Время насыщения трансформатора тока это

Косвенные методы

Каждый из перечисленных ниже способов проверки может предоставить лишь частичную информации о состоянии трансформаторов. Поэтому эти способы необходимо применять в комплексе.

Определение правильности маркировки выводов обмоток

Целостность обмоток ТТ и их выводов следует определять замером их активных сопротивлений с проверкой или последующим нанесением маркировки.

Определение начала и конца каждой из обмоток следует проводить способом, позволяющим установить полярность.

Проверка полярности выводов обмоток.

Для проведения испытаний к вторичной обмотке присоединить амперметр или вольтметр магнитоэлектрического типа с определенной полярностью на его выводах.

Определение полярности выводов обмоток Трансформатора тока.

Рекомендуется использовать прибор с нулем посередине шкалы, однако, допускается использовать и с нулем, расположенным в начале шкалы.

Все остальные вторичные обмотки трансформатора необходимо, из соображений безопасности, зашунтировать.

К первичной обмотке ТТ необходимо подключить источник постоянного тока, затем последовательно подключить к нему сопротивление для ограничения тока разряда. Достаточно использовать обыкновенный элемент питания (батарейку) с лампочкой накаливания. Вместо выключателя можно просто коснуться проводом от лампочки клеммы первичной обмотки ТТ и затем отвести его.

При совпадении полярности стрелка сдвинется вправо и возвратится назад. Если прибор подключен с обратной полярностью, то стрелка будет сдвигаться влево.

При отключении питания у однополярных обмоток стрелка сдвигается толчком влево, а в противном случае – толчком вправо.

Таким же образом следует проверить полярность подключения других обмоток трансформатора.

Снятие характеристики намагничивания.

Зависимость напряжения на клеммах вторичных обмоток от протекающего по ним тока намагничивания называется вольт-амперной характеристикой, сокращенно ВАХ. Она свидетельствует о правильности работы обмотки и магнитопровода, позволяет оценить их исправность.

Для того, чтобы исключить влияние помех со стороны расположенного рядом силового оборудования, характеристику ВАХ следует снимать, предварительно разомкнув цепь первичной обмотки.

Для построения характеристики ВАХ необходимо пропускать переменный ток различных величин через обмотку ТТ и измерять напряжение на входе обмотки. Такие испытания можно проводить любым лабораторным стендом с блоком питания, имеющим выходную мощность, позволяющую нагружать обмотку до насыщения магнитопровода трансформатора, при котором кривая насыщения обратится в горизонтальное положение.

Полученные по замерам данные нужно занести в таблицу протокола. По табличным данным строятся графики ВАХ.

Перед началом проведения замеров и после их окончания следует в обязательном порядке производить размагничивание магнитопровода методом нескольких постепенных увеличений тока в обмотке и последующим снижением тока до нуля.

Важно

Для измерения значений токов и напряжений следует использовать приборы электромагнитной или электродинамической систем, которые могут воспринимать действующие значения тока и напряжения.

Наличие в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. В связи с этим, при первом использовании исправного ТТ необходимо сделать замеры и построить график ВАХ, а при последующих проверках ТТ через определенное нормативами время следует контролируют состояние выходных параметров.

Пределы погрешностей ТТ для классов Р

Все характеристики указаны в документации к конкретным видам приборов. Также информация прописывается отдельно к каждому устройству. Конкретно для классов точности Р установлены пределы допустимых погрешностей токовое и угловые.

Для трансформаторов с классом мощности 5Р при токе нормальной с предельной полной кратности в 5 процентов значения пределов допустимой погрешности следующие:

  • токовые – + или — 1 %;
  • угловые + или — 60 процентов, что идентично 1,9.

Пределы, указанные в таблицах, выполняются, так как это первое из требований безопасности.

Для прибора класса точности 10Р искомая предельная кратность составляет 10% соответственно. Предел погрешности, max возможной при работе, составляет 3 процента. В тоже время данных об угловых погрешностей не представлено, так как их не нормируют.

Определение

Определение технической характеристики для трансформатора прописаны в ГОСТе 7746 2001 под названием «Трансформаторы тока. Общие технические условия». Этот документ относится к классу межгосударственных, то есть он распространяется для всех устройств, изготовленных в любой точке по территории страны.

Для того, чтоб понять определение, нужно познакомится с тем, что значит усредненный коэффициент безопасности. Этот показатель в свою очередь является соотношением номинального тока безопасности и первичного (также номинальное общее значение). Коэффициент безопасности по своей сути является основным параметром, который определяет искомую кратность повышения импульса.

Последняя характеристика важна, так как в условиях производства часто наблюдаются ситуации, когда он повышается из номинального показателя. Это возникает при коротком замыкании в цепи в большей части случаев.

Насыщение – трансформатор – ток

Насыщение трансформаторов тока наступает, как только напряжение на вторичной стороне ( определяемое расчетом УК или опытным путем) достигнет точки перегиба.

Зависимость кратности токов при 10-процентной погрешности от нагрузки трансформатора тока.

В этом выражении коэффициент k учитывает насыщение трансформатора тока в переходном режиме.

Характеристика торможения.

В области больших токов, приводящих к насыщению трансформаторов тока, селективность защит с торможением значительно ухудшается, так как здесь, как правило, ток небаланса возрастает, а тормозной сигнал уменьшается. В этом случае улучшить точность преобразования первичного тока можно включением обратной модели трансформатора тока последовательно с ним в цепочку преобразования.

Характеристика намагничивания с конечной индуктивностью в области насыщения ( а и кривые трансформации броска намагничивающего тока силового трансформатора ( б.

На самом деле этот ток есть но после насыщения трансформатора тока исчезает постоянная составляющая вторичного тока. После насыщения резко падает L и дальнейший процесс можно рассматривать в соответствии с уравнением ( 3 – 10), имея в виду, что т2 резко уменьшена. Легко убедиться, что при этом значительно ухудшаются условия трансформации апериодической составляющей, но существенно меньше погрешность по переменной составляющей.

Прохождение по обмотке реле несинусоидальных токов, возникающих, например, вследствие насыщения трансформаторов тока при коротком замыкании, приводит к усиленной вибрации подвижной системы реле и его отказу.

С помощью схем компаундирования ток возбуждения увеличивается только пропорционально току нагрузки, если пренебречь насыщением трансформатора тока и промежуточного трансформатора. Внешняя характеристика компаундированного генератора имеет криволинейную форму с выпуклостью вниз при малых токах и резко возрастающим загибом вверх при токах, близких к номинальным.

Наиболее неблагоприятное с точки зрения вибрации реле искажение формы кривой вторичного тока имеет место при насыщении трансформатора тока, работающего на чисто активную нагрузку. На рис. 1 – 4 показаны формы кривой тока и усилия в электромагнитном реле при работе идеализированного трансформатора тока ( ТТ), имеющего прямоугольную характеристику намагничивания сердечника ( гл.

При выполнении реле тока в ряде случаев необходимо также учитывать возможность появления во вторичном токе высших гармоник за счет насыщения трансформаторов тока.

Однако в схемах релейной защиты необходимо считаться с возможностью подачи на токовые реле несинусоидального тока, обусловленного в основном насыщением трансформаторов тока при больших кратностях тока к. Искажение формы кривой тока приводит к увеличению переменной составляющей усилия реле по сравнению с его постоянной составляющей, причем, кроме составляющей двойной частоты, появляются составляющие более высоких гармоник.

При решении вопроса о предельной мощности, отдаваемой трансформаторами тока, используют их кривую намагничивания f / 2 / ( У Насыщение трансформаторов тока наступает, как только напряжение на вторичной стороне ( определяемое расчетом УК или опытным путем) достигнет точки перегиба.

Ток небаланса возрастает с увеличением первичного тока, достигая максимального значения при трехфазных коротких замыканиях, и становится особенно большим при насыщении трансформаторов тока.

В некоторых случаях среднее значение напряжения Uf не остается строго постоянным, а несколько уменьшается с течением времени; это можно объяснить главным образом насыщением трансформаторов тока системы возбуждения ССГ. Если трансформаторы остаются предельно насыщенными в течение всех стадий короткого замыкания, то указанная тенденция изменения и / почти не наблюдается. В противном случае имеет место снижение uf с течением времени.

Категории

Предельная кратность – отношение предельного значения первичного тока, при котором полная погрешность при заданной вторичной нагрузке не превышает 10%, к номинальному первичному току

Номинальная предельная кратность, Кном – предельная кратность при номинальной вторичной нагрузке.

Предельная кратность вторичной обмотки для защиты определяет возможность нормальной работы защитных устройств и систем при аварийных режимах работы.

Кривые погрешностей вторичной обмотки ТТ с классом точности 10Р и номинальной вторичной нагрузкой 15 В·А, снятые при различных значениях вторичной нагрузки

Измерение предельной кратности

Значение фактического (измеренного) значения предельной кратности при номинальной вторичной нагрузке, согласно ГОСТ 7746-2015 должно превышать значения номинальной предельной кратности, и в реальности всегда несколько больше.

Измерение предельной кратности проводится при квалификационных испытаниях прямым методом согласно ГОСТ 7746-2015 п.9.6. или косвенным методом при ПСИ путем измерения значения тока намагничивания. Ток намагничивания, определяемый при расчетном значении напряжения намагничивания Uнам.расч должен быть меньше расчетного тока намагничивания для защитных обмоток ТТ.

где Кном – номинальная предельная кратность обмоток для защиты; ε – полная погрешность, для защитных обмоток принимается равной 5% для класса точности 5Р или 10 % для класса точности 10Р; Z2 – полное сопротивление вторичной обмотки, определяемое по формуле

Фактические (измеренные при ПСИ) значения тока намагничивания, расчетного напряжения и расчетного тока намагничивания вторичных обмоток указываются в паспорте на конкретный трансформатор.

Кривые предельной кратности

Предельная кратность напрямую зависит от реального значения вторичной нагрузки. Для правильного проектирования систем защиты существуют кривые предельной кратности, т.е. зависимость коэффициента предельной кратности от нагрузок на вторичной обмотке.

Зависимость коэффициента предельной кратности от нагрузок на вторичной обмотке для вторичной обмотки ТТ с классом точности 10Р и номинальной вторичной нагрузкой 15 В·А

Кривые предельной кратности на нетиповые трансформаторы и полные ВАХ вторичных обмоток в табличном или графическом виде с указанием контрольных точек предоставляются по запросу.

Схемы токовых цепей

До этого мы рассматривали токовую цепь применительно к одной фазе. На практике это используется крайне редко, потому что даже если взять отдельно три однофазные токовые цепи, они не будут обладать теми свойствами, которыми обладают традиционные схемы типа “звезда”, “неполная звезда”, “треугольник” и прочие.

Существует множество схем токовых цепей. Каждая из них имеет свои свойства и применима только в определенных электроустановках.

Схема полной звезды

Распространенная схема: трансформаторы тока устанавливаются во всех фазах. В каждой фазе устанавливается защитное реле. А замыкается цепь через один общий провод, называемый “нулевым”.

Схема обладает следующими свойствами:

  • В нормальном режиме (при симметричной нагрузке) в схеме протекают токи Ia, Ib, Ic. По закону Кирхгофа, в нулевом проводе ток отсутствует, так как геометрическая сумма векторов фазных токов Ia+Ib+Ic равна нулю;
  • При глухом двухфазном замыкании (например, фаз B и C), наблюдается аналогичная предыдущему случаю картина: в фазе A ток Ia будет отсутствовать, в фазах B и C токи будут в противофазе: Ib = -Ic. Следовательно, их сумма так же будет равна нулю, и ток в нулевом проводе Io будет отсутствовать;
  • При однофазном замыкании появляется составляющая нулевой последовательности Io. Так как она не может быть скомпенсирована, ей деваться некуда – она замыкается (протекает) по нулевому проводу. Отсюда следует важный вывод: нулевой провод является фильтром нулевой последовательности;
  • Так как ток в защитном устройстве равен току в фазе, то коэффициент схемы равен KСХ = 1.

Подводя итог перечисленным свойствам, можно сделать вывод, что схема полной звезды реагирует на любые виды замыканий: при любых междуфазных замыканиях срабатывают защитные устройства в фазных проводах, а при однофазном замыкании – защитное устройство в нулевом проводе.

Схема неполной звезды

Более распространенная схема, чем предыдущая. Отличается от полной звезды отсутствием трансформатора тока цепи одной из фаз. Как правило, в фазе B.

Схема обладает свойствами:

  • В нормальном режиме при симметричной нагрузке ток в нулевом проводе равен геометрической сумме токов двух фаз, в которых установлены измерительные трансформаторы тока: Ia + Ic = -Ib;
  • При двухфазном замыкании между A-B или B-C в нулевом проводе появляется ток, равный -Iа или -Ic. При замыкании А-С в нулевом проводе протекает сумма токов Ia + Ic.
  • При однофазном замыкании фаз A или C, в нулевом проводе так же возникает ток нулевой последовательности поврежденной фазы. При повреждении в фазе B ток нулевой последовательности не возникает.
  • Коэффициент схемы равен KСХ = 1.

Недостатком этой схемы – реакция не на все виды однофазного короткого замыкания. Поэтому такие схемы применяются в сетях с большим сопротивлением при замыканиях на землю, т. е. в сетях 6 – 35 кВ.

Соединение трансформаторов тока в треугольник

Вторичные обмотки трансформаторов тока соединяются последовательно: начало ТТ фазы A – с концом ТТ фазы B, начало ТТ фазы B – с концом фазы C, начало ТТ фазы C – с концом ТТ фазы А. Обмотки защитного устройства подключают к выводам И1 фаз A, B и C и соединяются в звезду.

Рассмотрим, какими свойствами обладает рассматриваемая схема:

  • При симметричной нагрузке и трехфазном коротком замыкании через защитные реле протекает ток, равный разности токов двух фаз, а следовательно, в √3 раз больше фазного и сдвинут на 30°;
  • При двухфазных и однофазных замыканиях величина тока через защитное реле зависит от характера замыкания;
  • На однофазные замыкания на землю данная схема не реагирует;
  • Коэффициент схемы равен KСХ = √3.

Данная схема реагирует на все виды коротких замыканий, кроме замыканий на землю. Увеличивает чувствительность защиты за счет увеличения тока в реле до 2 крат.

Вид КЗПоврежденные фазыТоки в фазахТоки в реле
IIIIII
ДвухфазноеА, ВIb=-IaIc=02IaIb-Ia
В, CIc=-IbIa=0-Ib2Ib-Ic
C, AIa=-IcIb=0Ia-Ic2Ic
ОднофазноеАIa=IКЗIb и Iс = 0Ia-Ia
ВIb=IКЗIa и Iс = 0-IbIb
CIc=IКЗIa и Ib = 0-IcIc

Измерение и расчет предельной кратности

При превышении предельного нормированного показателя прибор переходит из стабильной области работы в фазу насыщения. Точность функционала оценивается по математическим кривым, условия которых приведены в таблицах. Коэффициент устанавливается не опытным путем, а по специальным табличным данным. Кривые состоят из информации о наибольшем отношении тока вторички к среднему номинальному назначению, которое подается на первичку.

Расчет производится таким образом, чтоб полная ошибка при вычисляемых данных (то есть при включении заданной информации о вторичной нагрузке) не было больше десяти процентов. Математические кривые позволяют вычислить характеристики проводов, приборов, реле, схемы подсоединения и составить схему таким образом, чтоб не происходило пересыщение и приборы работали в оптимальном режиме.

Оборудование, дополненное дифференциальной защитой, при сквозном токе короткого замыкания должно иметь идентичную предельную кратность.

Расчетные кривые приводятся для вычислений работы по установленному режиму. Если апериодическая стремится к max, то есть режим переходный, то параметр достигает и 70-75%.

Класс точности выбирают в зависимости от назначения. Такие же требования применяются и к устройствам с неидентичными типами нагрузок.

Определение фактического коэффициента предельной кратности Кпк.факт

Итак, для определения фактического коэффициента предельной кратности Кпк.факт необходимы следующие исходные данные:

а) Паспортные данные ТТ, а именно

  • Sном — номинальная вторичная нагрузка трансформатора тока, ВА;
  • Zтр — внутреннее сопротивление трансформатора тока, Ом;
  • Кпк.ном – номинальный коэффициент предельной кратности;
  • Iперв — первичный номинальный ток трансформатора тока, А;
  • Iвтор — вторичный номинальный ток трансформатора тока, А.

б) Должна быть известна схема соединения трансформаторов тока и вторичной нагрузки

в) Необходимо знать какие устройства подключены к вторичной обмотке ТТ, а также какими проводами выполнено это соединение.

Теперь необходимо определить значение вторичной нагрузки, подключенной к цепям ТТ. Для этого воспользуемся готовыми формулами, позаимствованными из книги Шабада М.А.

Таблица 1 – Расчетные формулы для определения вторичной нагрузки трансформаторов тока Zн.расч

Понятно, что в формулах Zн.расч – расчетное значение вторичной нагрузки, подключенной к цепям ТТ; rпр – сопротивление проводов соединяющих трансформатор тока и реле защиты; rпер – переходное сопротивление. Принимается равным 0,1 Ом; Zр, Zр.ф, Zр.обр – сопротивление реле.

Так как сейчас в основном используются микропроцессорные реле защиты, потребляемая ими мощность по токовым цепям очень мала. Поэтому в формулах вместо Zр, Zр.ф, Zр.обр подставляем значение потребляемой мощности по токовым цепям микропроцессороного реле (в Омах). Если же в каждой фазе и в нулевом обратном проводе установлено свое отдельное реле, то в формулы необходимо подставлять значение потребляемой мощности каждого этого реле.

Если в информации на реле потребляемая по токовым цепям мощность дается в Вт или ВА, пересчет в Омы производится по формуле

Аналогично выполняется перевод номинальной мощности трансформатора тока из ВА в Омы

Сопротивление проводов rпр рассчитывается по формуле

где: Lпр – длина проводов от зажимов ТТ к реле, м Sпр – сечение проводов, мм 2 ; γпр – удельное электрическое сопротивление, в зависимости от материала проводов

  • γпр = 57 м/Ом · мм 2 – для меди
  • γпр = 34,5 м/Ом · мм 2 – для алюминия

Теперь необходимо определить фактический коэффициент предельной кратности по формуле

Принцип работы трансформаторов тока

1.3 Принцип работы Трансформатор тока состоит из замкнутого сердечника, набранного из тонких листов электротехнической стали, и двух обмоток — первичной и вторичной. Первичную обмотку включают последовательно в контролируемую цепь, ко вторичной обмотке присоединяют токовые катушки различных приборов и реле.

Рисунок 1 – Трансформатор тока: а — устройство, б, в — схемы включения амперметра непосредственно в контролирующую цепь и через трансформатор тока Устройство трансформатора тока и схемы включения амперметра показаны на рисунке 1, а—в. Магнитный поток в магнитопроводе 3 создается токами первичной 1 и вторичной 2 обмоток. Соотношение первичного I1 и вторичного I2 токов определяется формулой: KТТ = I1/I2 = w2/wl , где KТТ — коэффициент трансформации; w1 и w2 — число витков первичной и вторичной обмоток. Если в силовых трансформаторах и трансформаторах напряжения увеличение сопротивления во вторичной цепи вызывает уменьшение тока во вторичной и в первичной цепях, а напряжение на выводах обеих обмоток почти не изменяется, то у трансформаторов тока увеличение сопротивления во вторичной цепи приводит к повышению напряжения на выводах вторичной обмотки. Это объясняется тем, что ток в первичной цепи не зависит от нагрузки трансформатора тока. Ток во вторичной цепи трансформатора тока практически не меняется с изменением ее сопротивления при данном режиме первичной цепи. Вследствие этого нагрузка трансформатора тока увеличивается с возрастанием сопротивления во вторичной цепи, складывающегося из сопротивлений, подключенных к трансформатору тока аппаратов и приборов, соединительных проводов и переходных контактов. Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рисунке 2, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка. Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (Рисунок 3, а—в). Опорный трансформатор тока ТФНД-220 для наружной установки на напряжение 220 кВ (Рисунок 4) имеет обмотки, помещенные в фарфоровый корпус 3, залитый маслом и укрепленный на основании 4. На верхнем торце фарфорового корпуса укреплен чугунный расширитель 1 для масла с маслоуказателем и зажимами 2 первичной обмотки. Сердечник с вторичной обмоткой охватывается первичной обмоткой, имеющей в этом месте форму кольца. Выводы вторичной обмотки размещены в коробке 5 на основании трансформатора.

Рисунок 2 – Трансформаторы тока на напряжение до 1000 В: а — катушечный, б, в — шинные ТШ-0,5 и ТШЛ-0,5; 1 — каркас, 2, 4 — зажимы вторичной и первичной обмоток, 3 — защитный кожух, 5 — окно

Советуем изучить — Механические характеристики электроприводов

Рисунок 3 – Трансформаторы тока на напряжение 10 кВ с литой изоляцией: а — многовитковый ТПЛ-10, б — одновитковый ТПОЛ-10, в —шинный ТПШЛ-10; 1, 2 — зажимы первичной и вторичной обмоток, 3 — литая изоляция, 4 — установочный угольник, 5 — сердечник

Рисунок 4 – Опорный трансформатор тока ТФНД-220 наружной установки В высоковольтных распределительных устройствах подстанций применяют проходные (Рисунок 5, а) и опорные (Рисунок 5, б) трансформаторы тока.

Рисунок 5 – Трансформаторы тока: а — проходной ТПФМ-10 на 10 кВ, б — опорный ТФН-35М на 35 кВ; 1 и 3 — первичная и вторичная обмотки, 2 — фарфоровый изолятор, 4 — сердечник вторичной обмотки, 5 — контактный угольник, 6 — крышка, 7 — кожух, 8 — верхний фланец, 9 — зажимы выводов вторичной обмотки, 10 — якореобразный болт, 11 — крышка, 12 — фарфоровая покрышка, 13 — изоляционное масло, 14 — кольцевые обмотки («восьмеркой»), 15 — полухомут, 16 — масловыпускатель, 17 — цоколь, 18 — коробка вторичных выводов, 19 — кабельная муфта, 20 — маслоуказатель

Пример проверки ТТ на 10% погрешность

Рассмотрим пример проверки трансформатора тока на 10% погрешность.

К трансформатору тока подключен терминал типа 7SJ80 в котором задействована максимальная токова защита и токовая отсечка. Уставка срабатывания токовой отсечки Iсраб.то = 3150 А. Схема соединения трансформаторов тока – полная звезда. Максимальное значение тока КЗ в месте установки защиты IКЗ.макс = 12,45 кА. Терминал релейной защиты устанавливается в релейном отсеке шкафа КРУ и соединятеся с трансформаторами тока медными проводами сечением 2,5 мм 2 .

Проверка

1. По информации на устройство 7SJ80 находим потребляемую им мощность по токовым цепям.

2. Переводим потребляемую мощность в Омы

3. Находим сопротивление проводов от ТТ к терминалу защиты. Поскольку терминал устанавливается в релейном отсеке шкафа КРУ принимаем длину проводом 5 м.

4. Для схемы соединения трансформаторов тока и вторичной нагрузки “полная звезда” используя формулы таблицы 1 находим фактическую вторичную нагрузку трансформатора тока.

Так как мы достоверно не знаем, какой потребитель получает питание от защищаемого присоединения, рассчитываем на худший случай. Максимальная вторичная нагрузка для схемы соединения ТТ “полная звезда” будет для однофазного КЗ, его и примем в качестве расчетного.

5. Определим фактический коэффициент предельной кратности. Для этого сначала переведем номинальную вторичную нагрузку трансформатора тока из ВА в Омы

Определим минимально необходимый коэффициент предельной кратности для максимальной токовой защиты

Следовательно, минимально необходимый коэффициент предельной кратности должен быть больше либо равен 20. Фактический коэффицент предельной кратности при ТТ с Кном= 10 согласно расчету составляет

Кпк.факт = 14,64 2 перв = 15 / 5 2 = 0,6 Ом

Проверка на предел измерения

Автор статьи, инженер-проектировщик систем релейной защиты станций и подстанций

Источник



Вольт-амперная характеристика измерительных трансформаторов тока

ВАХ ТТ снимается для: *Для выявления витковых замыканий.

*Для определения погрешности трансформаторов тока.

ВАХ ТТ представляет собой зависимость напряжения одной из вторичных обмоток от намагничивающего тока со стороны этой же или другой обмотки при ХХ на первичной обмотке ТТ.( Характеристика намагничивания представляет собой зависимость магнитной индукции в магнитопроводе ТТ от напряженности магнитного поля).

Снятие ВАХ производится в пределах от нуля до несколких кратностей тока начала насыщения магнитопровода ТТ, при этом напряжение на вторичной обмотке не должно превышать 1800В во избежание повреждений её изоляции. Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных ТТ, однотипных с проверяемым, чаще всего с характеристиками ТТ других фаз того же присоединения.

Осн. Задача построения ВАХ – определение передаточной хар-ки ТТ, которая позволяет вычислить максимально допустимую нагрузку, подключаемую к вторичной обмотке ТТ. При насыщении магнитопровода ТТ происходит значительное изменение формы сигнала, что может привести к большим погрешностям коэффициента передачи, при этом, чем выше ток, тем больше погрешность. Поэтому при расчете уставок устройств РЗиА, подключаемых к ТТ, необходимо знать, когда ТТ работает на линейном участке ВАХ, а когда – на участке, отклонение которого от линейного превышает 10% в момент наступления насыщения магнитопровода. На последнем участке ВАХ работа ТТ не рекомендуется. Максимальная нагрузка, подключаемая к вторичной обмотке ТТ, рассчитывается исходя из того, что ТТ должен работать на линейном участке ВАХ.

При снятии ВАХ м.б. выявлено наличие КЗ витков – по резкому снижению ВАХ и изменению её крутизны.

Источник



Прямой метод проверки

Прямая проверка — наиболее проверенный способ, также называемый проверкой схемы под нагрузкой.

Для проведения следует использовать штатную цепь включения трансформатора в цепи первичного и вторичного оборудования или же, собрать новую цепь для проверки, при которой ток величиной от 20 до 100 % от номинальной величины проходит по первичной обмотке трансформатора и замеряется во вторичной.

Численное значение замеренного первичного тока нужно разделить на численное значение замеренного тока вторичной обмотки. Полученное значение и будет коэффициентом трансформации, которое следует сравнить с паспортным значением, что позволит судить об исправности трансформатора.

Трансформатор тока может содержать не одну, а несколько вторичных обмоток. До начала испытаний все обмотки должны быть надежно подключены к нагрузке или же закорочены. В противном случае, в разомкнутой вторичной обмотке, при условии появлении тока в первичной обмотке, возникнет напряжение в несколько КВ, опасное для жизни человека и могущее привести к повреждению оборудования.

Магнитопроводы большинства высоковольтных трансформаторов тока нуждаются в заземлении. Для этого в их конструкции предусмотрена специальная клемма, которая маркируется буквой “З”.

На практике очень часто возникают какие-либо ограничения по проверке трансформаторов под нагрузкой, обусловленные особенностями эксплуатации и безопасности испытаний. В связи с этим часто используются иные способы проверки.

Подключение трансформатора тока

Подключение трансформатора тока в цепь может осуществляться сразу несколькими способами:

Схема 1

Итак, данная система состоит сразу из трех трансформаторов тока, которые обобщены и закреплены в одну звезду. Эту схему принято использовать в качестве цепной защиты от короткого замыкания (будь то многофазное или однофазное замыкание). В том случае, если по цепи проходит ток ниже установленного уровня реле (ka 1-ka 3), то режим работы будет считаться нормальным и цепная защита короткого замыкания не сработает.

Схема №1

Стоит сказать, что ток, протекающий в цепи от ka 0-реле, принято воспринимать в виде геометрической суммы тока (сумма всех 3-х его фаз) Если увеличить в какой-либо фазе ток, то защитная цепь короткого замыкания включится в работу (реле (ka 1-ka 3)).
Для отключения трансформатора в этой цепи и схеме необходимо по-просту приземлить ток.

Схема 2

Вторая схема подключения трансформатора тока в цепь имеет схожие черты с первой. Однако, есть существенные отличия, о которых нельзя не сказать

Итак, это структура, включающая несколько трансформаторов тока, как правило, используется в целях безопасности цепи от межфазного замыкания (важное замечание — электрическая цепь имеет нейтральную заземленность)

Схема №2

Данная система начнет работать в случае прохождения тока через реле (опять же ka 1-ka 3) и наличия не самых мощных элементов (потребителя и источника).

Схема 3

Пришло время поговорить и о схеме под номером три, не имеющей серьезных отличий от предыдущих. Она представляет из себя некое соединение в форме треугольника, где нормальный режим работы осуществляется путем проникновения тока в реле.

Схема №3

Как правило, эта структура применяется в электрических установках для проведения релейных ( релейных — означает дифференциальных, которые отличаются своей селективностью и быстротой действия).

Схема 4

И, наконец, последний — четвертый вид схемы.

Схема №4

Данная структура считается достаточно практичной и универсальной. Это связано с тем, что процесс подключения трансформатора тока в таком виде не только позволяет защитить электрическую цепь от однофазных/межфазных замыканий, но и способна повысить величину тока в необходимых реле.

Отключение также происходит путем заземления.

Принцип работы трансформатора тока

Пожалуй каждый, кто когда-нибудь работал с аналоговой электроникой, сталкивался наводками от сети 220В. Казалось бы, если от этих наводок так сложно избавиться, то может быть и определить включение нагрузки должно быть очень легко? Однако всё оказалось не совсем так просто.

Действительно, простейший измерительный трансформатор тока можно сделать из мотка обычного двухжильного силового кабеля – по одной из жил запустить измеряемый ток, а с другой снимать полезный сигнал. Попробуем прикинуть (хотя бы по порядку величины), какое напряжение образуется на концах “сигнальной” жилы, если через “силовую” пропустить ток к целевой нагрузке? Может этого будет уже достаточно для решения поставленной задачи?

Моток кабеля в такой конфигурации по сути представляет собой трансформатор с воздушным сердечником. Ток, проходящий через витки силовой жилы, формирует переменное магнитное поле. Это поле создаёт электродвижущую силу ЭДС индукции в каждом витке сигнальной жилы. Величина ЭДС пропорциональна скорости изменения магнитного потока проходящего через окружённую витком поверхность:

Если предположить, что витки в мотке кабеля уложены достаточно плотно, а ток в измерительной жиле равен нулю, то магнитный поток через все витки будет одинаковым, и его можно будет посчитать как произведение индуктивности одного витка , числа витков и тока в силовой жиле . ЭДС во всех измерительных витках будет одинакова и суммарное напряжение на концах сигнальной жилы будет равно произведению числа витков на ЭДС в одном витке:

В бытовой сети переменного тока , где – частота, равная 50 Гц, а – амплитудное значение силы тока. Значение можно определить исходя из мощности нагрузки и действующего значения напряжения , равного 230 В. В итоге для производной тока по времени получаем такую формулу:

Например, для нагрузки мощностью 1 кВт, подключённой к обычной бытовой сети с напряжением 230 В, вычисленная по этой формуле амплитуда производной тока по времени получится чуть меньше 2000 ампер в секунду.

Индуктивность одного витка посчитаем исходя из радиуса нашего мотка и радиуса проволоки, из которой сделана жила кабеля :

Здесь – магнитная постоянная. Для мотка кабеля диаметром 10 см, имеющего жилы диаметром 2 мм, индуктивность витка получается около 0.25 мкГн. Если такой моток сделать из кабеля длиной 10 метров, то получится около 30 витков. В итоге для нашей нагрузки в 1 кВт напряжение на разомкнутой сигнальной жиле получится таким:

Значение получается вполне детектируемое, но что произойдёт в момент включения или выключения нагрузки, когда ток может изменяться в десятки или даже сотни раз быстрее, чем при нормальной работе? В этом случае вместо 450 мВ на концах сигнальной жилы может быть скачок напряжения в несколько десятков или даже сотню вольт, который вполне может повредить вход микроконтроллера.

Чтобы решить проблему с зависимостью ЭДС индукции от частоты сигнала, в трансформаторах тока используется совсем другой режим работы – вместо того, чтобы разомкнуть вторичную обмотку и измерять на ней напряжение, она замыкается накоротко и измеряется проходящий через неё ток.

Как только в сигнальной жиле появляется ток, он создаёт своё собственное магнитное поле, направленное противоположно исходному. В идеальном случае ток в сигнальной жиле мгновенно вырастет настолько, что полностью компенсирует магнитный поток силовой жилы. Для рассмотренного выше случая с одинаковым числом витков силы тока в двух жилах окажутся равны, а ЭДС индукции в сигнальной жиле будет стремиться к нулю. При разном числе витков отношение токов в силовой и сигнальной обмотках будет определяться отношением числа витков: , а суммарный магнитный поток и ЭДС индукции также будут стремиться к нулю.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий