Схема однокнопочного управления тиристором
На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.
Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.
Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.
Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.
Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.
Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.
Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.
Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.
Тиристорный электропривод
Для большей части механизмов с тиристорным электроприводом Тэ ( 2 — j — 5) стт, поэтому на практике чаще контур тока настраивают на МО.
Схема управления двигателем постоянного тока с тиристорным преобразователем ( а и диаграмма ЭДС ( б. |
В настоящее время наблюдается тенденция распространения тиристорного электропривода как постоянного, так и переменного тока.
На рис. 20.8 приведена структурная схема тиристорного электропривода центрифуги. Тиристорный преобразователь, нереверсивный, выполнен по трехфазной мостовой полностью управляемой схеме.
На рис. 12.9 приведена структурная схема тиристорного электропривода экскаватора ЭКГ-46 по системе ТП-Д. На экскаваторе ЭКГ-46 вместо пятимашинного преобразовательного агрегата ( Г — Д) установлен тиристорный преобразователь.
На рис. 9.2 показана блок-схема входного устройства тиристорного электропривода с экстремальным регулятором. Цепь задания комплектного реверсивного тиристорного электропривода серии ЭТЗР подключена к выходу экстремального регулятора ЭР.
Зависимости тока подпитки и параметра Оя, от коэффициента трансформации асинхронного двигателя. |
Рассмотрим расчет характеристик асинхронных двигателей в системах тиристорного электропривода, нашедших практическое применение для крановых механизмов.
Все регулируемые электроприводы производственных установок завода укомплектованы тиристорными электроприводами и системами автоматического управления. Мощность преобразователей в системах электропривода постоянного тока составляет 0 1 — 100 кВт и 20 — 2000 юВ — А в источниках питания устройств гальваники, электрофореза и других установок.
Наибольшее распространение в СССР и за рубежом получают многодвигательные тиристорные электроприводы с последовательной коррекцией и подчиненным регулированием переменных. На рис. 31 показаны унифицированные структуры электроприводов секций и периферических накатов. Возможность накопления информации и удобство подключения к ЦВМ позволяют использовать цифровые регуляторы и для контроля различного рода технологических величин. Основной структурой секционных электроприводов остается ти-ристорная автоматическая система регулирования ( АСР) скорости с подчиненным контуром тока. Появляются системы, в которых используется и дополнительная коррекция АСР скорости по натяжению вырабатываемого полотна. Контур натяжения позволяет существенно уменьшить статическую ошибку по натяжению, однако на динамической ошибке его наличие практически не сказывается. Поэтому в дальнейшем исследование динамики и оптимизация секционных электроприводов выполнялись применительно к основному, ныне существующему варианту — двухконтурной АСР скорости с подчиненным контуром тока.
Электротехническая промышленность за короткое время освоила и выпускает серийно тиристорные электроприводы для многих отраслей нашей промышленности. Для примера в табл. 9.2 приведены серии регулируемых тиристорных электроприводов для металлорежущих станков.
В качестве главного электропривода на сферошлифовальном станке использован тиристорный электропривод переменного тока с преобразователем частоты и напряжения, позволяющий регулировать скорость двигателя с постоянством мощности. Для электропривода подачи применяют тиристорный электропривод постоянного тока с двигателем и преобразователем напряжения, обеспечивающий диапазон регулирования при постоянстве момента на валу.
Установка буровая БУ 3200 / 200 ЭУК-ЗМА с тиристорным электроприводом, оснащенная комплексом механизмов АСП и устройствами обогрева, предназначена для кустового бурения скважин в условиях умеренного климата.
Функциональная схема системы управления тиристорным электроприводом буровой лебедки с реверсом поля двигателя. |
На рис. 4.6 приведена функциональная схема системы управления тиристорным электроприводом буровой лебедки с реверсом поля двигателя. Силовая часть электропривода с реверсом поля двигателя строится на основе нереверсивного ТП, унифицированного с силовыми преобразователями для других главных электроприводов, и реверсивного тиристорного возбудителя. Последний может выполняться как с раздельным, так и с совместным управлением группами вентилей. С учетом специфики работы электропривода с реверсом поля двигателя в систему управления дополнительно введены следующие компоненты.
Многокнопочный переключатель с транзисторным аналогом тиристоров
Вариант схемы, выполненный на транзисторных аналогах тиристоров и диодно-емкостных зарядных цепочках с использованием малогабаритных конденсаторов, показан на рис. 8, 9.
Рис. 8. Схема эквивалентной замены тиристора транзисторами.
В схеме предусмотрена светодиодная индикация включенного канала. В этой связи максимальный ток нагрузки каждого из каналов ограничен значением 20 мА.
Рис. 9. Схема многокнопочного переключателя с транзисторным аналогом тиристоров.
Устройства, аналогичные представленным на рис. 7 – 9, а также на рис. 10 – 12, можно использовать для систем выбора программ радио- и телеприемников.
Недостатком схемных решений (рис. 7 – 9) является то, что в момент нажатия на любую из кнопок все нагрузки оказываются хотя бы на мгновение подключенными к источнику питания.
Как проверить тиристор от отдельного источника управляющего напряжения?
Вернемся к первой схеме проверки тиристора, от источника постоянного напряжения, но несколько видоизменив ее.
Смотрим рисунок №3.
4. Урок №4 — «Тиристор в цепи переменного тока. Импульсно — фазовый метод»
5. Урок №5 — «Тиристорный регулятор в зарядном устройстве»
В этих уроках, в простой и удобной форме, излагаются основные сведения по полупроводниковым приборам: динисторам и тиристорам.
Что такое динистор и тиристор, выды тиристоров и их вольт — амперные характеристики, работа динисторов и тиристоров в цепях постоянного и переменного тока, транзисторные аналоги динистора и тиристора.
А так же: способы управления электрической мощностью переменного тока, фазовый и импульсно-фазовый методы.
Каждый теоретический материал подтверждается практическими примерами.
Приводятся действующие схемы: релаксационного генератора и фиксированной кнопки, реализованных на динисторе и его транзисторном аналоге; схема защиты от короткого замыкания в стабилизаторе напряжения и многое другое.
Особенно интересна для автолюбителей схема зарядного устройства для аккумулятора на 12 вольт на тиристорах.
Приводятся эпюры формы напряжения в рабочих точках действующих устройств управления переменным напряжением при фазовом и импульсно-фазовом методах.
Чтобы получить эти бесплатные уроки подпишитесь на рассылку, заполните форму подписки и нажмите кнопку «Подписаться».
Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор – это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием – не полностью управляемый ключ.
На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод – это контакт с внешним p-слоем, катод – с внешним n-слоем.
Освежить память о p-n переходе можно .
Принцип работы
В связи с таким рисунком можно назвать крайние области – эмиттерными, а центральный переход – коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.
К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать – режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.
Общие параметры тиристоров
Напряжение включения
Прямое напряжение
Обратное напряжение
допустимое напряжениеМаксимально допустимый прямой ток
Обратный ток
Максимальный ток управления электрода
Время задержки включения/выключения
Максимально допустимая рассеиваемая мощность
Как проверить тиристор мультиметром
Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки. Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.
Схема проверки тиристора с дополнительным источником питания и батарейкой
Если убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.
Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.
Прозвонка тиристора мультиметром
Переключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ — катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом. Электронный ключ с наибольшим сопротивлением перехода УЭ — катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется. Сопротивление катод — анод должно быть большим, на дисплее отображается 1.
Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод — катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.
При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.
Схема проверки тиристора с дополнительным источником питания
В качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается. Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом. Для других напряжений питания:
R = (0,9 — 1)Uпит/Iу.откр, где Iу.откр — ток удержания управляющим электродом (в справочнике)
Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.
Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.
Помогла вам статья?
ДаНет
Суть устройства
Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:
- закрытое — соответствующее низкой проводимости;
- открытое — неоказывающее сопротивление прохождению тока.
То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).
Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.
Принцип работы
Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.
Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.
Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.
При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.
Характеристики и параметры
Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:
- тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
- прибор переключается из одного состояния в другое при помощи напряжения;
- величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
- изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.
На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.
Тиристор в цепи переменного тока
При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.
Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».
Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.
Благодаря диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У. Положительным полупериодом синусоидальной формы сигнала устройство смещено прямо вперёд. Однако при выключенном переключателе КН1 к тиристору подводится нулевой ток затвора и прибор остается «выключенным».
В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.
YZ140EAA
Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт
Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным». Но в результате достижения достаточного положительного триггерного напряжения (возрастания тока управления) на электроде У, тиристор переключится в состояние «включено».
Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидный момент, учитывая падение тока анода ниже текущего значения.
На момент следующего отрицательного полупериода, устройство полностью «отключается» до прихода следующего положительного полупериода. Затем процесс вновь повторяется.
Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.
Управление половинной волной
Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока. Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.
На момент положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы. Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1.
Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено». Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.
ZP300A
Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости
Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.
В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.
Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.
Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью. Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.
Проверка исправности
Если принять во внимание уже написанное в этой статье, то такую проверку выполнить несложно. Как проверить симистор? Это можно сделать несколькими способами
Самый простой проверить исправность, — это способ замены. Вместо подозреваемого симистора устанавливаем заведомо исправный, и смотрим, как будет работать схема. Но обычно симисторы проверяют при помощи мультиметра или тестера, иногда без отключения от схемы. Тестером называют мультиметр старого типа, стрелочный. Кроме того, есть еще один способ проверки, при помощи тумблера, лампочки и кнопки. Рассмотрим два последних способа проверять триак более подробно.
Тиристорные светодиоды
Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.
Тиристорный светодиод
Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.
Номенклатура и корпуса
Промышленный ряд тиристоров Philips начинается с 0,8 A в SOT54 (TO92) и заканчивается 25 A в SOT78 (TO220AB).
Промышленный ряд триаков (симисторов) Philips начинается с 0,8 A в SOT223 и заканчивается 25 A в SOT78.
Самый маленький корпус триака (тиристора) для поверхностного монтажа — SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.
Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса позволяет использовать его при более высоких номинальных токах и большей мощности.
На рис. 12 показан наименьший корпус для обычного монтажа — SOT54. В этот корпус ставится кристалл, которым оснащаются SOT223.
SOT78 — самый распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).
На рис. 15 показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1500 В между прибором и теплоотводом.
Один из последних корпусов — SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типами:
- Корпус имеет те же размеры, что и корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78 без изменений в монтаже.
- Корпус допускает в обычных условиях разность потенциалов 2500 В между прибором и теплоотводом.
Тиристорные светодиоды
Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.
Тиристорный светодиод
Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.
Простой регулятор мощности на двух тиристорах
Здравствуйте, уважаемые хабровчане! Данный пост посвящен созданию устройства для регулировки мощности бытовых приборов (лампочки, паяльники, обогреватели, электроплитки). Конструкция устройства очень простая, количество элементов минимальное, его способен собрать даже начинающий. Без радиаторов мощность нагрузки до 1 кВт, с использованием радиаторов можно увеличить до 1,5 кВт. Мной устройство было собрано за один вечер. Ниже видео, демонстрирующее работу.
Подробности:
Девайс был размещен в корпусе от старого CD-ROM-а. Для передней и задней стороны корпуса необходимо вырезать пластмассовые стороны 4х14,5 см., и либо прикрутить либо приклеить к корпусу. Девайс в сборе выгладит так:
Перечень элементов, принципиальная схема и описание работы:
Нам понадобится:
- Тиристоры: КУ-202Н, М — 2 шт.
- Динисторы: КН-102А, Б — 2 шт
- Резисторы: Любые, R=220 Ом, мощностью 0,5 Вт
- Конденсаторы: 0,1 мкФ, 400 В — 2 шт.
- Любой переменный резистор сопротивлением 220 — 330 кОм (в случае с 220 кОм нижний предел регулировки будет выше чем 330 кОм)
- Провод с вилкой для подключения к сети и розетка для подключения нагрузки
- Для защиты можно добавить предохранитель
Принципиальная электрическая схема выглядит так:
Данный регулятор использует принцип фазового управления. Он основан на изменении момента включения тиристора относительно перехода сетевого напряжения через ноль. На начало полу периода тиристор закрыт, ток через него не идет. Через некоторое время (в зависимости от текущего сопротивления переменного резистора) напряжение на конденсаторе достигает уровня необходимого для открытия динистора, он открывается и в свою очередь открывает тиристор. Для второго полу периода все аналогично. График прохождения тока через нагрузку:
Подробности сборки и окончательный вид:
На момент сборки устройства в моем арсенале не было приспособлений для изготовления печатных плат, поэтому сборка делалась на куске старой платы, на которой до этого был какой то прибор. После соединения всех деталей и упаковки всего внутрь корпуса от CD-ROM-а готовое изделие внутри выглядит вот так:
Итоги:
За очень короткое время собрана полезная вещь из старых деталей. Но есть и некоторые недостатки, это то что пределы регулировки немного изменяются в зависимости от нагрузки, наличие радиопомех и некоторая нестабильность на небольшом участке регулировки.
Тестирование элемента
Существует несколько способов проверки симистора на работоспособность. Для самого простого понадобится только лишь мультиметр, а для более сложных измерений — автономный источник питания или тестовая схема.
С помощью тестера проверка происходит с использованием знаний, основанных на принципе работы симистора. Диагностика мультиметром не сможет определить все характеристики элемента, но вполне достаточной будет для первичного тестирования работоспособности.
Простую проверку можно осуществить, используя лампочку и элемент питания. Для этого одна клемма батарейки подключается на управляющие и рабочие выводы симистора, а вторая — на цоколь лампочки. Вывод элемента соединяется с центральным контактом осветителя. В этом случае переход должен быть открыт, тогда лампочка загорится.
Проверка тестером
Для проведения тестов подойдёт прибор любого типа действия, но при этом необходимо, чтобы значения выдаваемого им тока хватило для переключения элемента. Поэтому более предпочтительным будет использование аналогового прибора. Например, чтобы проверить тестером BTB12-800CW, понадобится обеспечить ток порядка 30 мА, а для BTB16-700BW этот показатель должен быть равен 15 мА.
Также понадобится обратить внимание на состояние батарейки, стоящей в тестере. В цифровом устройстве на экране не должен высвечиваться значок замены батарейки, а в аналоговом при закорачивании щупов друг на друга стрелка должна указывать на ноль. Суть измерения сводится к проверкам переходов прибора
Для этого тестер переключается в режим прозвонки сопротивлений на самый маленький диапазон. Выполнять проверку лучше всего в следующей последовательности:
Суть измерения сводится к проверкам переходов прибора. Для этого тестер переключается в режим прозвонки сопротивлений на самый маленький диапазон. Выполнять проверку лучше всего в следующей последовательности:
- Измерительные щупы подключаются к силовым выводам симистора T1 и T2. Если радиоэлемент исправен, то мультиметр должен показать бесконечно большое сопротивление.
- Меняется полярность приложенного сигнала на рабочих выводах. Для этого измерительные щупы переставляются. Сопротивление также должно быть большим.
- Кратковременно соединяется рабочий вывод T1 или T2 и управляющий электрод G.
- Снова измеряется сопротивление перехода между T1 и T2. В одну сторону оно должно измениться. Так, для BTB12-800CW оно составит около 50 Ом.
- Изменяется полярность. При этом импеданс перехода должен быть большим, что соответствует отсутствию обратного пробоя.
Использование схемы
Существует множество различных схем, использующихся радиолюбителями для тестирования работоспособности триака. Но лучше применять универсальную схему, способную проверить любой элемент тиристорного семейства, например, BTB16-700BW. Она не нуждается в настройке и работает сразу после сборки. Для того чтобы её собрать, понадобятся следующие элементы:
- Резисторы R1—R4 470 Ом, R4—R5 1 кОм.
- Конденсаторы С1 и С2 — 100 мкФ х 6,5 В.
- Диоды VD1, VD2, VD5 и VD6 — 2N4148; VD2 и VD3 — АЛ307.
В качестве источника питания можно использовать батарейку типа КРОНА.
Суть измерений сводится к следующим действиям: переключатель S3 переставляется в верхнее положение, в результате на устройство подаётся питание. После этого кратковременным нажатием на кнопку S2 подаётся ток на управляющий вывод элемента.
Если BTB16-700BW рабочий, то его переход должен открыться, о чём просигнализирует светодиод VD3. Затем переключатель устанавливается в среднее положение, светодиод должен погаснуть. На следующем этапе S3 переключается в нижнее положение, и нажимается кнопка S2. Результатом этих действий будет загорание светодиода VD4. Такое поведение симистора позволит со стопроцентной уверенностью заявить о его работоспособности.
Проверить симистор не так уж и сложно, особенно если использовать тестер, хотя лучше собрать специальную схему. Но при этом стоит отметить, что из-за высокой чувствительности триаков к току переключения в качестве мультиметров лучше применять стрелочные приборы.
Цифровая система микропроцессоров управления ТПЧ 320
Микропроцессорные системы управления ТПЧ 320 регулируют, защищают и диагностируют. Она сформирована на плате с микросхемами и экраном через кабели. Эта система дает гарантию надежной работы, защищает от помех.
Каждому вентилю передается импульс. Информация выдается на экран панели. Можно получить информацию от механизмов цепи. Система управления обрабатывает много данных, передающихся по связи. Это такие данные:
- Мощность.
- Частота.
- Вес загрузки.
- Вес расплавленного металла.
- Время.
Комплектность шкафа ТПЧ 320:
- Выпрямитель.
- Система выравнивания мощности.
- Дроссель сглаживания.
- Диагностика.
- Контроль температуры.
- Контроль охлаждения.
- Блокировка дверей.
- Защита, перезапуск частотника при отключении линии питания.
Эксплуатационные условия ТПЧ 320
№ | Условие | Значение |
1 | Помещение с температурой | от +5° С до +35° С (УХЛ 4) и от +5° С до +45° С (ТС 4); |
2 | Высота не более: | 1000 м; |
3 | Влажность до: | 80% при +25° С (УХЛ 4) и 98 % при +35° С (ТС 4); |
4 | Среда: | Безопасная, без агрессивных газов |
5 | Защита ГОСТ 14254-80 | IP 55 |
6 | Уровень помех не выше: | ГОСТ 23450 — 79 |
Реверсивные тиристорные преобразователи Принцип работы и устройство