ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
3. Сопротивления резистор \( R_1 \) в четыре раза меньше сопротивления резистора \( R_2 \). Работа тока в резисторе 2
1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1
4. Сопротивление резистора \( R_1 \) в 3 раза больше сопротивления резистора \( R_2 \). Количество теплоты, которое выделится в резисторе 1
1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2
5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если
1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то
А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.
Верным(-и) является(-ются) утверждение(-я)
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?
1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А
10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?
1) 10000 с
2) 2000 с
3) 10 с
4) 2 с
11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась
12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока
ФОРМУЛЫ
1) \( \frac{q}{t} \)
2) \( qU \)
3) \( \frac{RS}{L} \)
4) \( UI \)
5) \( \frac{U}{I} \)
Часть 2
13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?
Работа электрического тока. Закон Джоуля-Ленца
Каждый день мы пользуемся электрическими бытовыми приборами и не раз замечали, что во время работы они нагреваются независимо от того, включены ли они в сеть или питаются от аккумулятора. С чем это связано?
ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ТОКА
Электрический ток, протекая по проводнику, вызывает его нагревание. Причина нагревания проводников электрическим током состоит в том, что свободные электроны в металлах (или ионы в растворах или расплавах электролитов), двигаясь под действием электрических сил, взаимодействуют с ионами (атомами) вещества проводника. В результате этого взаимодействия часть кинетической энергии движущихся электронов или ионов передаётся ионам кристаллической решётки. Это приводит к увеличению внутренней энергии проводника, т. е. увеличению его температуры. Энергию движущихся электрических зарядов принято называть энергией электрического тока или электрической энергией.
РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА
Электрические силы в проводнике совершают работу по переносу заряда. Напряжение на участке цепи есть не что иное, как отношение работы А электрических сил по переносу положительного заряда q к значению этого заряда: U = A/q
Зная напряжение между концами проводника и перемещённый заряд, можно записать эту работу как А = qU.
Значение перемещённого заряда q за время t можно получить, зная силу тока в цепи I: q = It.
Следовательно, А = Ult.
Работу электрического поля называют работой тока. Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого протекал ток. Работа электрического тока показывает, сколько электрической энергии превратилось в другие виды энергии.
Например, нагревание металлического проводника, поворот рамки с током — это примеры работы электрического тока, когда электрическая энергия превращается в другой вид энергии (внутреннюю, механическую и т. д.).
Единицей работы является джоуль (1 Дж). 1 Дж = 1 В • 1 А • 1 с.
Электрическая энергия, используемая потребителями тока, измеряется работой тока в этих потребителях. Для учёта совершённой работы служат счётчики — специальные устройства, сочетающие в себе три прибора: амперметр, вольтметр и часы.
Внутри счётчика имеется небольшой электродвигатель, диск которого начинает вращаться, если через счётчик проходит ток. При этом скорость вращения диска пропорциональна силе тока и напряжению. Количество оборотов диска подсчитывается счётным механизмом. Затраты электроэнергии в конечном счёте и определяются числом оборотов диска.
ЗАКОН ДЖОУЛЯ-ЛЕНЦА
Если на участке цепи, по которому протекает электрический ток, не совершается механическая работа и не происходят химические превращения вещества, то работа электрического тока приводит только к нагреванию проводника, т. е. при протекании тока по проводнику происходит превращение электрической энергии в тепловую. При этом по закону сохранения энергии количество теплоты Q, выделяемое проводником с током, будет равно работе электрического тока А: Q = А.
Известно, что А = Ult, тогда и Q = Ult. Учитывая закон Ома U = IR, получаем Q = IRIt, или Q = PRt.
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления и времени его протекания.
Этот закон был экспериментально установлен английским учёным Джеймсом Джоулем и независимо от него российским учёным Эмилием Ленцем, поэтому носит название закона Джоуля—Ленца.
Интегральная и дифференциальная формулы
Формула ЭДС индукции
Установленные в предыдущем разделе зависимости справедливы при неподвижности проводника. В этом случае можно считать, что работа приложенных сторонних сил расходуется непосредственно на повышение температуры. С учетом заданной темы перемещение зарядов (q) обеспечивает разница потенциалов, которая эквивалентна напряжению (U = ϕ1 – ϕ2). Соответственно, A = q * (ϕ1 – ϕ2) = q * U. Заряд можно выразить через ток:
q = I*t.
После элементарных математических преобразований получится A = Q = I * U * t. Если взять изменение теплоты (dQ) за интервал времени (dt), можно составить выражение закона Джона Ленца в интегральной форме:
dQ = I2 * R * dt.
Для дальнейших рассуждений нужно ввести понятие плотности тепловой мощности (W). Этим термином обозначают количество энергии, которое выделяется за единицу времени в единичном объеме (V) контрольного проводника:
W = Q/(V*t).
Электрическое сопротивление можно выражать через удельный показатель (p):
R = p* (dL/dS),
где:
- L – длина;
- S – поперечное сечение.
Добавив плотность тока (j = IS = G *E) и понятие проводимости (G = 1/R), можно записать закон Ленца в дифференциальном виде следующим образом:
W = G * E2.
Зависимость количества теплоты, выделяющегося в проводнике, от его сопротивления
Давайте опытным путем подтвердим наше первое предположение. Соберем электрическую цепь, состоящую из двух нагревателей и источника тока. Все элементы соединим последовательно.
Нагреватели у нас имеют одинаковые размеры, но сделаны из разных материалов. Соответственно, они имеют различные сопротивления $R_1$ и $R_2$. При этом $R_1 > R_2$.
Опустим нагреватели в калориметры (приборы для измерения количества теплоты) с одинаковым количеством воды. Начальная температура воды в обоих сосудах тоже одинакова.
Замкнем цепь. Теперь через нагреватели течет электрический ток (рисунок 1). Сила тока в них одинакова, потому что они соединены последовательно.
Рисунок 1. Зависимость количества теплоты, выделяющегося в проводнике, от его сопротивления
Мы увидим, что вода нагреется быстрее в первом калориметре. Это значит, что она получила большее количество теплоты. Именно в этом калориметре у нас и находится нагреватель с большим сопротивлением $R_1$. Наше предположение подтвердилось.
{"questions":,"explanations":,"answer":}}}]}
Любознательным
Следы на песке
Если вам приходилось, гулять по пляжу во время отлива, то, вероятно,
вы заметили, что, как только нога ступает на мокрый твердый песок, он немедленно
подсыхает и белеет вокруг вашего следа. Обычно это объясняют тем, что под тяжестью тела
вода «выжимается» из песка. Однако это не так, потому что песок не ведет себя подобно мочалке.
Почему же белеет песок? Будет ли песок оставаться белым все время, пока вы стоите на месте?
Оказывается…
Побеление песка на пляже впервые объяснил Рейнольде в 1885 г. Он показал,
что объем песка увеличивается, когда на него наступают. До этого песчинки были «упакованы» самым плотным образом.
Под действием деформации сдвига, которая возникает под подошвой ботинка, объем, занимаемый песчинками, может
лишь увеличиться. В то время как уровень песка поднимается резко, уровень воды может подняться лишь в результате
капиллярных явлений, а на это требуется время. Поэтому на дне следа ноги песок некоторое время оказывается выше уровня воды —
он сухой и белый.
И это ещё не всё!
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало — невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший «нагреватель» — стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся — тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Магнитострикция
Параллельно со свойствами электрического тока Джеймс Джоуль изучает магнитные явления. В 1842 году он замечает, что железо изменяется в размерах под воздействием магнитных волн. Если металлические стержни поместить в магнитное поле, их длина станет чуть больше.
Научное сообщество сомневалось в существовании здесь какого-либо открытия. Изменение размеров стержней было настолько ничтожным, что человеческий глаз не улавливал его. Но физик разработал специальную технику, при помощи которой получил наглядные доказательства.
Позже выяснилось, что таким эффектом обладают и другие металлы, а само явление назвали магнитострикцией. Сейчас для открытия Джоуля нашли много способов применения. Например, материалом волновода для измерения уровня воды в резервуарах служат магнитострикционные металлы. Это явление используют и для изготовления меток в антикражевых системах.
Стандартный ряд мощностей резисторов и их обозначение на схемах
Не забывайте, что резисторные компоненты одного номинала, могут иметь разную мощность. Все зависит от техники создания, материала корпуса. Ниже указан ряд мощностей и их официальное обозначение.
Вт | Условное обозначение на электросхемах |
мощность резисторного компонента 0,05 Вт | Как подписывается на схеме 0,05 В. |
мощность элемента 0,125 Вт | мощность резистора 0,125 Ватт. |
мощность 0,025 Вт | как на схеме выделяется элемент с мощностью 0,25 Вт |
мощность 0,5 Вт | таким образом, на схеме выделяется резистор мощностью 0,5 Ватт. |
мощность 1 Вт | мощность резистора 1 В. |
мощность 2 Вт | мощность рассеивания резистора 2 Вт. |
мощность резисторного элемента 5 Вт | так выделяется мощность 5 Вт |
Графическая кодировка мощностей резисторов на электросхеме — черточки и римские символы. Самое маленькое типовое значение 0,05 Ватт, максимальное — 25 Ватт, но есть и помощнее. Как указывается мощность слабых деталей необходимо запомнить. Это косого типа линии на прямоугольниках, которыми выделяют сопротивления. При номиналах сопротивлений от 1 Ватта на схеме выставляются определенные римские символы: I, II, III, и так далее. Цифровые обозначения выделяют мощность резисторного компонента в ваттах. О том как определить сопротивление резистора по цвету читайте здесь.
Формула Закона Ома
В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.
Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.
Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.
- где
- I – сила тока, измеряется в амперах и обозначается буквой А;
- U – напряжение, измеряется в вольтах и обозначается буквой В;
- R – сопротивление, измеряется в омах и обозначается Oм.
Если известны напряжение питания U и сопротивление электроприбора R, то с помощью вышеприведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I.
Онлайн калькулятор для определения силы тока | |
---|---|
Напряжение, В: | |
Сопротивление, Ом: | |
С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.
Плюсы и минусы от нагрева проводника
К отрицательным последствиям закона Джоуля-Ленца можно отнести:
- потерю кинетической энергии при столкновении частиц, что затрудняет передачу электричества на большие расстояния. Наиболее простой способ решения этой проблемы — повышение напряжения, однако это приводит к снижению безопасности;
- перегрев проводника, который может привести к повреждению как самого проводника, так и его изоляции.
Обнаруженные минусы от нагрева проводника легко обратить в плюсы, если правильно использовать закон Джоуля-Ленца:
- чтобы избежать потерь энергии при передаче тока на большие расстояния, а также компенсировать повышение напряжения, увеличивают сопротивление цепи. Величину сопротивления подбирают исходя из формулы, выражающей зависимость теплоты от напряжения и сопротивления;
- с помощью закона Джоуля-Ленца подбирают параметры проводника (материал, сечение) и цепи (напряжение, сила тока), чтобы избежать повреждения или возгорания проводника.
Электрическая дуга
Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.
В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.
Определения
В словесной формулировке звучит следующим образом:
Математически может быть выражен в следующей форме:
- w=j→⋅E→=σE2,{\displaystyle w={\vec {j}}\cdot {\vec {E}}=\sigma E^{2},}
где w{\displaystyle w} — мощность выделения тепла в единице объёма, j→{\displaystyle {\vec {j}}} — плотность электрического тока, E→{\displaystyle {\vec {E}}} — напряжённость электрического поля, σ — проводимость среды, а точкой обозначено скалярное произведение.
Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах:
В интегральной форме этот закон имеет вид
- dQ=I2Rdt,{\displaystyle dQ=I^{2}Rdt,}
- Q=∫t1t2I2Rdt,{\displaystyle Q=\int \limits _{t_{1}}^{t_{2}}I^{2}Rdt,}
где dQ{\displaystyle dQ} — количество теплоты, выделяемое за промежуток времени dt{\displaystyle dt}, I{\displaystyle I} — сила тока, R{\displaystyle R} — сопротивление, Q{\displaystyle Q} — полное количество теплоты, выделенное за промежуток времени от t1{\displaystyle t_{1}} до t2{\displaystyle t_{2}}. В случае постоянных силы тока и сопротивления:
- Q=I2Rt.{\displaystyle Q=I^{2}Rt.}
Применяя закон Ома, можно получить следующие эквивалентные формулы:
- Q=U2tR =IUt.{\displaystyle Q=U^{2}t/R\ =IUt.}
Практическая польза закона Джоуля-Ленца
Несмотря на наличие негативных последствий, закон Джоуля-Ленца находит широкое применение на практике:
- Лампа накаливания. Для нити в лампе выбирают материал, который при нагревании излучает свет. При подключении лампы к источнику ток нагревает нить, в результате чего последняя излучает свет.
- Плавкие предохранители. При возникновении в цепи напряжения, превышающего допустимое значение, предохранитель начинает нагреваться и плавиться. Расплавившийся предохранитель размыкает цепь.
- Электронагревательные приборы. При подключении прибора к источнику нагревательный элемент раскаляется и выделяет тепло.
Практическое значение
Снижение потерь энергии
При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии , понижая в результате силу тока. Однако, повышение напряжения снижает электробезопасность линий электропередачи .
Для применения высокого напряжения в цепи для сохранения прежней мощности на полезной нагрузке приходится увеличивать сопротивление нагрузки. Подводящие провода и нагрузка соединены последовательно . Сопротивление проводов () можно считать постоянным. А вот сопротивление нагрузки () растёт при выборе более высокого напряжения в сети. Также растёт соотношение сопротивления нагрузки и сопротивления проводов. При последовательном включении сопротивлений (провод — нагрузка — провод) распределение выделяемой мощности () пропорционально сопротивлению подключённых сопротивлений.
Ток в сети для всех сопротивлений постоянен. Следовательно, выполняются соотношение
И для в каждом конкретном случае являются константами. Следовательно, мощность, выделяемая на проводах, обратно пропорциональна сопротивлению нагрузки, то есть уменьшается с ростом напряжения, так как . Откуда следует, что . В каждом конкретном случае величина является константой, следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.
Выбор проводов для цепей
Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.
Электронагревательные приборы
Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.
За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.
Плавкие предохранители
Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.
Жизнь выдающегося физика
24 декабря 1818 года родился Джеймс Джоуль. Биография будущего физика начинается в английском городке Солфорде, в семье успешного владельца пивоварни. Обучение мальчика происходило в домашних условиях, некоторое время физику и химию ему преподавал Джон Дальтон. Благодаря ему английский физик и полюбил науку.
Джоуль не обладал крепким здоровьем, много времени он просиживал дома, проводя физические опыты и эксперименты. Уже в 15 лет, из-за болезни отца, ему пришлось управлять пивоварней вместе с братом. Работа на отцовском заводе не давала возможности поступить в университет, поэтому Джеймс Джоуль всецело отдавался домашней лаборатории.
С 1838 по 1847 год физик активно изучает электричество и делает свои первые научные успехи. В журнале Annals of Electricity он публикует статью об электричестве, а в 1841 открывает новый физический закон, который сейчас носит его имя.
В 1847 году Джоуль заключает первый и единственный брак с Амелией Граймс. Вскоре у них рождаются Элис Амелия и Бенджамин Артур. В 1854 году жена и сын погибают. Сам Джоуль умирает в 1889 году в Англии, в городе Сейле.
За всю свою жизнь он публикует около 97 работ по физике, некоторые из них написаны совместно с другими учеными: Лайоном, Томсоном и т. д. За выдающиеся научные достижения и открытые законы физики он награжден несколькими медалями и получал пожизненную пенсию от правительства Великобритании в размере около 200 фунтов.
Где может пригодиться этот закон Джоуля-Ленца?
В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.
В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.
А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:
А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:
Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.
В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.
Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.
Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.
Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.