Виброграмма с масляного выключателя

Введение

1.1. Настоящее Руководство по капитальному ремонту
масляного выключателя ВМГ-10-630-20 и ВМГ-10-1000-201
предусматривает применение персоналом энергетических и других
специализированных предприятий наиболее рациональных форм организации ремонтных
работ и передовых технологических приемов их выполнения.

________________

1 В дальнейшем для
краткости – Руководство.

1.2. В Руководстве приведены:

• технические требования к объему и качеству ремонтных работ
и к методам их выполнения (независимо от организационно-технического уровня
ремонтных подразделений);

• методы контроля при ремонте узлов и деталей оборудования и
правила приемки оборудования в ремонт и из ремонта;

• критерии оценки качества выполнения ремонтных работ.

1.3. Руководство составлено на основе обобщения
передового опыта работы ремонтных предприятий энергосистем, а также технической
документации завода-изготовителя.

1.4. Руководство предусматривает модернизацию
бакелитовой трубки проходного изолятора выключателей, выпущенных до 1976 г.

1.5. Техническая характеристика масляных выключателей
ВМГ-10-630-20, ВМГ-10-1000-20:

Напряжение, кВ:

Номинальное

10

Наибольшее рабочее

12

Номинальный ток, А

630,
1000

Номинальный ток отключения, кА

20

Предельный сквозной ток, кА:

эффективное значение периодической
составляющей

20

амплитудное значение

52

Ток термической устойчивости для
промежутка времени 4 с, кА

20

Ток включения, кА:

эффективное значение периодической
составляющей

20

амплитудное значение

52

Собственное время отключения
выключателя
с приводом ПЭ-II/ПП-67, с

Не более 0,10 – 0,12

Структура условного обозначения выключателя ВМП(Э)-10-Х/Х У2

  • ВМП – выключатель подвесной маломасляный.
  • Э – электромагнитный привод ПЭ-11.
  • 10 – номинальное напряжение, кВ.
  • Х – номинальный ток отключения (20; 31,5) кА.
  • Х — номинальный ток выключателя (630; 1000; 1600), А.
  • У3 – климатическое исполнение и категория размещения.

В процессе эксплуатации выключателя выявлено, что направляющие стержни, по которым скользит капроновая направляющая колодка, могут проворачиваться вокруг своей оси. Стержни имеют металлические упоры для ограничения хода токосъемных роликов. В нормальном положении упоры проходят в прорези капроновой колодки. При проворачивании направляющих стержней упоры смещаются в сторону относительно прорезей и в момент включения или отключения выключателя капроновая колодка ударяется об упоры и ломается. Для устранения этого дефекта перед вводом выключателя в работу устанавливают стопорные винты, закрепляющие положение направляющих стержней.

Находящиеся в эксплуатации морально и физически устаревшие выключатели создают много проблем.

По данным РАО ЕЭС 15% всех выключателей высокого напряжения не соответствуют условиям эксплуатации; износ подстанционного оборудования превышает 50%. Более трети воздушных выключателей 330-750 кВ, составляющих основу коммутационного оборудования межсистемных электросетей, имеет срок службы более 20-ти и даже 30-ти лет. Аналогичная ситуация с коммутационным оборудованием на напряжение 110-220 кВ.

Устаревшие выключатели и системы их обеспечения требуют больших эксплуатационных расходов.

На мировом рынке до 2010 г. не просматривается альтернативы элегазовым и вакуумным выключателям. Поэтому продолжаются работы по их совершенствованию.

Применяется комбинация автопневматического способа гашения и, получившего в настоящие годы широкое распространение, способа автогенерации давления в элегазовых выключателях. Это позволяет уменьшить энергоемкость привода и делает возможным применение экономичного и надежного пружинного привода для элегазовых выключателей напряжением 245 кВ и выше.

Повышение эффективности гашения дуги дает возможность увеличить напряжение на один разрыв выключателя до 360-550 кВ.

Проводятся работы по дальнейшему совершенствованию контактных систем ВДК, поиску оптимального распределения магнитного поля для эффективного гашения вакуумной дуги и уменьшения диаметра камер. Продолжаются работы по созданию ВДК на напряжение более 35 кВ (110 кВ и выше) для вакуумных выключателей высокого напряжения.

Вакуумная аппаратура начинает использоваться на низком напряжении (1140 В и ниже), причем не только в виде контакторов, но и выключателей, аппаратов управления.

Проводятся работы по замене элегаза на смеси его с другими газами, а также использованию других газов.

Уровень разработок элегазовой и вакуумной аппаратуры в основном удовлетворяет требованиям потребителя.

На сегодня объем подачи на российском рынке зарубежной элегазовой аппаратуры значительно превосходит объем продаж отечественных аппаратов. Российским производителям все труднее конкурировать с зарубежными из-за технологической отсталости и отсутствия средств на техническое переоборудование.

3181

Закладки

Последние публикации

Обзор рубрики «Быть в курсе»

16 апреля в 17:39

77

В НИУ «МЭИ» впервые в России пройдет международный конкурс инноваций QIA 2021

16 апреля в 16:29

33

От идеи до стартапа: Технопарк «Электрополис» демонстрирует молодёжи верный путь для самореализации и развития

16 апреля в 12:06

47

IPPON и «Офисный мир КМ»: конференция в Ростове-на-Дону

15 апреля в 18:06

42

Малые ГЭС в России

15 апреля в 17:52

55

Schneider Electric представляет суперкомпактный ИБП Galaxy VL

15 апреля в 16:29

52

Смеситель для раковины: оригинальные модели для модной ванной

14 апреля в 07:04

45

Ректор НИУ «МЭИ» Николай Рогалев принял участие в заседании итоговой коллегии Минэнерго России

13 апреля в 12:27

45

Дизайн мечты своими руками: особенности выбора модульной мебели для кухни

13 апреля в 08:04

51

НИУ «МЭИ» напечатает самолеты: команда молодых ученых НИУ «МЭИ» разрабатывает инновационный 3D–принтер

9 апреля в 14:21

63

Самые интересные публикации

Новая газотурбинная ТЭЦ в Касимове выдаст в энергосистему Рязанской области более 18 МВт мощности

4 июня 2012 в 11:00

173744

Выключатель элегазовый типа ВГБ-35, ВГБЭ-35, ВГБЭП-35

12 июля 2011 в 08:56

38876

Выключатели нагрузки на напряжение 6, 10 кВ

28 ноября 2011 в 10:00

27884

Элегазовые баковые выключатели типа ВЭБ-110II

21 июля 2011 в 10:00

17771

Распределительные устройства 6(10) Кв с микропроцессорными терминалами БМРЗ-100

16 августа 2012 в 16:00

16549

Признаки неисправности работы силовых трансформаторов при эксплуатации

29 февраля 2012 в 10:00

16263

Оформляем «Ведомость эксплуатационных документов»

24 мая 2017 в 10:00

14563

Правильная утилизация батареек

14 ноября 2012 в 10:00

13646

Проблемы в системе понятий. Отсутствие логики

25 декабря 2012 в 10:00

11498

Порядок переключений в электроустановках 0,4 — 10 кВ распределительных сетей

31 января 2012 в 10:00

10161

Устройство и принцип действия масляных выключателей

Все масляные выключатели конструктивно состоят из:

  1. Силовой контактной группы. В неё входит подвижный (свеча) и неподвижный контакт (розетка), между которым и возникает дуга, гасящаяся в масле;
  2. Изоляторы, обеспечивающие надёжную изоляцию токопроводящих частей от корпуса, и друг от друга;
  3. Одного или трёх баков с трансформаторным маслом;
  4. Группы блок-контактов, выполняющих контролирующую и управляющую роль;
  5. Приводы к масляным выключателям, собраны на довольно мощной включающей катушке, называющейся соленоидом или катушкой соленоида. Отключающая катушка выполняет роль ударного механизма, сбивающего с защёлки включенное устройство выключателя. Также привод может быть ручной;
  6. Специальные отключающие пружины, размыкающие силовую часть при отключении, от которых зависит скорость расхождения контактов.

При подаче питания на катушку соленоида включения его массивный сердечник втягивается. Рычажный механизм приходит в движение и  направляет подвижные контакты к розеткам. Если механизм включения происходит вручную, то работу соленоида выполнит человек с помощью специального рычага в диэлектрических перчатках.

После вхождения свечей в розетку на 20–25 мм механизм масляного выключателя встаёт на защёлку. В ячейках, где установлены высоковольтные выключатели, должны быть изготовлены блокирующие устройства, которые не позволят механически выкатить из ячейки КРУ.

Маломасляный тип оборудования

Выключатель масляный ВМП, или другими словами маломасляный, кроме рабочей жидкости для обеспечения изоляции элементов системы друг от друга, имеет специальные элементы, изготовленные из диэлектрических материалов. В данном случае масло используется только для образования газа. Каждый элемент системы, в котором происходит разрыв цепи, имеет отдельную камеру с дугогасительным устройством. При этом используется специальный привод в системе, который обеспечивает поперечное дутье.

Из-за небольшого количества масла во время выключенного состояния контакты находятся выше уровня используемого в камере масла, что повышает надежность разрыва электроснабжения. Из-за загрязнения рабочей среды она со временем может потерять свои основные диэлектрические свойства. Также при создании подобной системы конструкторы учли то, что со временем образуются продукты разложения. Для них специально создали маслоотделители.

Конструктивные схемы и где применяются масляные выключатели (по сериям)

Различают следующие основные серии МВ:

  1. ВМП. Это выключатель масляный подвесной. В нем дугогасящие контакты располагаются внутри бака, а рабочие размещены снаружи выключателя. Применяются при больших отключаемых токах в закрытых КРУ 6-10 кВ.
  2. ВК – выключатель масляный колонковый. Применяется в КРУ выдвижного исполнения.
  3. ВГМ. Применяется для отключения больших токов. Устройства этого типа имеют по 2 пары рабочих и дугогасительных контактов. Двукратный разрыв тока позволяет обеспечить более эффективное гашение дуги.
  4. ВМУЭ – колонковый. Применяется в установках 35 кВ.
  5. ВМТ. Применяется в установках 110 и 220 кВ.

Предназначение масляного выключателя

Следует отметить, что выключатель подобного типа является высоковольтным устройством. Благодаря специфической структуре внутренних компонентов, данные переключатели можно монтировать с некоторым отклонением по вертикали. Данная особенность позволяет избежать потерю времени при установке выключателя. Еще одним преимуществом выключателя типа ВМП-10 над другими устройствами подобного предназначения является тот факт, что ВМП-10 можно использовать при величине тока, как в 20 кА , так и в 31.5 кА. Следует сказать, что практически все выключатели такого типа достаточно универсальны и отличаются исключительно длиной контактов и структурой проводов, выводящих ток.

ВМП — 10 это малообъёмные масляные выключатели, применяются нa нaпряжение 10 kB двух размерoв:

  • для ячеек сбoрных кaмер oдностoроннегo обслуживaния и наборных ячеек 3РУ – ВМП – 10, ВМП – 10У;
  • для комплектных распределительных высоковольтных устройств – BМП – 10 K, ВМП – 10 КУ с номинальными токами 600, 1000 и 1500 A и током отключения 20 kA

Гашение дуги в вакуумных выключателях

Рисунок 6

Электрическая прочность вакуумного промежутка во много раз боль­ше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах. Ра­бочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и застав­ляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезя­ми на три сектора, по которым движется дуга. Материал контактов по­добран так, чтобы уменьшить количество испаряющегося металла. Вслед­ствие глубокого вакуума происходит быстрая диффузия заряженных частиц в окружающее про­странство и при первом переходе тока через нуль дуга гаснет. Подвод тока к контактам осуществляется с помощью медных стержней. Подвижный контакт крепится к верхнему фланцу с помощью сильфона из нержавеющей стали. Сильфон служит для обеспечения герметичности вакуумной камеры. Металлические экраны служат для выравнивания электрического поля и для защиты керамического корпуса от попадания паров металла, образующихся при гашении дуги.

Вакуумные выключатели применяются, как правило, на напряжении от 6 до 110 кВ, реже на напряжении 220-500 кВ.

Среди достоинств ВВ следует выделить:

— простая и надежная конструкция;

— высокая коммутационная устойчивость;

— сравнительно небольшие расходы на эксплуатацию и ремонт.

Недостатки:

— возникновение коммутационных перенапряжений при отключении токов нагрузки;

— малый ресурс дугогасительной камеры при коммутации тока к.з.

— сравнительно невысокая отключающая способность (по сравнению с элегазовыми и масляными аппаратами).

В воздушных выключателях гашение дуги происходит сжатым воздухом, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами.

Воздушные выключатели применяются на напряжение от 10 до 750 кВ.

Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительные устройства.

Воздушные выключатели имеют следующиедостоинства

взрыво- и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий, малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.Недостаткамивоздушных выключателей являются необходимость компрессорной установки, сложная конструкция ряда деталей и узлов, относительно высокая стоимость, трудность установки встроенных трансформаторов тока.

Магнитное дутье, как вариант гашение дуги

Магнитное дутье применяется в электромагнитных выключателях. Щелевая дугогасящая камера из жаропрочного материала – основной элемент электромагнитных выключателей. Магнитное дутье, как правило, создается с помощью электромагнита, который включается последовательно в контур дуги. За счет него электрическая дуга в выключателе растягивается, охлаждается и гаснет.

Силовые масляные выключатели 6-10кВ

Силовой выключатель – защитно-коммутационный аппарат, предназначенный для оперативных включений и отключений отдельных цепей или электрооборудования в энергосистеме в нормальных или аварийных режимах.

Рис. 12а. Обозначение МВ на однолинейной схеме.

Маркировка масляных выключателей типа ВМГ-133:

В – выключатель;

М – маломасляный;

Г – горшковый;

133 – серия масляного выключателя;

I – номинальный ток 600А, разрывная мощность 200 тыс. кВА;

II – номинальный ток 600А, разрывная мощность 350 тыс. кВА;

III – номинальный ток 1000А, разрывная мощность 350 тыс. кВА.

Рис. 10

Выключатели типа ВМГ-133 оснащаются приводами ПРБА, ПС-10

Маркировка масляных выключателей типа ВМГ-10:

В – выключатель;

М – маломасляный;

Г – горшковый;

10 – номинальное напряжение, кВ;

630(1000) – номинальный ток, А;

20 – номинальный ток отключения, А.

Рис. 11 Выключатель масляный ВМГ-10

Выключатели типа ВМГ-10 оснащаются приводами ПП-67, ПЭ-11, выключатели типа ВМГП идут в комплекте с пружинными приводами типа ППВ-10 и устанавливаются в ячейках КСО-272 

Маркировка масляных выключателей типа ВПМ-10:

В – выключатель;

П – подвесной;

М – масляный;

10 – номинальное напряжение, кВ;

20 – номинальный ток отключения, А.

630(1000) – номинальный ток, А.

Выключатели типа ВПМ-10 оснащаются приводами ПП-67, ПЭ-11 выключатели типа ВПМП-10 идут в комплекте с пружинными приводами типа ППВ-10 

Маркировка масляных выключателей типа ВМП-10:

В – выключатель;

М – масляный;

П – подвесной;

10 – номинальное напряжение, кВ;

П – со встроенным пружинным приводом;

630(1000)(1600) – номинальный ток, А;

20(31,5) – номинальный ток отключения, А.

Выключатели типа ВМП-10 оснащаются приводами ПП-61(67), ПЭ-11 или ручным приводом типа ПРБА, выключатели типа ВМПП-10 более усовершенствованы и надежны в работе по сравнению с предыдущей серией выключателей ВМП-10П, идут в комплекте с пружинными приводами типа ППО-10 

Рис. 12 Выключатель масляный ВПМ-10 (слева) и ВМП-10 (справа)

Маркировка масляных выключатели типа ВМ (однобаковые):

В – выключатель

М – масляный

14 (16) (22) – серия

Предназначены для установки в распределительных устройствах закрытого типа.

Масляные выключатели типа ВМ-14 и ВМ-16 при однотипности конструктивного исполнения имеют следующие особенности:

– у выключателей типа ВМ-14 приводной механизм расположен над крышкой;

– у выключателей типа ВМ-16 приводной механизм находится внутри бака под крышкой.

Выключатель типа ВМ-22 отличается от выключателей типа ВМ-14(16) другой формой и конструкцией.

Выключатели типа ВМ-14(16)(22) оснащаются приводами типа КАМ и устанавливаются в ячейках типа КСО-2.

Рис. 12а Масляные выключатели типа ВМ-14(16)(слева) и ВМ-22(справа)

Маркировка выключатель масляный типа ВК-10 (колонковый):

В – выключатель масляный

К – колонковый

10 – номинальное напряжение, кВ

Выключатели типа ВК-10 оснащаются приводами типа ПП-61 

Рис. 12б Масляный выключатель (колонковый) типа ВК-10

Рис. 13 Общий вид ячеек КСО 2УМ(з)

Устройство масляного выключателя ВМП-10


Выключатель ВМП-10

а — внешний вид выключателя; 1 — стальная рама; 2 — отключающая пружина; 3 — двуплечный рычаг; 4 — вал выключателя; 5 — пружинный демпфер; 6 — болт заземления; 7 — опорный изолятор; 8 — бачок фазы; 9 — масляный демпфер; 10 — маслоуказатель; 11 — изолирующая тяга; 12 — рычаг;

б — разрез фазы выключателя; 13 — выпрямляющий механизм; 14 — маслоотделитель; 15 — канал для выхода газа; 16 — крышка; 17 — пробка маслоналивного отверстия; 18 — отверстия маслоотделителя; 19 — корпус; 20 — рычаг; 21 — контактный стержень; 22 — стеклоэпоксидный цилиндр; 23 — центральный канал камеры; 24 — боковой выхлопной канал; 25 — дугогасительная камера; 26 — нижняя крышка фазы; 27 — маслоспускная пробка; 28 — отводящая шина; 29 — неподвижный контакт; 30 — нижний фланец; 31 — буферное пространство; 32 — масляный карман; 33 — подвижный контакт; 34 — верхний вывод; 35 — подводящая шина; 36 — токосъемные ролики;

в — дугогасительная камера выключателя

Розеточный контакт выключателя ВМП — 10

1 — медный сегмент; 2 — нажимная пружина; 3 — упорное кольцо; 4 — гибкая связь; 5 — контактодержатель; 6 — металлокерамическая облицовка

Разборка выключателя

4.1. Общие указания по дефекации выключателя

4.1.1. Осмотреть выключатель, убедиться в отсутствии течи масла. При наличии течи установить причину.

4.1.2. Проверить правильность установки каркаса выключателя и горизонтальность положения его верхнего основания.

4.1.3. Осмотреть крепление каркаса к фундаменту (анкерные болты должны иметь контргайки). Рама должна быть надежно заземлена стальной полосой сечением не менее 25 ´ 4 мм.

4.1.4. Проверить состояние лебедки и троса.

4.1.5. Убедиться в целости разрывного винта предохранительного клапана.

4.1.6. Провести несколько пробных включений и отключений выключателя; определить предварительный объем ремонта.

4.2.1. Отсоединить шины.

4.2.2. Вывинтить стопорные винты 2 (рис. ), отвинтить гайки 1 и колпак с наконечником 3.

4.2.3. Вывинтить стопорный винт II из гайки 10, снять прокладку (латунную шайбу) 4, центрирующую шайбу 5 и прокладку 6.

4.2.6. Установить кожух 7, навинтить гайки.

4.2.7. Установить резиновую прокладку 6, центрирующую шайбу 5, прокладку (латунную шайбу) 4, навинтить гайку 10, ввинтить стопорный винт 11.

4.2.8. Навинтить колпак с наконечником 3, гайки 1 и ввинтить стопорные винты 2.

4.3. Общая пооперационная разборка выключателя

4.3.1. Слить масло из баков выключателя в предварительно подготовленную емкость. Проверить работу маслоуказателей.

4.3.2. Отключить устройство подогрева масла в баках.

4.3.3. Надеть трос на ролики 3 бака (рис. ), слегка натянуть. Отвинтить гайки с болтов, крепящих бак, снять шайбы, опустить бак 1 до полного ослабления троса, снять трос с роликов бака. Аналогично опускаются баки двух других фаз.

4.3.4. Вывернуть болты, крепящие экран 1 (рис. ), опустить экран до упора в траверсу.

4.3.5. Вывернуть болты крепления корпуса 2 к держателю 3, опустить корпус с камерой.

4.3.6. Поднять экран и надеть на нижнюю часть бакелитовой втулки ввода. Вынуть корпус и камеру, затем снять экран.

4.3.7. Отключить внешние и внутренние концы, подключенные к трансформатору тока 2 (см. рис. ). Предварительно проверить наличие маркировки. При отсутствии — нанести.

4.3.8. Отвернуть гайки и снять трансформаторы тока.

Примечание. Снимать трансформаторы тока только при необходимости их замены или сушки.

4.3.9. Отвинтить гайки с болтов ввода, снять ввод и прокладку (демонтаж ввода производить только при необходимости).

Сборка и предварительное регулирование выключателя

7.1. Собрать дугогасительную камеру, соблюдая очередность
пластин, указанную на рис. 3.

7.2. Смазать выступающую часть картонной манжеты тонким
слоем смазки ЦИАТИМ-221. Вставить камеру в полюс через нижний разъем бака.

7.3. Собрать розеточный контакт.

7.4. Измерять высоту розеточного контакта А (см. рис.
4).

7.5. Проверить усилие вытягивания стержня 2 (рис. 8) из разеточного контакта с помощью
приспособления П1. Вытягивающее усилие должно быть в пределах 90 – 110
Н.

7.6. Измерить высоту Б опорного бакелитового цилиндра
3 (см. рис. 2).

7.7. Определить расстояние от нижней поверхности дугогасительной
камеры до верха розеточного контакта. Оно должно быть равным БА
= 2 + 5 мм. Регулировать высотой бакелитового цилиндра.

7.8. Установить бакелитовый цилиндр 5 в бак полюса с
расстоянием между их торцами 3 ± 1 мм. Регулировать картонными шайбами, устанавливая
их на торец бакелитового цилиндра.

7.9. Закрепить нижнюю крышку 1 болтами.

7.10. Собрать проходной изолятор, установить на полюс,
предварительно закрепив болтами.

7.11. Установить контактный стержень.

7.12. Проверить отсутствие заеданий и чрезмерного затирания
контактного стержня в цилиндре. Для этого контактный стержень опускают вниз с
высоты 300 мм. Под действием собственной массы он должен войти в розеточный
контакт на 40 мм. Регулировать затягиванием болтов.

7.13. Довести контактный стержень до касания с ламелями
розеточного контакта. Нанести отметку А (см. рис. 6) на уровне торца проходного цилиндра.

7.14. Нанести отметку Б на расстоянии 45 мм выше
отметки А.

7.15. Опустить контактный стержень так, чтобы отметка Б
била на уровне торца проходного изолятора.

7.16. Закрепить гибкую связь 4 на контактной колодке 2.

7.17. Установить свинчиванием или навинчиванием колодки
видимый зазор между верхними торцами болтов изолятора и нижней поверхностью
колодки, равный 25 – 30 мм. Закрепить гайку.

7.18. Измерить полное сопротивление токопровода. Для
выключателей на 630 А оно должно быть не более 78 мкОм, на 1000 А – не более 72
мкОм.

7.19. измерять вытягивающее усилие контактного стержня из
розеточного контакта. С учетом массы стержня и гибкой связи оно должно быть не
более 200 Н.

7.20. Включить вручную выключатель, добиться совпадения
отверстий серьги 3 (см. рис. 1) и
наконечника 5 (см. рис. 6). Зазор
между серьгой и наконечником устранять прокладками.

7.21. Установить зазор между роликом рычага 5 (см.
рис. 1) и болт-упором 6 в пределах
0,5 – 1,5 мм.

7.22. Измерить уровень масла в масляном буфере. Уровень
масла от дна стакана 5 (см. рис. 7)
должен составить 45 мм. При необходимости долить масло.

7.23. Собрать масляный буфер. Опробовать вручную на плавкое,
без заеданий, перемещение штока 1, проверять ход поршня (20 ± 1 мм).

Достоинства системы

Система гашения дуги данного типа имеет ряд особенностей, из-за которых она используется во многих цепях электроснабжения. К достоинствам системы относится следующее:

Высокая эффективность прерывания цепи, что позволяет использовать подобное оборудование в сетях высокого напряжения.
Простота конструкции делает ее надежной и ремонтопригодной

Ремонт масляных выключателей должен проводиться исключительно профессионалами, так как подобное оборудование отвечает за выполнение важной команды от автоматической системы управления или оператора. Также это качество обуславливает относительно небольшую стоимость этого типа оборудования.

Условия для эксплуатации

  • для исполнения У3 при температуре от -25 до +40 °C и oтнoсит. влажнoсти вoздуха 80% при температуре 20 °C;
  • для исполнения Т3 при температуре от -10 до +45 град.С и oтнoсит. влажнoсти вoздуха 80% при температуре 27 °C.
  • в воздухе не должно содержаться газов и паров в концентрациях, разрушающих изоляцию и металл; недопустимо использование во взрыво- пожароопасных местах.

Эксплуатируются при температурах от -40 до +40 °C. Выключатель соединяется с привoдами ПЭ — 11, ППМ – 10, ПП – 67. Ресурсы работы: 1500 операций вкл/выкл; 6 отключений при коротком замыкании. Возможна установка в шкафы комплектных распределительных устройств выкатного типа.

Трёхполюсные выключатели высокого напряжения ВМПЭ — 10 применяются для связывания электрических цепей при обычных и аварийных режимах в сетях З-х фазнoго перемен. тoка с частoтoй 50 и 60 Hz и напряж.10 kB.

Особенности капитального ремонта

Капитальный ремонт масляного выключателя может включать в себя следующие работы:

  1. Отключение выключателя, разборка, отключение шин.
  2. Слив масла из горшков.
  3. Разборка, чистка, смазка, ремонт, настройка привода.
  4. Чистка, ремонт, испытания, замена изоляторов.
  5. Зачистка контактных токопроводящих поверхностей.
  6. Испытание.
  7. Измерение сопротивления изоляции полюсов.
  8. Испытание изоляторов.
  9. Измерение переходных сопротивлений шин.
  10. Регулировка включения.
  11. Смазка губок для более мягкого подключения выключателя к шинам в ячейке.
  12. Сборка выключателя после ремонта, доливка масла.
  13. Удаление пыли, грязи, масла с шин и горшков.
  14. Затяжка ослабленных болтовых соединений шин.
  15. Уборка рабочего места после окончания всех работ.

Капитальный ремонт выполняется строго специально обученным персоналом, имеющим все необходимые допуски и разрешения для работы в установках и подстанциях с напряжением 6 и выше кВ.

Работы проводятся под наблюдением ответственного лица с группой электробезопасности не ниже 5. Посторонние люди не должны иметь доступа к месту проведения работ, а само рабочее место должно быть огорожено, должны быть вывешены предупреждающие и запрещающие плакаты.

Капитальный ремонт и испытания масляных выключателей проводится, как правило, раз в 6 лет, при интенсивной эксплуатации значительно чаще.

После каждого внештатного отключения устройства перед его последующим включением проводятся высоковольтные испытания.

Конструктивные особенности

Каждая модификация низковольтного и высоковольтного вакуумного выключателя различается по своей компоновочной схеме. Это связано с работой при разном номинале значения тока и напряжения. Производители тоже не остаются в стороне. Каждый реализует свои инновационные идеи в железе, что сказывается на комплектности аппарата дополнительными элементами и компоновке. Мы же не будем разбираться в , а посмотрим на конструкцию аппарата в целом и разберемся, как он устроен и работает.

Выключатель состоит из общего корпуса с приводом коммутации, на котором закреплены 3 полюса силовых цепей. Внутри каждого установлена герметичная вакуумная камера, состоящая из контактной группы и специальных экранов, защищающих внутренние изолирующие поверхности от металлического налета, вследствие эрозии контактов.

Контактная система включает 2 элемента: неподвижный контакт, жестко закрепленный к нижнему фланцу, и подвижный, соединенный с верхним фланцем так, что герметичность вакуумной дугогасительной камеры не нарушается.

Конструкция вакуумного выключателя включает два элемента: подвижный и неподвижный контакты. Устройство оснащается тремя полюсами, на каждом из которых имеются пофазно установленные электромагнитные приводы. Эти приводы монтируются на одном основании.

Читать далее: Грунтовка бетоноконтакт кнауф технические характеристики

Размещенные внутри прибора фазные приводы соединяются друг с другом за счет вала, который осуществляет синхронизацию фаз и защищает от неполных фаз. Кроме того, вал предназначен для механической блокировки расположенных поблизости распределительных систем и управления индикацией расположения контактов.

В качестве примера рассмотрим особенности вакуумного выключателя от (серия BB/TEL).

Условные обозначения:

  1. Вакуумная камера с функцией дугогашения.
  2. Основание.
  3. Крышка.
  4. Вал синхронизации.
  5. Дополнительные контакты.
  6. Блокировочная тяга.
  7. Привод.
  8. Узел блокировочный торцевой.

На рисунке видно, что вакуумный выключатель нагрузки включает в себя три полюса, которые имеют пофазно встроенные приводы электромагнитного типа. Приводы установлены на общем основании. Все приводы соединяются друг с другом при помощи вала.

Особенности одного из полюсов с номинальным током 2 тысячи ампер показаны на рисунке ниже.

  1. Вывод в верхней части.
  2. Дугогасящая камера, вмонтированная в полые изоляторы. Подвижные контакты за счет изоляционных тяг скреплены жестким соединением с приводами.
  3. Дополнительные контакты.
  4. Кулак.
  5. Блокировочная тяга.
  6. Вал синхронизации.
  7. Электромагнитный вал, оснащенный защелкой на магните.
  8. Пружина для прижатия контактов.
  9. Пружина отключения контактов.
  10. Приводной якорь.
  11. Кольцевой магнит.
  12. Приводная катушка.
  13. Плоский привод.
  14. Тяговый изолятор.
  15. Опорное изолирующее устройство.
  16. Нижний вывод.

Магнитный привод может располагаться в одном из двух положений: «включено» или «выключено». Закрепление якоря в указанных положениях осуществляется без использования механических щеколд. Фиксация возможна благодаря упругой пружине в положении «выключено» и кольцевому магниту в положении «включено». Подключение и отключение производится за счет передачи управляющих импульсов разнополярных напряжений на обмоточную катушку привода.

Организация работ по ремонту выключателя

2.1. Общие положения

2.1.1. Состав бригады (звена) для ремонта выключателя устанавливается в зависимости от намеченного объема работ (продолжительность выполнения ремонтных работ определяется сетевым графиком выполнения ремонта).

2.1.2. Сроки выполнения ремонтных работ должны определяться с учетом следующего:

а) состав бригады должен соответствовать технологической схеме ремонта. Изменение состава бригады до окончания ремонта не допускается;

в) для обеспечения выполнения ремонтных работ в установленные сроки рекомендуется выдача нормированных планов-заданий, применение агрегатно-узлового способа ремонта в использование обменного фонда деталей;

г) режим работы ремонтного персонала должен быть подчинен максимальному сокращению продолжительности ремонтных работ.

2.1.3. Руководство предусматривает состав ремонтной бригады из 4 чел.: электрослесари 5-го разряда — 1 чел., 3-го разряда — 2 чел., 2-го разряда — 1 чел.

2.1.4. Трудозатраты на капитальный ремонт выключателя определены на основании «Норм времени на капитальный, текущий ремонты и эксплуатационное обслуживание оборудования подстанций 35 — 500 кВ и распределительных сетей 0,4 — 20 кВ», утвержденных Минэнерго СССР в 1971 г.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий