Векторная диаграмма при несимметричной нагрузке с нейтральным проводом

Несимметричная нагрузка при соединении приемников звездой

Нагрузка трехфазной электрической сети будет считаться несимметричной, если хотя бы одно из фазных сопротивлений не равно другим. Проще говоря, сопротивления фаз не равны, например: ra = rb = rc, xa = xb ≠ xc. В общем случае  считают, что несимметричная нагрузка возникает при отключении одной из фаз.

Возникает не симметрия чаще всего при подключении к трехфазной сети однофазных электроприемников. Они могут иметь различные мощности, режимы работы, различное территориальное расположение, что тоже влияет на величину фазной нагрузки.

В случае, когда необходимо подключить однофазные потребители электрической энергии, для более равномерной загрузки их делят на три примерно одинаковые по мощности группы.

Один вывод однофазных потребителей подключают к одной из трех фаз, а второй вывод подключают к нейтральному проводу. Так как все электроприемники рассчитываются на одно напряжение, то в пределах каждой фазы они соединяются параллельно.

Главной особенностью электрической сети несимметричной нагрузкой является то, что она должна в обязательном порядке иметь нейтральный провод. Это объяснимо тем, что при его отсутствии величины фазных напряжений будут в значительной степени зависеть от величины не симметрии сети, то есть от величин и характера сопротивления каждой из фаз. Поскольку сопротивления фаз могут варьироваться довольно в широких пределах в зависимости от количества подключенных электроприемников, также широко будет варьироваться и напряжения на потребителях электрической энергии, а это недопустимо.

Для иллюстрации выше сказанного ниже приведена векторная диаграмма для трехфазной несимметричной цепи при наличии нейтрального провода:

Ниже приведена приведена векторная диаграмма для этой же цепи, но при отсутствии нулевого рабочего (нейтрального) провода:

Также можно посмотреть видео, где объясняется, что может произойти в электрической цепи при обрыве нулевого провода:

Обрыв нуля в цепи переменного тока.

Необходимость нулевого провода станет еще более очевидной, если представить, что вам необходимо подключить однофазного потребителя к одной из фаз, при этом остальные две подключать нельзя, так как приемник рассчитан на фазное напряжение 220 В, а не на линейное 380В, как в таком случае получить замкнутый контур для протекания электрического тока? Только использовать нулевой рабочий проводник.

Для повышения надежности соединения электроприемников в цепь нулевого рабочего проводника не устанавливают коммутационную аппаратуру (автоматические выключатели, предохранители или разъединители).

Фазные токи, углы сдвига, а также фазные мощности при несимметричной нагрузке будут различными. Для вычисления их фазных значений можно применить формулу (5), а вот для вычисления трехфазной мощности формула (6) уже не подходит. Для определения мощностей необходимо пользоваться выражением:

Если существует необходимость определения тока нейтрального провода, то необходимо решать задачу комплексным методом. Если существует векторная диаграмма, то определить ток можно по ней.

Пример

В осветительной электрической сети с напряжением в 220 В в фазе А включено 20 ламп, фазе В – 10 ламп, а в фазе С – 5 ламп. Параметры лампы Uном = 127 В, Рном = 100 Вт. Необходимо определить ток нейтрального провода и каждой лампы.

Решение

Если учесть, что лампы накаливания имеют только активное сопротивление (реактивное слишком мало и им пренебрегают), то по формуле мощности определим ток лампы, а по закону Ома ее сопротивление:

Зная число и сопротивление ламп нетрудно определить сопротивления фаз, а также фазные токи:

Для определения тока в нейтральном проводе IN решим задачу комплексным методом. Так как при сделанных ранее допущениях комплексные напряжения приемника равны комплексным ЭДС источника, получим:

Где комплексные значения фазных сопротивлений будут равны Za = 8,05 Ом, Zb = 16,1 Ом, Zс = 32,2 Ом.

Комплексные значения токов, а также действующее значение тока нейтрального провода будут иметь вид:

Как работают разные типы УЗО при обрыве нуля

Как видно из статьи, устройства защитного отключения разных типов похожи по принципу действия, но отличаются по конструкции и поэтому работа УЗО при обрыве нуля зависит от типа аппарата.

При исправной электропроводке и работе электрооборудования в штатном режиме токи в нулевой и фазной обмотках трансформатора тока одинаковы по величине и направлены встречно друг другу. В результате ток во вторичной обмотке отсутствует. Это равенство может нарушиться в следующих ситуациях:

  • Пробой изоляции на заземлённый корпус оборудования. При коротком замыкании должен отключиться автоматический выключатель, но если ток утечки незначителен, то оборудование остаётся подключённым к сети. При этом ток, протекающий через нулевой проводник, уменьшится на величину тока утечки, равновесие в обмотках нарушится и во вторичной обмотке появится ток. Это приведёт к срабатыванию защиты.
  • Прикосновение человека к токоведущим частям. Если корпус оборудования не заземлён, то при нарушении изоляции он оказывается под напряжением.

Ток утечки, протекающий при этом через тело человека, слишком мал для того, чтобы отключился автомат, но его достаточно для срабатывания УЗО.

Такая ситуация является опасной для здоровья и жизни людей и требует немедленного отключения линии. В штатном режиме УЗО обоих типов сработают одинаково и отключат питание от неисправного электроприбора.

При обрыве нуля электроприборы работать не будут и ток через прибор не идёт, но при нарушении изоляции или прикосновении к фазным проводникам через фазную катушку трансформатора появляются ток утечки, отсутствующий при этом в нулевой катушке, и ток во вторичной обмотке.

Защитные устройства будут при этом работать по-разному:

  • Электромеханическое УЗО. В этом приборе расцепитель подключается непосредственно к трансформатору и срабатывание защиты не зависит от целостности нулевого проводника.
  • Электронное УЗО. В таких устройствах сигнал из трансформатора подаётся не на расцепитель, а на усилитель, которому для питания необходимо подключение к обоим проводам — нулевому и фазному. При обрыве нуля питание в электронной схеме отсутствует и, несмотря на наличие тока во вторичной катушке, срабатывание защиты не произойдёт. Таким образом, комбинация из нарушенной изоляции, электронного УЗО и обрыва нуля является опасной для жизни людей.
Справка! Исправность УЗО любого типа необходимо каждый месяц нажатием кнопки «ТЕСТ».

Соединение в треугольник. Схема, определения

       Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
        На изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 6.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

U

л = Uф

       IA, IB, IC – линейные токи;

       Iab, Ibc, Ica– фазные токи.

       Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Рис. 6. 3

       Линейный ток равен геометрической разности соответствующих фазных токов.
    На рис. 7.4  изображена  векторная  диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Рис. 6.4

       Из векторной диаграммы видно, что

,

Iл = √3 Iф- при симметричной нагрузке.

     Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме “звезда”. Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Мощность трехфазной системы

В общем случае мощность трехфазного приемника равна сумме мощностей всех фаз:

Принимая: и учитывая сдвиг фаз токов и напряжений во времени на угол 120°, запишем:

Получили значение мощности, не зависящее от времени и постоянное на всем его протяжении. Система, в которой мощность не зависит от времени, называется уравновешенной.

Докажем справедливость данного утверждения.

, отсюда

Подставим значение тока фазы В в уравнение для мощности и после ряда перестановок получим

где первое слагаемое – это показания первого ваттметра, а второе – показания второго. В случае, если угол между напряжением и током равен 0 (активная нагрузка), будем иметь одинаковые показания двух ваттметров.

Мощность равна сумме показания приборов независимо от характера нагрузки , так как:

а) при индуктивной нагрузке

б) при емкостной нагрузке

При симметричной нагрузке справедливы соотношения:

для схемы звездой

для схемы треугольником

Мощность при симметричной нагрузке:

3.2. Четырехпроводная трехфазная цепь

Четырехпроводная трехфазная цепь широко применяется для электроснабжения промышленных предприятий, фабрик, заводов, жилых домов.

Провода, соединяющие фазы генератора и приемника, называются линейными (провода А-А, В-В, С-С). Точка О – нулевая (нейтральная) точка генератора, соответственно точка, О’ – нулевая (нейтральная) точка приемника, потребителя. Провод, соединяющий точки О – О’, называется нулевым, или нейтральным.

Напряжение между началом и концом фазы называется фазным напряжением (U

А,U B,U С). Ток, протекающий по фазе, называется фазным током (I А,I В,I С). Напряжение между двумя любыми линейными проводами называется линейным напряжением (U AB,U BC,U CA).

Ток, протекающий по линейному проводу, называют линейным (I

А,I B,I С). Как видно из схемы рис. 3.4, если потребители соединены в звезду с нулевым проводом, то фазный ток равен линейному току (I ф=I л), а напряжения отличаются в

раз (

). В данной схеме могут быть два напряжения, отличающиеся в

раз, поэтому ГОСТ установил следующие номинальные напряжения приемников переменного тока — 127, 220, 380, 660 В, соответственно применяется три системы 220/127; 380/220 и 660/380.

Линейные напряжения равны разности фазных напряжений:

Рис. 3.4. Схема четырехпроводной трехфазной цепи

Расчет трехфазной цепи, соединенной звездой

       Трехфазную цепь,   соединенную звездой, удобнее всего рассчитать методом двух узлов.
       На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

       Нейтральный провод имеет конечное сопротивление ZN .
       В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
       Это напряжение определяется по формуле (6.2).

Рис.6. 5

     (6.2)

       Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

     (6.3)

       Ток в нейтральном проводе

                 (6.4)

       Частные случаи.
    1. Симметричная нагрузка.   Сопротивления фаз нагрузки   одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
       Узловое напряжение

,

потому что трехфазная система ЭДС симметрична,     .

        Напряжения фаз нагрузки и генератора одинаковы:

     Фазные токи  одинаковы по  величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

       В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

      На изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.
       2. Нагрузка несимметричная,   RA< RB = RC, но сопротивление нейтрального провода равно нулю:  ZN = 0. Напряжение смещения нейтрали

рис. 6.6

       Фазные напряжения нагрузки и генератора одинаковы

       Фазные токи определяются по формулам

      Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.

       На  рис. 6.7  приведена  векторная  диаграмма    трехфазной    цепи,    соединенной    звездой,    с нейтральным    проводом,    имеющим     нулевое     сопротивление,    нагрузкой   которой      являются   неодинаковые   по    величине    активные  сопротивления.
                    Рис. 6.7
       3. Нагрузка несимметричная, RA< RB = RC, нейтральный провод отсутствует,

       В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:

      Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора.
    Из-за напряжения  смещения нейтрали фазные  напряжения нагрузки становятся неодинаковыми.
      Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.

       На рис. 6.8 изображена векторная диаграмма трехфазной цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, т.е. с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми.
                Рис. 6.8

Причины отсутствия фазы

Сразу стоит сказать, что фаза пропадает по одной единственной причине — нет контакта

При этом неважно — оборван кабель или разомкнут разъединитель на трансформаторной подстанции. При этом все сказано и для трёхфазной и для однофазной сети

Также не все знают, что однофазная сеть 220В является одной из фаз трёхфазной сети с линейным напряжением 380В, а между фазой и нулем в этом случае получается 220В. Давайте рассмотрим, что делать если пропала фаза на примере разных ситуаций.

Не работает освещение

Если нет света, но работают розетки, первым делом проверьте наличие напряжения в патроне на люстре. При этом проверить наличие фазы можно индикаторной отверткой, но будьте внимательны — велика вероятность сделать КЗ. О том, как пользоваться индикаторной отверткой, мы рассказали в отдельной статье.

Если там ничего нет, возможно проблема в подключении проводов к патрону, если и с этим всё в порядке — тогда, скорее всего, пропала фаза в выключателе или распределительной коробке.

Такое часто происходит, когда контакты выключателя вроде бы замыкаются, но соединения между ними нет, а также если провода были плохо зажаты в клеммнике выключателя. Для проверки выключателя нужно снять его со стены и прозвонить, замыкаются ли контакты при замыкании выключателя, заодно проверить приходит ли на него напряжение.

Если напряжения на выключателе нет — проблема в распределительной коробке или в проводке между ней и выключателем. Если пропадает фаза при включении света — у вас короткое замыкание в патроне, светильнике, либо на линии от выключателя до светильника.

Не работает розетка

В розетках также может пропасть фаза. Это легко проверить, если снять нерабочую розетку и осмотреть качество соединений с проводами. Если соединения хорошие, то нужно знать, как запитаны розетки. Всего различают две схемы соединений:

  • Шлейфом.
  • Звездой.

Шлейф — это когда каждая следующая розетка подсоединяется к предыдущей параллельно, а звезда — когда от каждой розетки идет отдельная линия к электрощиту или распределительной коробке.

Тогда в первом случае нужно проверить состояние клеммников и контактов в предыдущей по цепи рабочей розетке, а во втором случае — осмотреть распределительную коробку.

В одной комнате

Если нет фазы в одной из комнат – обратите внимание на электрощит. Если каждая комната включается отдельным автоматом – возможно выбило автомат на эту комнату, либо же он вышел из строя

В первом случае – искать проблемы в проводке комнаты, а во втором – заменить автомат.


Если все комнаты запитаны от одного автоматического выключателя, значит проблема в распределительной коробке, от которой запитана эта комната.

Нет света в многоквартирном доме

Если вы обнаружили, что проблемы с подачей электричества не только у вас, но и у всех соседей по стояку — значит произошел, обрыв одной из трёх фаз либо во вводном электрощите дома, либо в каком-то из подъездных щитов. Такое происходит при отгорании нуля и перекосе фаз, когда из-за перенапряжений нагрузка и её токи неравномерно распределяются между потребителями. В результате контакты какого-то из соединений не выдерживают и отгорают.

В этом случае нельзя самому устранять неисправность, нужно обратиться в управляющую компанию или снабжающую организацию, чтобы они прислали дежурную бригаду электриков.

Реже бывают случаи, когда пропадает две фазы. В этом случае, как и в предыдущих нужно проверить состояние клемм автоматических выключателей на вашем квартирном щите и, если в нем все контакты и клеммы автоматов внешне исправны — вызвать бригаду электриков.

Самостоятельное устранение неисправностей в подъездных электрощитах опасно тем, что вы не можете в полной мере привести отключение всех линий и вывесить запрещающие плакаты.

В частном доме

Если вы обнаружили что пропало напряжение в сети, посмотрите на вводной автомат, если он выбит – включите его. Если после включения автомата напряжение не появилось – проблема во вводе в дом. Также возможна потеря контактов на автомате. А если при включении автомата его сразу же выбивает – однозначно есть короткое замыкание либо в проводке, либо в каком-то из подключенных приборов.

Обрыв нейтрального провода при несимметричной нагрузке

В симметричном режиме IN = 0, поэтому обрыв нейтрального провода не приводит к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако, при несимметричной нагрузке IN ¹ 0, поэтому обрыв нейтрали приводит к изменению всех фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки, совпадающая до этого с точкой «N» генератора, смещается таким образом, чтобы сумма фазных токов оказалась равной нулю (рис.8.4.1). Напряжения на отдельных фазах могут существенно превысить номинальное напряжение.

Рис. 8.4.1

Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом

При обрыве провода, например, в фазе А ток этой фазы становится равным нулю, напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток

IN =IB + IC.Он равен току, который до обрыва протекал в фазе А (рис. 8.4.2).

Рис.8.4.2

Обрыв фазы при симметричной нагрузке в схеме без нулевого провода

При обрыве, например, фазы А сопротивления RA и RB оказываются соединёнными последовательно и к ним приложено линейное напряжение UBC. Напряжение на каждом из сопротивлений составляет от фазного напряжения в нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений смещается на линию ВС и при RB = RC находится точно в середине отрезка ВС (рис.8.4.3

Рис.8.4.3

Короткие замыкания

При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой фазе становится очень большим (теоретически бесконечно большим) и это приводит к аварийному отключению нагрузки защитой. В схеме без нулевого провода при замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора. Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих фазах возрастают в раз, а ток в фазе А – в 3 раза (рис. 8.4.4).

Короткие замыкания между линейными проводами и в той и в другой схеме приводят к аварийному отключению нагрузки.

Рис.8.4.4

Экспериментальная часть

Задание

Экспериментально исследовать аварийные режимы трёхфазной цепи при соединении нагрузки в звезду.

Порядок выполнения работы

· Соберите цепь цепь согласно схеме (рис.8.4.5) с сопротивлениями фаз RA=RB=RC=1кОм. Измерения токов можно производить одним – двумя амперметрами, переключая их из одной фазы в другую, либо виртуальными приборами

Рис.8.4.5

· Убедитесь, что обрыв (отключение) нейтрали не приводит к изменению фазных токов.

· Убедитесь, что в схеме с нулевым проводом происходит отключение источника защитой при коротких замыканиях как в фазах нагрузки, так и между линейными проводами.

· Убедитесь, что в схеме без нулевого провода короткое замыкание в фазе нагрузки не приводит к отключению, а при коротком замыкании между линейными проводами установка отключается.

· Проделайте измерения токов и напряжений всех величин, указанных в табл. 8.4.1 в различных режимах и по экспериментальным данным постройте векторные диаграммы для каждого случая в выбранном масштабе.

· Ответьте на контрольные вопросы.

Таблица 8.4.1

РежимUAO, BUBO, BUCO, BUON, BIA, мАIB, мАIC, мАIN, мА
RA=1 кОм RB=680 Ом RC=330 Ом Обрыв нейтрали
RA=RB=RC=1 кОм Схема с нейтралью Обрыв фазы А
RA=RB=RC=1 кОм Схема без нейтрали Обрыв фазы А
RA=RB=RC=1 кОм Схема без нейтрали К. З. фазы А

Векторные диаграммы

  1. RA=1 кОм, RB=680 Ом, RC=330 Ом. Обрыв нейтрали

2. RA= RB= RC =1 кОм, Схема с нейтралью, обрыв фазы А

3. RA= RB= RC =1 кОм, Схема без нейтрали, обрыв фазы А

4. RA= RB= RC =1 кОм, Схема без нейтрали, короткое замыкание фазы А

Вопрос:Как изменяется мощность трёхфазной нагрузки при обрыве фазы в схеме с нулевым проводом и без него? Как изменяется мощность при коротком замыкании одной фазы?

Ответ: …………

7.1. Основные определения

   Трехфазная  цепь  является совокупностью
трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой
частоты, сдвинутые относительно друг друга по фазе на
120o
, создаваемые общим источником. Участок
трехфазной системы, по которому протекает одинаковый ток, называется
фазой.

   Трехфазная цепь состоит из трехфазного
генератора, соединительных проводов и приемников или нагрузки, которые
могут быть однофазными или трехфазными.

     Трехфазный генератор представляет
собой синхронную машину. На статоре генератора размещена обмотка, состоящая
из трех частей или фаз, пространственно смещенных относительно друг
друга на 120o.
В фазах генератора индуктируется симметричная трехфазная система ЭДС,
в которой электродвижущие силы одинаковы по амплитуде и различаются
по фазе на 120o.
Запишем мгновенные значения и комплексы действующих значений ЭДС.

     Сумма электродвижущих сил симметричной
трехфазной системы в любой момент времени равна нулю.

       Соответственно        
       

     На схемах трехфазных цепей начала
фаз обозначают первыми буквами латинского алфавита (
А, В, С
), а концы – последними буквами (
X, Y, Z
). Направления ЭДС указывают от конца фазы обмотки
генератора к ее началу.
     Каждая фаза нагрузки соединяется с фазой генератора
двумя проводами: прямым и обратным. Получается несвязанная трехфазная
система, в которой имеется шесть соединительных проводов. Чтобы уменьшить
количество соединительных проводов, используют трехфазные цепи, соединенные
звездой или треугольником.

7.2. Соединение в звезду. Схема, определения

     Если концы всех фаз генератора
соединить в общий узел, а начала фаз соединить с нагрузкой, образующей
трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная
звездой. При этом три обратных провода сливаются в один, называемый
нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена
на рис. 7. 1.


Рис. 7.1

     Провода, идущие от источника к
нагрузке называют линейными проводами, провод, соединяющий нейтральные
точки источника Nи приемника N’ называют нейтральным (нулевым)
проводом.
    Напряжения  между началами фаз  или между линейными
проводами называют линейными напряжениями. Напряжения между началом
и концом фазы или между линейным и нейтральным проводами называются
фазными напряжениями.
      Токи в фазах приемника или источника называют фазными
токами, токи в линейных проводах – линейными токами. Так как линейные
провода соединены последовательно с фазами источника и приемника, линейные
токи при соединении звездой являются одновременно фазными токами.

Iл = Iф.

ZN – сопротивление нейтрального провода.

     Линейные напряжения равны геометрическим
разностям соответствующих фазных напряжений

     (7.1)

     На рис. 7.2 изображена векторная
диаграмма фазных и линейных напряжений симметричного источника.

Рис. 7.2

       Из векторной диаграммы видно,
что

       При симметричной системе
ЭДС источника линейное напряжение больше фазного
в √3 раз.

Uл = √3
Uф

Соединение нагрузки треугольником

Рассмотрим схему соединения треугольником.

Из схемы очевидно:

Для схемы соединения треугольником:

Векторная диаграмма токов

Связь между линейными и фазными токами:

В обмотках, соединенных треугольником, при строго синусоидальных э. д. с. и при отсутствии нагрузки (или при симметричной нагрузке) суммарная э. д. с. равна нулю и ток в них отсутствует. Однако если форма э. д. с. в обмотках отклоняется от синусоидальной или генератор нагружен несимметрично, то суммарная э. д. с. уже не равна нулю и по обмоткам течет ток, что крайне нежелательно.

Для симметричной трехфазной системы справедливы соотношения:

в схеме звездой

в схеме треугольником

Используя метод преобразования, всегда можно перейти от схемы соединения звездой к схеме соединения треугольником и наоборот. Преобразование будет эквивалентным, если режим работы остальной части электрической цепи не изменится, то есть токи, притекающие к узловым точкам, в той и другой схеме будут одинаковыми, а потенциалы соответствующих узлов будут равны. Эти два условия сводятся к тому, что сопротивления или проводимости между двумя узловыми точками должны быть равны.

Значения сопротивлений, согласно обозначениям на рисунке, при переходе от “звезды” к “треугольнику” и от “треугольника” к “звезде”

Пример расчета с преобразованием звезды в треугольник

Дано:

Е=9 В

R1=1 Ом

R2=2 Ом

R3=3 Ом

R4=4 Ом

R5=5 Ом

R6=6 Ом

Необходимо найти все токи I-?

Решение:

Преобразовываем имеющуюся звезду в треугольник получим

где

Немного преобразуем (перерисуем) схему в другой более понятный вид

Произведем расчет сопротивлений при параллельном соединении

Схема примет вид

Отсюда эквивалентное сопротивление:

Проверим полученный результат с помощью баланса мощности, когда Ри источника мощности равна Рп мощности потребителя:

Переходим к первоначальной схеме

Проверим узел О по 1-му закону Кирхгофа

По балансу мощности цепи

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий