Применение магнитных цепей
Магнитные цепи находят очень большое поле применения, а именно, они используются для надежного пропускания магнитного потока по специальному проводнику с минимальными или, в некоторых случаях, определенными потерями. В электротехнической промышленности широко используется взаимная зависимость магнитной и электрической энергий, переход из одного состояния в другое. На подобном принципе работают, например, трансформаторы, разные электродвигатели, генераторы и другие устройства.
Конечно, можно продолжительное время говорить об устройствах, разных типах магнитопроводов (про которые речь пойдет далее), но наша первичная цель – рассмотреть выводы основных характеристик магнитных цепей. Продолжаем!
Закон в интегральном представлении
Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).
Рис. 1. Поле бесконечно прямого тока
Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.
Из теоремы Остроградского-Гаусса вытекает формула:
Учитывая, что cos φ = 1,
следовательно:
Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c2 ε0 – магнитная постоянная.
Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда
Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.
Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.
Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.
Если ток распределён в пространстве (произвольный ток), тогда
где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:
Рис. 2. Иллюстрация закона для вакуума
Отсюда вытекает:
- Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
- Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
- Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.
9.1.4. Неразветвленная магнитная цепь
Задачей расчета неразветвленной магнитной цепи в большинстве случаев является определение МДС F=Iw , необходимой для того, чтобы получить заданные значения магнитного потока или магнитной индукции в некотором участке магнитопровода (чаще всего в воздушном зазоре).
На рис. 9.9 приведен пример неразветвленной магнитной цепи — магнитопровод постоянного поперечного сечения S1
с зазором. На этом же рисунке указаны другие геометрические размеры обоих участков магнитопровода: средняя длинаl1 магнитной линии первого участка из ферромагнитного материала и длинаl2 второго участка — воздушного зазора. Магнитные свойства ферромагнитного материала заданы основной кривой намагничиванияВ(Н) (рис. 9.10) и тем самым по (9.4) зависимостьюma(Н). По закону полного тока (9.2)
где H1
иH2 — напряженности магнитного поля в первом и втором участках.
В воздушном зазоре значения магнитной индукции В2
и напряженностиH2 связаны простым соотношениемВ2 =mН2 , а для участка из ферромагнитного материалаВ1 =ma1Н1. Кроме того, в неразветвленной магнитной цепи магнитный поток одинаков в любом поперечном сечении магнитопровода:
Ф= В1S1=B2S2, (9.6)
где S1
иS2 — площади поперечного сечения участка из ферромагнитного материала и воздушного зазора.
Если задан магнитный поток Ф
, то по (9.6) найдем значения индукцийB1 иB2 . Напряженность поляH1 определим по основной кривой намагничивания (рис. 9.10), аH2 =B2 /m . Далее по (9.5) вычислим необходимое значение МДС.
Сложнее обратная задача: расчет магнитного потока при заданной МДС F
Заменив в (9.5) напряженности магнитного поля значениями индукции, получим
,
или с учетом (9.6)
где rMk=lkSkmak — магнитное сопротивлениеk -гo участка магнитной цепи, причем магнитное сопротивлениеk -гo участка нелинейное, если зависимостьВ(H) для этого участка нелинейная (рис. 9.10), т.е.mak ≠ const.
Для участка цепи с нелинейным магнитным сопротивлением rM
можно построить вебер-амперную характеристику — зависимость магнитного потокаФ от магнитного напряженияUM на этом участке магнитопровода. Вебер-амперная характеристика участка магнитопровода рассчитывается по основной кривой намагничивания ферромагнитного материалаВ(H) . Чтобы построить вебер-амперную характеристику, нужно ординаты и абсциссы всех точек основной кривой намагничивания умножить соответственно на площадь поперечного сечения участкаS и его среднюю длинуl .
На рис. 9.11 приведены вебер-амперные характеристики Ф
(UM1 ) для ферромагнитного участка с нелинейным магнитным сопротивлениемrM1 иФ (UM 2) для воздушного зазора с постоянным магнитным сопротивлениемrM 2 =l2S2m магнитопровода по рис. 9.9.
Между расчетами нелинейных электрических цепей постоянного тока и магнитных цепей с постоянными МДС нетрудно установить аналогию. Действительно, из уравнения (27.7) следует, что магнитное напряжение на участке магнитной цепи равно произведению магнитного сопротивления участка на магнитный поток UM
=rMФ . Эта зависимость аналогична закону Ома для резистивного элемента электрической цепи постоянного токаU = rI . Сумма магнитных напряжений в контуре магнитной цепи равна сумме МДС этого контураSUM =SF , что аналогично второму закону Кирхгофа для электрических цепей постоянного токаSU =SE. Продолжая дальше аналогию между электрическими цепями постоянного тока и магнитными цепями с постоянными МДС, представим неразветвленную магнитную цепь (рис. 9.9) схемой замещения (рис. 9.12, а).
В качестве иллюстрации ограничимся применением для анализа неразветвленной магнитной цепи графических методов: метода сложения вебер-амперных характеристик (рис. 9.11) и метода нагрузочной характеристики (рис. 9.12, б).
Согласно первому методу построим вебер-амперную характеристику всей неразветвленной магнитной цепи Ф
(UM1 +UM 2), графически складывая по напряжению вебер-амперные характеристики ее двух участков. При известной МДСF=Iw по вебер-амперной характеристике всей магнитной цепи определим рабочую точкуА , т. е. магнитный потокФ , а по вебер-амперным характеристикам участков магнитопровода — магнитные напряжения на каждом из них.
Согласно второму методу для второго (линейного) участка построим нагрузочную характеристику
т. е. прямую, проходящую через точку F
на оси абсцисс и точкуF /rM2 на оси ординат. Точка пересеченияА нагрузочной характеристики с вебер-амперной характеристикой ферромагнитного участка цепи Ф(UM1 ) определяет магнитный потокФ в цепи и магнитные напряжения на ферромагнитном участкеUM1 и воздушном зазореUM2 . Значение индукции в воздушном зазореB2= Ф/S2 .
Электрический ток
Что такое электрический ток? В самом термине содержится указание – это течение электричества. Раньше, до открытия элементарных заряженных частиц, электрический заряд считали некой жидкостью, наполняющей заряженные тела. Перемещение этой жидкости и назвали электрическим током.
Сейчас, обладая знаниями о строении вещества, можно сказать, что сравнение оказалось достаточно точным и электрический ток можно действительно сравнить с течением некой жидкости (или более точное сравнение – с газом), только состоящей не из молекул, а из элементарных заряженных частиц.
На прошлом уроке мы разобрали, что такое электрический ток. Сегодня мы рассмотрим природу этого явления более подробно, чтобы понять, почему же оно возникает.
Дадим четкое определение. Мы знаем о носителях заряда, поэтому определим электрический ток как движение заряженных частиц. Вы помните из молекулярно-кинетической теории, что частицы, из которых состоит вещество, в том числе электроны, постоянно пребывают в тепловом хаотическом движении (см. рис. 1), но это не является электрическим током, как и тепловое движение молекул воды не создает течения. Все направления такого движения равновероятны, и суммарное перемещение при этом равно нулю. Течение наблюдается, когда движение направлено. Хаотическое движение при этом не прекращается, но оно складывается с направленным, и суммарное перемещение уже не равно нулю, система частиц в целом движется.
Рис. 1. Хаотическое движение
Поэтому определение тока дадим следующее.
Электрический ток – это направленное движение электрического заряда. Поскольку заряд не существует отдельно от носителя, ток можно определить как направленное движение заряженных частиц.
Скорость движения частиц
Частица обладает скоростью движения. В механике мы часто раскладывали скорость на составляющие и рассматривали их отдельно. То же можем сделать и сейчас для скоростей теплового направленного движения частицы.
Скорость ее теплового движения обычно составляет порядка сотен метров в секунду, но эта скорость нас сейчас не интересует, нас интересует направленное движение частиц.
Скорость направленного движения электронов в проводнике обычно составляет доли миллиметра в минуту, ее мы еще будем находить в одном из следующих уроков.
Заметьте: это не значит скорость распространения тока (это происходит почти мгновенно), это именно скорость движения частицы. То есть электрический ток возникает практически одновременно во всей цепи. Чтобы было понятно, проведем снова аналогию с током воды по трубе.
Например, есть труба длиной 1 метр. По ней течет вода со скоростью 10 . Суммарное перемещение молекул воды за секунду составит 10 см. Значит ли это, что ток распространится только на 10 см? Нет, вода течет по всей трубе, и любой элементарный объем воды внутри трубы переместится на 10 см (см. рис. 2).
Рис. 2. Перемещение любого объема воды в трубе
Таким образом, вода из одного конца трубы не переместится до второго конца, но течение распространится. Это произойдет потому, что по всему объему трубы по закону Паскаля распространяется давление, вызывающее ток, причем практически мгновенно. Так же в проводнике распространяется электрическое поле.
Магнитные цепи и их расчет
Магнитной цепью или магнитопроводом называется путь, по которому замыкается магнитный поток. Этот путь может проходить целиком по воздуху.
Рисунок 1. Примеры магнитных цепей |
На рисунке 1, а показан соленоид. Магнитная цепь здесь проходит через воздух. Магнитное сопротивление воздуха очень велико, поэтому даже при большой намагничивающей силе магнитный поток мал.
Для увеличения магнитного потока в состав магнитной цепи вводят ферромагнитные материалы (обычно литая или электротехническая сталь), имеющие меньшее магнитное сопротивление.
На рисунке 1, б представлен прямой электромагнит с разомкнутым сердечником. Магнитные линии только небольшую часть своего пути проходят по стальному сердечнику, большую же часть своего пути они проходят по воздуху. Полюсы электромагнита определяются при помощи «правила буравчика».
Подковообразный электромагнит, изображенный на рисунке 1, в, представляет магнитную цепь с лучшими условиями для прохождения магнитного потока. При такой конструкции поток большую часть пути проходит по стали и меньшую часть от полюса N до полюса S по воздуху.
На рисунке 1, г представлена конструкция магнитной цепи, применяемая в электромашиностроении и приборостроении. Между полюсами электромагнита помещается стальной якорь. Большую часть своего пути магнитные линии проходят по стали и только очень малую часть (от нескольких долей миллиметра до 2–3 мм) проходят по двум воздушным промежуткам.
Трансформаторы имеют замкнутый стальной сердечник (рисунок 1, д). Сердечники трансформаторов собираются из нескольких частей, но во время сборки принимают меры к тому, чтобы воздушные зазоры между отдельными частями практически были равны нулю.
До сих пор мы не говорили о том, что магнитный поток, созданный намагничивающей силой, не весь замыкается по тому пути, который ему предназначен. Помимо рабочего магнитного потока, существует магнитный поток рассеяния, который замыкается вне того места, где используется рабочий поток. На рисунке 1, б, в, г, д показаны потоки рассеяния.
Таким образом, общий магнитный поток, который должна создать обмотка возбуждения электромагнита, равен сумме рабочего потока и потока рассеяния.
Расчет магнитной цепи, казалось бы, можно производить по формуле:
Но если вспомнить, что относительная магнитная проницаемость µ для ферромагнитных тел непостоянна и зависит от многих причин, то становится ясно, что этой формулой можно пользоваться лишь в том случае, когда в состав магнитной цепи входят только немагнитные тела (в том числе и воздух), для которых µ есть заранее заданная величина.
На практике для расчета магнитных цепей предпочитают пользоваться графическими методами решения.
Расчет магнитной цепи производят в следующем порядке. Задаются необходимой величиной магнитного потока. Разбивают магнитную цепь на участки, имеющие одинаковые поперечные сечения и однородный материал, и для каждого участка определяют величину магнитной индукции по формуле:
Физический смысл закона
Рассмотрим упрощённый вариант влияния магнитной индукции на электрическое поле. Для этого представим себе два параллельных проводника, по которым циркулируют постоянные токи, например, I1 и I2. Вблизи этих проводников образуется поле, которое мысленно можно ограничить неким контуром L – воображаемой замкнутой фигурой, плоскость которой пересекает потоки движущихся зарядов.
В пределах плоскости, охватываемой контуром L, формируется магнитное поле, напряжённость которого распределена в соответствии с направлениями токов. При этом циркуляция вектора магнитного поля в плоскости замкнутого контура прямо пропорциональна сумме токов, пронзающих данный контур. Полный электрический ток равен векторной сумме его составляющих:
Направления векторов I1 и I2 определяется по правилу буравчика.
Приведённые выше рассуждения можно рассматривать в качестве примера изображающего упрощённую модель частного случая рассматриваемого закона. В действительности же, процессы взаимного влияния магнитных и электрических полей намного сложнее, и они описываются интегральными и дифференциальными уравнениями Максвелла.
9.1.4. Неразветвленная магнитная цепь
Задачей расчета неразветвленной магнитной цепи в большинстве случаев является определение МДС F=Iw , необходимой для того, чтобы получить заданные значения магнитного потока или магнитной индукции в некотором участке магнитопровода (чаще всего в воздушном зазоре).
На рис. 9.9 приведен пример неразветвленной магнитной цепи — магнитопровод постоянного поперечного сечения S1
с зазором. На этом же рисунке указаны другие геометрические размеры обоих участков магнитопровода: средняя длинаl1 магнитной линии первого участка из ферромагнитного материала и длинаl2 второго участка — воздушного зазора. Магнитные свойства ферромагнитного материала заданы основной кривой намагничиванияВ(Н) (рис. 9.10) и тем самым по (9.4) зависимостьюma(Н).
По закону полного тока (9.2)
где H1
иH2 — напряженности магнитного поля в первом и втором участках.
В воздушном зазоре значения магнитной индукции В2
и напряженностиH2 связаны простым соотношениемВ2 =mН2 , а для участка из ферромагнитного материалаВ1 =ma1Н1. Кроме того, в неразветвленной магнитной цепи магнитный поток одинаков в любом поперечном сечении магнитопровода:
Ф = В1S1=B2S2, (9.6)
где S1
иS2 — площади поперечного сечения участка из ферромагнитного материала и воздушного зазора.
Если задан магнитный поток Ф
, то по (9.6) найдем значения индукцийB1 иB2 . Напряженность поляH1 определим по основной кривой намагничивания (рис. 9.10), аH2 =B2m . Далее по (9.5) вычислим необходимое значение МДС.
Сложнее обратная задача: расчет магнитного потока при заданной МДС F
Заменив в (9.5) напряженности магнитного поля значениями индукции, получим
,
или с учетом (9.6)
где rMk=lkSkmak — магнитное сопротивлениеk -гoучастка магнитной цепи, причем магнитное сопротивлениеk -гo участка нелинейное, если зависимостьВ(H) для этого участка нелинейная (рис. 9.10), т.е.mak ≠ const.
rM
можно построить вебер-амперную характеристику — зависимость магнитного потокаФ от магнитного напряженияUM на этом участке магнитопровода. Вебер-амперная характеристика участка магнитопровода рассчитывается по основной кривой намагничивания ферромагнитного материалаВ(H) . Чтобы построить вебер-амперную характеристику, нужно ординаты и абсциссы всех точек основной кривой намагничивания умножить соответственно на площадь поперечного сечения участкаS и его среднюю длинуl .
На рис. 9.11 приведены вебер-амперные характеристики Ф
(UM1 ) для ферромагнитного участка с нелинейным магнитным сопротивлениемrM1 иФ (UM 2) для воздушного зазора с постоянным магнитным сопротивлениемrM 2 =l2S2m магнитопровода по рис. 9.9.
Между расчетами нелинейных электрических цепей постоянного тока и магнитных цепей с постоянными МДС нетрудно установить аналогию. Действительно, из уравнения (27.7) следует, что магнитное напряжение на участке магнитной цепи равно произведению магнитного сопротивления участка на магнитный поток UM
=rMФ . Эта зависимость аналогична закону Ома для резистивного элемента электрической цепи постоянного токаU = rI . Сумма магнитных напряжений в контуре магнитной цепи равна сумме МДС этого контураSUM =SF , что аналогично второму закону Кирхгофа для электрических цепей постоянного токаSU =SE. Продолжая дальше аналогию между электрическими цепями постоянного тока и магнитными цепями с постоянными МДС, представим неразветвленную магнитную цепь (рис. 9.9) схемой замещения (рис. 9.12, а).
Советуем изучить Самодельная телевизионная антенна: для dvb и аналогового сигнала
В качестве иллюстрации ограничимся применением для анализа неразветвленной магнитной цепи графических методов: метода сложения вебер-амперных характеристик (рис. 9.11) и метода нагрузочной характеристики (рис. 9.12, б).
Согласно первому методу построим вебер-амперную характеристику всей неразветвленной магнитной цепи Ф
(UM1 +UM 2), графически складывая по напряжению вебер-амперные характеристики ее двух участков. При известной МДСF=Iw по вебер-амперной характеристике всей магнитной цепи определим рабочую точкуА , т. е. магнитный потокФ , а по вебер-амперным характеристикам участков магнитопровода — магнитные напряжения на каждом из них.
Согласно второму методу для второго (линейного) участка построим нагрузочную характеристику
т. е. прямую, проходящую через точку F
на оси абсцисс и точкуFrM2 на оси ординат. Точка пересеченияА нагрузочной характеристики с вебер-амперной характеристикой ферромагнитного участка цепи Ф(UM1 ) определяет магнитный потокФ в цепи и магнитные напряжения на ферромагнитном участкеUM1 и воздушном зазореUM2 . Значение индукции в воздушном зазореB2= Ф/S2 .
9.1.4. Неразветвленная магнитная цепь
Задачей расчета неразветвленной магнитной цепи в большинстве случаев является определение МДС F=Iw , необходимой для того, чтобы получить заданные значения магнитного потока или магнитной индукции в некотором участке магнитопровода (чаще всего в воздушном зазоре).
На рис. 9.9 приведен пример неразветвленной магнитной цепи — магнитопровод постоянного поперечного сечения S1
с зазором. На этом же рисунке указаны другие геометрические размеры обоих участков магнитопровода: средняя длинаl1 магнитной линии первого участка из ферромагнитного материала и длинаl2 второго участка — воздушного зазора. Магнитные свойства ферромагнитного материала заданы основной кривой намагничиванияВ(Н) (рис. 9.10) и тем самым по (9.4) зависимостьюma(Н).
По закону полного тока (9.2)
где H1
иH2 — напряженности магнитного поля в первом и втором участках.
В воздушном зазоре значения магнитной индукции В2
и напряженностиH2 связаны простым соотношениемВ2 =mН2 , а для участка из ферромагнитного материалаВ1 =ma1Н1. Кроме того, в неразветвленной магнитной цепи магнитный поток одинаков в любом поперечном сечении магнитопровода:
Ф = В1S1=B2S2, (9.6)
где S1
иS2 — площади поперечного сечения участка из ферромагнитного материала и воздушного зазора.
Если задан магнитный поток Ф
, то по (9.6) найдем значения индукцийB1 иB2 . Напряженность поляH1 определим по основной кривой намагничивания (рис. 9.10), аH2 =B2m . Далее по (9.5) вычислим необходимое значение МДС.
Сложнее обратная задача: расчет магнитного потока при заданной МДС F
Заменив в (9.5) напряженности магнитного поля значениями индукции, получим
,
или с учетом (9.6)
где rMk=lkSkmak — магнитное сопротивлениеk -гoучастка магнитной цепи, причем магнитное сопротивлениеk -гo участка нелинейное, если зависимостьВ(H) для этого участка нелинейная (рис. 9.10), т.е.mak ≠ const.
rM
можно построить вебер-амперную характеристику — зависимость магнитного потокаФ от магнитного напряженияUM на этом участке магнитопровода. Вебер-амперная характеристика участка магнитопровода рассчитывается по основной кривой намагничивания ферромагнитного материалаВ(H) . Чтобы построить вебер-амперную характеристику, нужно ординаты и абсциссы всех точек основной кривой намагничивания умножить соответственно на площадь поперечного сечения участкаS и его среднюю длинуl .
На рис. 9.11 приведены вебер-амперные характеристики Ф
(UM1 ) для ферромагнитного участка с нелинейным магнитным сопротивлениемrM1 иФ (UM 2) для воздушного зазора с постоянным магнитным сопротивлениемrM 2 =l2S2m магнитопровода по рис. 9.9.
Между расчетами нелинейных электрических цепей постоянного тока и магнитных цепей с постоянными МДС нетрудно установить аналогию. Действительно, из уравнения (27.7) следует, что магнитное напряжение на участке магнитной цепи равно произведению магнитного сопротивления участка на магнитный поток UM
=rMФ . Эта зависимость аналогична закону Ома для резистивного элемента электрической цепи постоянного токаU = rI . Сумма магнитных напряжений в контуре магнитной цепи равна сумме МДС этого контураSUM =SF , что аналогично второму закону Кирхгофа для электрических цепей постоянного токаSU =SE. Продолжая дальше аналогию между электрическими цепями постоянного тока и магнитными цепями с постоянными МДС, представим неразветвленную магнитную цепь (рис. 9.9) схемой замещения (рис. 9.12, а).
В качестве иллюстрации ограничимся применением для анализа неразветвленной магнитной цепи графических методов: метода сложения вебер-амперных характеристик (рис. 9.11) и метода нагрузочной характеристики (рис. 9.12, б).
Согласно первому методу построим вебер-амперную характеристику всей неразветвленной магнитной цепи Ф
(UM1 +UM 2), графически складывая по напряжению вебер-амперные характеристики ее двух участков. При известной МДСF=Iw по вебер-амперной характеристике всей магнитной цепи определим рабочую точкуА , т. е. магнитный потокФ , а по вебер-амперным характеристикам участков магнитопровода — магнитные напряжения на каждом из них.
Советуем изучить Задача и особенности заземления трансформаторов.
Согласно второму методу для второго (линейного) участка построим нагрузочную характеристику
т. е. прямую, проходящую через точку F
на оси абсцисс и точкуFrM2 на оси ординат. Точка пересеченияА нагрузочной характеристики с вебер-амперной характеристикой ферромагнитного участка цепи Ф(UM1 ) определяет магнитный потокФ в цепи и магнитные напряжения на ферромагнитном участкеUM1 и воздушном зазореUM2 . Значение индукции в воздушном зазореB2= Ф/S2 .
Сила Лоренца
Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Формула для нахождения силы Лоренца:
где \( q \) – заряд частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( \alpha \) – угол между вектором скорости частицы и вектором магнитной индукции.
Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции \( B_\perp \) входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.
Если заряд частицы отрицательный, то направление силы изменяется на противоположное.
Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы
В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.
Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:
где \( m \) – масса частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( q \) – заряд частицы.
В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:
Угловая скорость движения заряженной частицы:
Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы
Если вектор скорости направлен под углом \( \alpha \) (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.
В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, \( \vec{v}_2 \), параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – \( T \).
Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом \( h=v_2T \).
Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:
Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».
Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:
- сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
- изобразить силы, действующие на заряженную частицу;
- определить вид траектории частицы;
- разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
- составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
- выразить силы через величины, от которых они зависят;
- решить полученную систему уравнений относительно неизвестной величины;
- решение проверить.
Формула закона полного тока
В этом разделе приведены формулы для уточненных расчетов и примеры типовых конструкций. Для интегральных вычислений вполне подходит закон Гаусса, который применяют в электростатике.
Интегральная формула закона полного тока
Пояснения:
- L – обозначает замкнутый контур, созданный по произвольной траектории;
- векторы В и r направлены перпендикулярно;
- dl (dl0) – элементы произвольной части (силовой линии), соответственно;
- ϕ – угол между элементами.
Из формулы на рисунке понятно, что циркуляция вектора индукции не равняется нулю. Такие поля называют «соленоидальными» или вихревыми. В отличие от электродинамики, в данном случае отсутствуют потенциальные характеристики. Как и в базовом определении, полный ток определяется циркуляцией магнитной индукции (векторное выражение) по контуру произвольной формы, окружающему сумму токов.
Формула для расчета индуктивности, которую создает длинный соленоид
В этом примере n – число витков обмотки на единицу длины основы.
Расчет параметров поля внутри тороида
Параметры:
- количество сделанных витков – N;
- внешний, внутренний и произвольный радиусы – R1, R2 и r.
Следует помнить! Вне тороида магнитное поле равно нулю.
Рассмотренные методики расчетов применяют с учетом реальных условий. Особое значение при выборе компонентов конструкций уделяют ферромагнитным свойствам сердечника. Проводники для обмоток выбирают с запасом, учитывая максимальную силу тока источника.
Советуем изучить Варианты подсветки потолка в помещениях