле максимального тока срабатывает, когда проходящий через его катушку ток достигает заранее установленного значения, называемого током срабатывания. При уменьшении тока до определенной величины, называемой током возврата, подвижная система реле возвращается в исходное положение. Отношение тока возврата к току срабатывания называется коэффициентом возврата, который у большинства современных реле находится в пределах 0,8-0,9.

В реле максимального тока мгновенного действия по обмоткам катушек 6, расположенных на полюсах магнитопровода 7, протекает ток от трансформатора тока, включенного в рабочую цепь электроустановки или рабочий ток установки (если его величина не превышает допустимых для реле значений). Когда ток достигнет или превысит величину установленного тока срабатывания, стальной якорь 5 под влиянием магнитного потока, преодолевая противодействие пружины 2, повернется вместе с осью по часовой стрелке, и контактный мостик 3, укрепленный на оси, замкнет верхнюю пару 4 и разомкнет нижнюю пару неподвижных контактов. Возврат подвижной системы контактов реле в исходное положение при уменьшении тока в катушках происходит под действием пружины 2. Для плавной регулировки тока срабатывания служит рычаг 1, кроме того, величину этого тока можно изменять, переключая обмотки катушек. При последовательном соединении катушек каждая обтекается вдвое большим током, чем при параллельном, в результате этого ток срабатывания реле будет в два раза меньше.- Реле не имеет регулировки времени срабатывания

Несколько базовых понятий

А для чего вообще необходимо рассчитывать сечение проводов? Нельзя ли ограничиться подбором «на глаз»? Нет, нельзя, так как совсем несложно впасть в две крайности:

  • Проводник недостаточного сечения начинает сильно перегреваться. Это ведет к оплавлению изоляции проводки, созданию условий для самовозгорания, для коротких замыканий. Все это становится причиной разрушительных пожаров, часто сопровождающихся человеческими трагедиями.
  • Проводники избыточного диаметра, безусловно, такими опасностями не грозят. Но зато они и существенно дороже (особенно если разговор идет о медных кабелях), и не столь удобны в работе. Получаются совершенно неоправданные материальные и трудовые затраты.

Так что руководствоваться следует принципом разумной достаточности. Тем более что произвести необходимые вычисления – по силам каждому, кто хоть немного разбирается в азах математики и физики.

Для начала вспомним некоторые понятия, многим, наверное, и без того хорошо известные. Но просто для того, чтобы в дальнейшем изложении не появилось разночтений.

Итак, в качестве проводника в проводах и кабелях может использоваться одна проволока — с точки зрения электрической проводимости — это оптимальный вариант.

Но для достижения гибкости кабельной продукции приходится использовать более сложные конструкции – множество тонких проволочек, обычно скрученных при этом в «косичку». Чем больше таких проволочек – тем более гибким получается проводник.

Однако, это не следует путать с многожильностью провода. Под отдельной жилой подразумевается именно отдельный проводник. Чтобы стало понятнее – смотрим на иллюстрацию.

На картинке ниже – примеры одножильного провода. Просто с левой стороны – жесткий однопроволочный, а с правой – более гибкий многопроволочный вариант.

И слева, и справа — это одножильный провод.

Если провод (кабель) конструктивно совмещает два изолированных друг от друга проводника или больше, он становится двухжильным, трехжильным и т.п. Но он также может оставаться одно- или многопроволочным.

Двухжильный многопроволочный провод

Трехжильные силовые кабели – с однопроволочными или многопроволочными жилами Жесткие однопроволочные изделия хороши для неподвижных участков проводки, например, вмуровываемых в стены. Многопроволочные провода и кабели отлично подходят для тех участков, где бывает нужна подвижность — типичным примером являются шнуры питания бытовой техники и осветительных приборов.

Итак, все последующие расчеты будут вестись для сечения жилы провода или кабеля.

При оценке условий расположения проводов в дальнейшем могут быть варианты, когда придется представлять разницу, например, между тремя одножильными проводами, протянутыми в одной трубе, или одним трехжильным кабелем.

Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм². Во всех справочника обычно используется параметр сечения, так как именно по этому критерию производится классификация различных марок проводов и кабелей.

Но это хорошо, если известна марка кабеля (провода). Если нет, то сечение остается подсчитать, опираясь на диаметр, который можно измерить штангенциркулем или микрометром.

Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.

Формулу площади круга должны, наверное, помнить все. Но тем не менее – приведем ее на всякий случай.

Предлагаем ознакомиться: Расчет кабеля по мощности формула

Sc = π × d² / 4 ≈ 3.14 × d² / 4 ≈ 0.785 × d²

Знак «примерно равно» применен только потому, что взято округление числа π до сотых, всем известное значение π≈ 3,14. Но в нашем случае такой точности – более чем достаточно!

Тоже ничего сложного. Жила распушается, чтобы появилась возможность подсчитать количество проволочек в «косичке». И останется только микрометром или штангенциркулем промерить диаметр одной проволочки.

Sc = n × π × d² / 4 ≈ n × 3.14 × d² / 4 ≈ 0.785 × n × d²

где n – это количество проволочек в одной жиле.

Генератор напряжения в виде треугольника.

Самый легкий способ создания пульсаций в виде треугольника есть схема с триггером Шмитта и интегратор. Выходящий канал триггера соединяется со входом интегратора, а выходной канал интегратора со входом триггера Шмитта. Схема простая, однако позволяет создать неплохие треугольные импульсы.

Такой генератор состоит из триггера Шмитта и сопротивлениях, интегратора, конденсатора. Импульсы в виде треугольника получают на выходе. Резисторы работают в качестве компенсаторов напряжения смещения, когда не нужна сильная симметрия импульсов. Тогда их можно заменить перемычками.

Размах потенциала на выходе в виде треугольника будет равной размеру гистерезиса триггера Шмитта. Во время регулировки величины гистерезиса триггера можно повышать или снижать амплитуду импульсов на выходе треугольного напряжения.

Размер треугольной пульсации включает в себя два промежутка: периода повышения длительности и периода уменьшения временного потенциала.

Автоматическая частотная разгрузка (АЧР/ЧАПВ)

Широко применяется в современных проектах в целях экономии средств на отдельный терминал АЧР (это допускается не всегда). Имеет несколько уставок АЧР и несколько очередей отключения нагрузки, чем достигается гибкое дозированное отключение потребителей для восстановления баланса активной мощности в энергосистеме.

АЧР — это противоаварийная автоматика последнего рубежа, когда все остальные меры воздействия (АЛАР, форсировка возбуждения генераторов и т,д.) не принесли нужного результата. В общем, это даже не релейная защита, а гораздо круче и важнее.

Почему эту функцию интегрируют в терминал защиты и автоматики ТН? Просто удобно измерять частоту напряжения, а не тока, причем делать это нужно в месте подключения нагрузки. Вот и получается «напряжение шин», а его измеряет именно блок ТН.

При восстановлении частоты обычно запускается алгоритм частотного АПВ, когда потребители очередями вводятся в работу.

Вот такие они, одновременно простые и сложные, защиты и автоматика трансформатора напряжения 6(10) кВ.

В следующий раз рассмотрим РЗА батареи статических конденсаторов (БСК/УКРМ).

На рисунке

Терминал защиты и автоматики ТН 6(10) кВ типа Алтей-БЗП.

Разработчик ООО «НПП Микропроцессорные технологии», www.i-mt.net

Алтей-БЗП содержит все перечисленные в статье защиты

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector