Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп
Основными элементами схемы включения люминесцентной лампы с электромагнитным ПРА являются дроссель и стартер. Стартер это миниатюрная неоновая лампа, один или оба электрода которой выполнены из биметалла. При возникновении тлеющего разряда внутри стартера биметаллический электрод нагревается и, затем изгибаясь, накоротко смыкается со вторым электродом.
После подачи напряжения на схему ток через люминесцентную лампу не течет, так как газовый промежуток внутри лампы это изолятор, и для пробоя его нужно напряжение, превышающее напряжение питающей сети. Поэтому загорается только лампочка стартера, напряжение зажигания которой ниже сетевого. Ток величиной 20 — 50 мА течет по дросселю, электродам люминесцентной лампы, неоновой лампе стартера.
Стартер состоит стеклянного баллона, наполненного инертным газом. В баллон впаяны металлический неподвижный и биметаллический электроды, имеющие выводы, проходящие через цоколи. Баллон заключен в металлический или пластмассовый корпус с отверстием в верхней части.
Схема устройства стартера тлеющего разряда: 1 — выводы, 2 — металлический подвижный электрод, 3 — стеклянный баллон, 4 — биметаллический электрод, 6 — цоколь
Стартеры для включения люминесцентных ламп в сеть выпускаются на напряжение 110 и 220 В.
Под воздействием тока электроды стартера разогреваются и замыкаются. После замыкания по цепи течет ток, превышающий в 1,5 раза номинальный ток лампы. Величина этого тока ограничена в основном сопротивлением дросселя, так как электроды стартера замкнуты, а электроды ламп имеют незначительное сопротивление.
Элементы схемы с дросселем и стартером: 1 — зажимы сетевого напряжения; 2 — дроссель; 3, 5 — катоды лампы, 4 — трубка, 6, 7 — электроды стартера, 8 — стартер.
За 1 — 2 с электроды лампы разогреваются до 800 — 900 °С, вследствие этого увеличивается электронная эмиссия и облегчается пробой газового промежутка. Электроды стартера остывают, так как разряда в нем нет.
При остывании стартера электроды возвращаются в исходное состояние и разрывают цепь. В момент разрыва цепи стартером возникает э. д. с. самоиндукции в дросселе, величина которой пропорциональна индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700 — 1000 В) импульсом прикладывается к лампе, подготовленной к зажиганию (электроды разогреты). Происходит пробой, и лампа начинает светиться.
К стартеру, который включен параллельно лампе, прикладывается приблизительно половина напряжения сети. Этой величины недостаточно для пробоя неоновой лампочки, поэтому она больше не зажигается. Весь период зажигания длится меньше 10 с.
Рассмотрение процесса зажигания лампы позволяет уточнить назначение основных элементов схемы.
Стартер выполняет две важные функции:
1) замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание,
2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.
Дроссель выполняет три функции:
1) ограничивает ток при замыкании электродов стартера,
2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера,
3) стабилизирует горение дугового разряда после зажигания.
Схема импульсного зажигания люминесцентной лампы в работе:
Конструкция дросселя лампы дневного света
Проволока
Проводники представляют собой нити, изготавливаемые из вольфрама, который дополнительно легируется высокотемпературными силикатами калия или алюминия. Минимальная температура рекристаллизации проводника – не менее 2100С.
Сердечник
Один из электродов представляет собой биметаллическую полосу, которая изгибается при нагревании, вызывая контакт с другим электродом. Когда два электрода соприкасаются друг с другом, ток становится постоянным.
Заливочная масса
В колбы люминесцентных светильников бытового предназначения закачивается аргон. Инертные свойства аргона исключают корродирующее действие кислорода, особенно в источниках с горячей вольфрамовой нитью. Использование аргона предотвращает испарение проводников.
Корпус
Стеклянная трубка содержит небольшое количество ртути и аргон, находящийся под очень низким давлением. Трубка также содержит люминофорный порошок, который наносится на внутреннюю часть стекла. Стекло корпуса должно иметь высокую механическую и диэлектрическую прочность.
Устройство ЭПРА для люминесцентных ламп
Схемы электронных балластов для люминесцентных ламп выглядят следующим образом:
На плате ЭПРА находится:
- Фильтр электромагнитных помех, который устраняет помехи, приходящие со стороны сети. А также гасит электромагнитные импульсы самой лампы, которые могут негативно влиять на человека и окружающие бытовые приборы. Например, создавать помехи в работе телевизора или радиоприёмника.
- Задача выпрямителя — преобразовывать постоянный ток сети в переменный, подходящий для питания лампы.
- Коррекция коэффициента мощности – схема, отвечающая за контроль сдвига по фазе переменного тока, проходящего через нагрузку.
- Сглаживающий фильтр предназначен для снижения уровня пульсации переменного тока.
Как известно, выпрямитель идеально выпрямить ток не в состоянии. На выходе из него пульсация может составлять от 50 до 100 Гц, что неблагоприятно сказывается на работе лампы.
Инвертор используется полумостовой (для небольших ламп) или мостовой с большим количеством полевых транзисторов (для мощных ламп). КПД у первого типа относительно невысокий, но это компенсируется микросхемами-драйверами. Основная задача узла – преобразование постоянного тока в переменный.
Перед тем, как выбрать энергосберегающую лампочку. рекомендуется изучить технические характеристики её разновидностей, их преимущества и недостатки
Особое внимание следует уделить месту установки компактной люминесцентной лампы. Очень частое включение-выключение или морозная погода на улице значительно сокращают продолжительность работы КЛЛ. Подключение LED лент в сеть 220 Вольт осуществляется с учетом всех параметров осветительных устройств — длина, количество, монохромность или многоцветность
Подробнее об этих особенностях — здесь
Подключение LED лент в сеть 220 Вольт осуществляется с учетом всех параметров осветительных устройств — длина, количество, монохромность или многоцветность. Подробнее об этих особенностях — здесь.
Дроссель для люминесцентных ламп (специальная индукционная катушка из свёрнутого проводника) участвует в подавлении помех, накоплении энергии и плавной регулировке яркости. Защита от перепадов напряжения – устанавливается не во всех ЭПРА. Защищает от колебаний напряжения в сети и ошибочного пуска без лампы.
Что такое дроссель и для чего он нужен?
В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.
Конструкция и принцип работы
Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:
Внешний вид изделия может быть таким, как на фото:
Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.
Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике.
Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление.
Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.
Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.
Интересное пояснение по данному вопросу вы также можете просмотреть на видео:
Наглядное сравнение, объясняющее принцип работыТеоретическая часть вопроса
Область применения
Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.
Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:
Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь.
В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение.
Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.
В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.
Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.
В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.
С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.
Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.
Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!
Будет интересно прочитать:
Устройство дросселя (ПРА).
Внешний вид дросселя
На фотографии представлен дроссель для люминесцентных ламп дневного света. По большому счету он является катушкой индуктивности с металлическим сердечником в корпусе (кожухе) из листового металла. Более современные изготавливаются в термоустойчивом пластиковом корпусе, имеют более низкие массо-габаритные показатели. Это промышленное название (максимально близкий перевод — ограничитель). Его сопротивление по постоянному току порядка 60 Ом. При проверке мультиметром, в случае индикации бесконечного сопротивления – дроссель неисправен, в обрыве. Если сопротивление менее 55 Ом, это также означает неисправность дросселя. В этом случае он, скорее всего, имеет межвитковое замыкание. Это случалось со старыми ПРА, когда начинает рассыпаться компаунд и происходит отслоение лака с проволоки. В простейшей схеме он выполняет функцию балласта.
Дроссель в разрезе
Сердечник дросселя обычно изготавливается из трансформаторной стали, при этом пластины, входящие в его набор, электрически не контактируют между собой. Это сделано для уменьшения вихревых токов.
Разновидности дросселей для люминесцентного освещения
Ламповые дроссели отличаются основными характеристиками, а при подключении неправильно подобранного элемента становятся основной причиной выхода из строя источника света. В настоящее время существует несколько видов ламповых дросселей:
- мощность 9 Вт – для энергосберегающих источников света;
- мощность 11 w — для миниатюрных осветительных приборов и энергосберегающих источников света;
- мощность 15 w — для настольных и миниатюрных осветительных приборов;
- мощность 18 w — для настольных осветительных приборов;
- мощность 36 Вт – для маломощных люминесцентных осветительных приборов;
- мощность 58 Вт — для потолочных осветительных приборов;
- мощность 65 Вт — для потолочных многоламповых осветительных приборов;
- мощность 80 Вт — для мощных люминесцентных осветительных приборов.
Электронные ламповые дроссели могут быть рассчитаны по показателям мощности сразу на два источника света.
Принцип работы
Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.
Строение люминесцентной лампы
Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.
Электромеханический дроссель
Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.
Схема люминесцентного светильника с ЭмПРА
Предъявляемые к балластному сопротивлению требования:
- минимальные потери мощности;
- малые вес и размер;
- отсутствие гула;
- температура накала не выше 600 градусов по Цельсию.
Другой значимый элемент ЭмПРА – стартер тлеющего разряда.
Стартер тлеющего разряда
Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.
Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.
Схема подключения электронного балласта
Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.
Электронный балласт
Назначение балласта
Обязательные электрические характеристики светильника дневного света:
- Потребляемый ток.
- Пусковое напряжение.
- Частота тока.
- Коэффициент амплитуды тока.
- Уровень освещённости.
Дроссель обеспечивает высокое начальное напряжение для инициирования тлеющего разряда, а затем быстро ограничивает ток для безопасного поддержания нужного уровня напряжения.
Основные функции балластного трансформатора рассматриваются далее.
Безопасность
Балласт регулирует мощность переменного тока для электродов. При прохождении переменного тока через дроссель напряжение повышается. Одновременно ограничивается сила тока, чем предотвращается короткое замыкание, которое приводит разрушению люминесцентного светильника.
Подогрев катодов
Для работы светильника необходим всплеск высокого напряжения: именно тогда происходит пробой межэлектродного промежутка, и загорается дуга. Чем холоднее лампа, тем выше необходимое напряжение. Напряжение «проталкивает» ток через аргон. Но у газа есть сопротивление, которое тем выше, чем холоднее газ. Поэтому требуется создать более высокое напряжение при максимально низких температурах.
Для этого требуется реализовать одну из двух схем:
- с помощью пускового выключателя (стартёра), содержащего небольшую неоновую или аргоновую лампу мощностью 1 Вт. Она нагревает биметаллическую полосу в стартёре и облегчает инициирование газового разряда;
- вольфрамовыми электродами, через которые проходит ток. При этом электроды нагреваются и ионизируют газ в трубке.
Обеспечение высокого уровня напряжения
При разрыве цепи магнитное поле прерывается, импульс высокого напряжения посылается через светильник, и возбуждается разряд. Используются следующие схемы создания высокого напряжения:
- Предварительный подогрев. В этом случае электроды нагреваются до инициирования разряда. Пусковой выключатель замыкается, позволяя току протекать через каждый электрод. Переключатель стартера быстро охлаждается, размыкая переключатель и запуская напряжение питания на дуговой трубке, в результате чего и возникает разряд. Во время работы вспомогательное питание на электроды не подаётся.
- Быстрый запуск. Электроды нагреваются постоянно, поэтому балластный трансформатор включает две специальные вторичные обмотки, которые обеспечивают низкое напряжение на электродах.
- Мгновенный запуск. Электроды перед началом работы не нагреваются. Для устройств мгновенного пуска трансформатор обеспечивает относительно высокое пусковое напряжение. Вследствие этого разряд легко возбуждается между «холодными» электродами.
Разнообразие дросселей по мощности в ваттах
Различают дроссели малой, средней и большой мощности. Первые (мощностью до 11…15 Вт) используются в миниатюрных и энергосберегающих светильниках, вторые (до 30…40 Вт) – в офисных лампах, а более мощные – для освещения залов, гостиных, холлов и прочих помещений значительной площади.
Различие по условиям пуска
Например, для люминесцентных ламп мощностью до 40 Вт самым распространённым режимом работы является режим быстрого запуска. Преимущества быстрого запуска заключаются в плавном нарастании напряжения, увеличении срока службы и возможности диммирования – плавного изменения яркости испускаемого светового потока.
Для ламп меньшей мощности (менее 30 Вт) характерен режим предварительного нагрева. Источники света, работающие в этом режиме, лучше, поскольку для непрерывного нагрева электродов не требуется дополнительная мощность. Однако такие лампы мерцают во время запуска и характеризуются коротким сроком службы.
Выводы.
Хоть схема и имеет полувековую историю, она до сих пор остается актуальной. ПРА необходим для работы люминесцентной лампы. Все компоненты производятся и стоят недорого. К достоинствам этой схемы можно отнести ее простоту и доступность компонентов. Обычно дроссель является самым долгоживущим компонентом схемы.
Из минусов отмечено, что при использовании классической схемы при включении освещения несколько секунд наблюдается мерцание. Это плохо отражается на сроке полезной эксплуатации самого источника света. Т.е. Лампа проработает меньше в такое схеме, чем при использовании электронного пускателя.
В плане экономической целесообразности, при частом включении и выключении света использовать такую элементную базу не выгодно, проще приобрести электронный пускатель, хоть его покупка и обойдется дороже, но это будут одномоментные затраты.