Трансформатор постоянного тока полярность

Важность маркировки полярности

В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.

Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.

Опять же, маркировка полярности служит ориентиром для размещения математических знаков значений напряжений в правильном контексте.

То же самое верно и для переменного напряжения, за исключением того, что математический знак заменяется углом фазы. Чтобы связать друг с другом несколько переменных напряжений с разными углами фазы, нам нужна маркировка полярности, чтобы обеспечить систему отсчета для углов фаз этих напряжений.

Возьмем, к примеру, следующую схему:

Рисунок 9 – Угол фазы заменяет знак ±

Маркировка полярности показывает, что эти два источника напряжения складываются друг с другом, поэтому для определения общего напряжения на резисторе мы должны сложить значения напряжения 10 В 0° и 6 В ∠ 45° вместе, чтобы получить 14,861 В 16,59 °.

Однако было бы вполне приемлемо представить 6-вольтовый источник как 6 В 225°, с обратной маркировкой полярности, и при этом получить такое же общее напряжение:

Рисунок 10 – Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180°

6 В 45° с минусом слева и плюсом справа – это точно то же самое, что 6 В ∠ 225 ° с плюсом слева и минусом справа: изменение маркировки полярности идеально дополняет добавление 180° к значению угла фазы:

Рисунок 11 – Изменение полярности добавляет 180° к углу фазы

В отличие от источников постоянного напряжения, где полярность определяется символами из линий, у переменных напряжений нет собственного обозначения полярности. Следовательно, любые знаки полярности должны быть включены в качестве дополнительных символов на схему, и не существует единственного «правильного» способа их размещения.

Однако они должны коррелировать с заданными углами фаз, чтобы представлять истинное фазовое соотношение одного напряжения с другими напряжениями в цепи.

Методы проверок трансформатора мультиметром

Прежде всего, следует проверить состояние изоляции трансформатора. Для этого мультиметр необходимо переключить в режим мегомметра. После этого замеряют сопротивление:

  • между корпусом и каждой из обмоток;
  • между обмотками попарно.

Напряжение, при котором должна осуществляться такая проверка, указывается в технической документации на трансформатор. К примеру, для большинства высоковольтных моделей замер сопротивления изоляции предписано проводить при напряжении 1 кВ.

Проверка прибора мультиметром

Требуемое значение сопротивления можно посмотреть в технической документации или в справочнике.
Например, для тех же высоковольтных трансформаторов оно составляет не менее 1 мОм.

Данный тест не способен выявить межвитковые замыкания, а также изменения свойств материалов проводов и сердечника. Поэтому обязательно нужно проверить рабочие характеристики трансформатора, для чего применяют следующие методы:

Напряжение в 220 Вольт воспринимают далеко не все приборы. понижает напряжение для возможности использования электроприборов.

Как проверить варистор мультиметром и для чего нужен варистор, читайте .

С правилами проверки напряжения в розетке мультиметром вы можете ознакомиться .

Порядок снятия вольт-амперной характеристики (ВАХ)

Перед подачей напряжения на испытательную установку рукоятка управления ЛАТРом должна находиться в крайнем положении, соответствующем нулевой величине напряжения на выходе. Затем, после включения питания, нужно размагнитить железо трансформатора.

После этого начинается процесс снятия ВАХ.

Оптимальным является работа в бригаде из двух человек. Один поднимает напряжение и фиксирует ток амперметра в нормируемых точках. Второй при этом снимает показания с вольтметра и записывает в заранее заготовленную таблицу.

Когда начинается участок насыщения, малому приращению напряжения от источника будет соответствовать резкое увеличение тока. На этом этапе нормируемые точки для измерения легко проскочить. Возвращать ручку ЛАТРа назад с целью снять показания вольтметра поточнее нельзя. Нужно плавно сбросить напряжение до нуля и начать процесс сначала.

По достижении конечной точки для измерений напряжение ЛАТРа плавно уменьшают до нуля, после чего проверочную установку отключают от сети.

Ещё одно интересносе видео о Ретоме 21 и снятии ВАХ с ТТ от профессионального энергетика:

Определение минимально необходимого коэффициента предельной кратности Кпк.мин

Все трансформаторы тока, используемые для питания аппаратуры РЗА, должны обеспечивать точную работу измерительных органов защиты в конкретных расчетных условиях, для чего полная погрешность трансформаторов тока не должна превышать 10% при I1расч.

В общем случае минимально необходимый коэффициент предельной кратности Кпк.мин определяется по формуле:

Кпк.мин ≥ Ktd · I1расч / Iперв.тт

где: Ktd — переходный размерный коэффициент;

I1расч – ток, при котором должна быть обеспечена работа ТТ с погрешностью меньше 10% для правильного функционирования релейной защиты. Значения I1расч различны для разных видов защиты;

Iперв.тт – номинальный первичный ток ТТ.

Примечание: для микропроцессорных устройств могут быть свои требования к Кпк.мин. Так, для устройств Siemens типа 7SJ80, 7SJ81, 7SJ82 минимально требуемый коэффициент предельной кратности должен быть Кпк.мин ≥ 20.

Таблица – Определение минимально необходимого коэффициента предельной кратности Кпк.мин

Вид защиты К td I 1расчПримечание
МТЗ и ТОНезависимая времятоковая х-ка1,1 I сраб.то — ток срабатывания наивысшей токовой ступени (как правило, токовой отсечки) К пк.мин ≥ 20 (для Siemens типа 7SJ80, 7SJ81, 7SJ82) /td>
Зависимая времятоковая х-ка1,1 I сраб.МТЗ.уст — ток, при котором начинается установившаяся (независимая) часть характеристики
ДЗШ0,5 I кз.макс – максимальный ток короткого замыкания в месте установки защиты
ДЗТКЗ внутри защищаемой зоны0,5 I внутр.КЗ – максимальный ток КЗ при повреждении внутри защищаемой зоны К пк.мин ≥ 25 (для Siemens типа 7UT82, 7UT85)
КЗ вне защищаемой зоны2 I внеш.КЗ – максимальный ток КЗ при повреждении вне защищаемой зоны (приведенный к стороне ВН)
ДЗЛ (функция 87L дифференциальной защиты линии)КЗ на защищаемой линии0,5 I внутр.КЗ – максимальный ток КЗ при повреждении на защищаемой линииДля Siemens типа 7SD82
КЗ вне защищаемой линии1,2 I внеш.КЗ – максимальный ток КЗ при повреждении вне защищаемой линии

где:

  • МТЗ и ТО – максимальная токовая защита и токовая отсечка;
  • ДЗШ – дифференциальная защита шин;
  • ДЗТ – дифференциальная защита трансформатора;
  • ДЗЛ – дифференциальная защита линии

С помощью чего измеряют полярность у конденсатора

Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:

  • Переключатель прибора ставят в положение измерения сопротивления.
  • Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
  • Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
  • Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.

Вам это будет интересно Как выбрать цветовую температуру

Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.

Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции

Что такое полярность аккумулятора?

Токовыводящие элементы аккумулятора располагаются на его лицевой или верхней крышке. Существуют две основных схемы расположения токовыводов – «прямая» и «обратная», если говорить проще, то вся разница в расположении клемм – плюсовая клемма может находиться справа или слева, что и является основным различием аккумуляторов с прямой и обратной полярностью.

1. Особенности прямой полярности автомобильного аккумулятора

Прямая полярность встречается только на автомобилях отечественного производства и как правило маркируется как «1». Чтобы определить полярность, поверните АКБ лицевой частью к себе таким образом, чтобы токовыводящие элементы находились снизу, а этикетка –перед глазами. Если полярность АКБ прямая, плюсовая клемма будет находиться слева, а минусовая – справа.

2. Особенности обратной полярности автомобильного аккумулятора

За редким исключением аккумуляторы обратной полярности стоят на европейский автомобилях.

Отличия аккумуляторов обратной и прямой полярности минимальны, внешней они практически идентичные (корпус, силы тока, количество банок, этикетка), именно поэтому можно легко перепутать и купить аккумулятор с неправильным положением токовыводов. Именно поэтому, если вы задумались о замене аккумулятора, необходимо точно знать какой АКБ подойдет для вашего автомобиля.

Принцип работы

При подключении к первичной обмотке трансформатора источника переменного тока за счет сердечника магнитный поток, который охватывает и вторичную обмотку устройства. При этом индуцируется электродвижущая сила, которая и обеспечивает появление в цепи тока при подключении нагрузки. Благодаря этому осуществляется передача энергии или сигнала без непосредственной электрической связи между обмотками.

Принцип работы трансформатора

Чтобы обеспечить согласование нагрузки и источника по сопротивлению, соотношение числа витков во вторичной обмотке к первичной должно равняться квадратному корню отношения сопротивления нагрузки и источника сигнала. Только в этом случае можно обеспечить передачу без лишних потерь энергии и искажений.

Пример расчёта

Необходимо рассчитать коэффициент трансформации для согласующего трансформатора в ламповом усилителе:

ЭЛЕКТРОлаборатория

Доброе время суток, дорогие друзья!

Вот и пришел новый 2015 год. Надеюсь, что этот год будет не хуже предыдущего. В общем, с Новым Годом, друзья!

Хочу начать год со статьи о трансформаторах тока. Конечно, мой рассказ будет скорее общим, чем научным.

Для досконального изучения вопроса предлагаю воспользоваться технической литературой или хотя быИНСТРУКЦИУЙ ПО ПРОВЕРКЕ ТРАНСФОРМАТОРОВ ТОКА, ИСПОЛЬЗУЕМЫХ В СХЕМАХ РЕЛЕЙНОЙ ЗАЩИТЫ И ИЗМЕРЕНИЯ (РД 153-34.0-35.301-2002).Итак, приступим.

Простейший и самый распространенный трансформатор тока (ТТ) — двухобмоточный. Он имеет одну первичную обмотку с числом витков w1

и одну вторичную обмотку с числом витковw2 . Обмотки находятся на общем магнитопроводе, благодаря которому между ними существует хорошая электромагнитная (индуктивная) связь.

Регулировка в инверторах

Сварочные инверторы – это самые современные аппараты для электродуговой сварки. Использование мощных полупроводниковых выпрямителей на входе устройства и последующей трансформации переменного тока в постоянный, а затем в переменный высокой частоты позволил создать устройства компактные и мощные одновременно.

В инверторных аппаратах основным регулятором является изменение частоты задающего генератора. При одном и том же размере трансформатора мощность преобразования напрямую зависит от частоты входного напряжения.

Чем меньше частота, тем меньшая мощность передается на вторичную обмотку. Ручка регулировочного резистора выводится на лицевую панель инвертора. При ее вращении изменяются характеристики задающего генератора, что приводит к изменению режима переключения силовых транзисторов. В итоге получается требуемый сварочный ток.

При использовании инверторных сварочных полуавтоматов настройка происходит так же, как и при использовании ручной сварки.

Кроме внешних регуляторов в блоке управления инвертором предусмотрены еще много различных управляющих элементов и защит, обеспечивающих стабильную дугу и безопасную работу. Для начинающего сварщика лучшим выбором будет инверторный аппарат для сварки.

Периодичность поверки трансформаторов тока ТТИ

В соответствии с предназначением и сферами применения трансформаторы как приборы, контролирующие и передающие измерительную информацию, должны постоянно быть в состоянии пригодности. Поэтому организуется периодически их поверка.

Учетное, контрольное, измерительное оборудование в обязательной разъяснительной документации наряду с показанием массы и габаритов содержат указание на период длительности поверочного промежутка (5 лет или 8 лет и т. д.). К примеру, у трансформатора тока ТТИ-А 200/5А 5ВА класс 0,5S IEK межповерочный срок составляет 5 лет. Несколько компаний под брендом IEK представляют собой производителей и поставщиков электротехнического оснащения широкого ассортимента с целью решения комплексных задач во всех сферах народного хозяйственного хозяйства.

Зачем все это нужно

При сварке постоянным током на кончике электрода образуется термическое пятно, которое обладает высокой температурой. В зависимости от того, какой полюс подключен к электроду, будет зависеть и температура на его кончике, а соответственно будет зависеть режим сварочного процесса. К примеру, если подключен к расходнику плюс, то на его конце образуется анодное пятно, температура которого равна 3900С. Если минус, то получается катодное пятно с температурой 3200С. Разница существенная.

Что это дает.

  • При сварке током прямой полярности основная температурная нагрузка ложится на металлическую заготовку. То есть, она разогревается сильнее, что позволяет углубить корень сварочного шва.
  • При сварке током обратной полярности концентрация температуры происходит на кончике электрода. То есть, основной металл при этом нагревается меньше. Поэтому этот режим в основном используют при соединении заготовок с небольшой толщиной.

Необходимо добавить, что режим обратной полярности применяют также при стыковке высокоуглеродистых и легированных сталей, нержавейки. То есть, тех видов металлов, которые чувствительны к перегреву.

Внимание! Так как на анодном и катодном пятне температура разная, то от правильного подключения сварочного аппарата будет зависеть расход самого электрода. То есть, обратная полярность при сварке инвертором – это перерасход электродов.. В процессе сварки постоянным током необходимо добиться того, чтобы металл заготовок прогрелся хорошо, практически до состояния расплавленного

То есть, должна образоваться сварочная ванна. Именно прямая и обратная полярность режима сваривания влияет на качественное состояние ванны.

В процессе сварки постоянным током необходимо добиться того, чтобы металл заготовок прогрелся хорошо, практически до состояния расплавленного. То есть, должна образоваться сварочная ванна. Именно прямая и обратная полярность режима сваривания влияет на качественное состояние ванны.

  • Если сила тока будут большой, а значит, и температура нагрева также будет высокой, то металл разогреется до такого состояния, что электрическая дуга будут просто его отталкивать. Ни о каком соединении здесь уже говорить не придется.
  • Если ток будут, наоборот, слишком мал, то металл не разогреется до необходимого состояния. И это тоже минус.

При прямой полярности внутри ванны будет создана среда, которой легко руководить электродом. Она растекается, поэтому одно движение стержня создает направленность сварного шва. При этом легко контролируется глубина сваривания.

Кстати, скорость движения электрода напрямую влияет на качество конечного результата. Чем скорость выше, тем меньше тепла поступает в зону сварки, тем меньше прогревается основной металл заготовок. Уменьшая скорость, увеличивается температура внутри сварочной ванны. То есть, металл хорошо прогревается. Поэтому опытные сварщики выставляют на инверторе ток больше необходимого. А вот качество сварного шва контролируют именно скоростью перемещения электрода.

Что касается самих электродов, то выбор полярности обусловлен материалом, из которого он изготовлен, или видом обмазки. К примеру, использование обратной полярности при сварке постоянным током, в которой применяется угольный электрод, приводит к быстрому расходу сварных стержней. Потому что при высоких температурах угольный электрод начинает разрушаться. Поэтому этот вид используется только при режиме прямой полярности. Чистый металлический стержень без покрытия, наоборот, хорошо заполняет сварочный шов при обратной полярности.

Глубина и ширина сварочного шва также зависит от используемого режима. Чем выше ток, тем происходит увеличение провара. То есть, увеличивается глубина сварного шва. Все дело в погонной энергии на дуге. По сути, это количество тепловой энергии, проходящей через единицу длины сварочного шва. Но увеличивать ток до бесконечности нельзя, даже в независимости от толщины свариваемых металлических заготовок. Потому что тепловая энергия создает давление на расплавленный металл, что вызывает его вытеснение. Конечный результат такой электросварки при повышенном токе – прожог сварочной ванны. Если говорить о влиянии прямой и обратной полярности при сварке инвертором, то большую глубину проплавки может обеспечить режим обратной полярности.

https://www.youtube.com/watch?v=GrVBaIZ3ddE

Сварочный выпрямитель

Использование постоянного напряжения дает более качественный шов. Она позволяет кроме обычных видов обработки выполнять аргонно-дуговую сварку и другие виды работ.

Информация! Такие устройства кроме однофазных изготавливают трехфазные. Это увеличивает мощность с распределением нагрузки на три фазы и обеспечивает более “гладкое” выходное напряжение, без пульсаций.

Сварочные выпрямители различают по типу установленных выпрямительных блоков:

  • С двумя диодами. Вместо одной вторичной обмотки мотаются две и диоды подключаются по схеме с общей средней точкой.
  • С обычным диодным мостом. В однофазных аппаратах устанавливается обычный мост, из четырех диодов, в трехфазных – мост Ларионова, из шести.
  • Транзисторные. Редко встречаются из-за слишком мощных выходных транзисторов.
  • Тиристорные. Разновидность диодных аппаратов, но вместо диодов устанавливаются тиристоры и система управления. Регулировка осуществляется за счет изменения угла открытия тиристора и действующего значения напряжения.
  • Инверторные. Современные электронные аппараты индивидуального использования. Ток регулируется ручками управления или кнопками, расположенными на передней панели.

Полярность атома

Читатель может задать и такой вопрос: «Как определить полярность химической связи, если факторов так много?» Ответ одновременно и прост, и сложен. Количественные меры полярности определяются как эффективные заряды атома. Эта величина является разностью между зарядом находящегося в определенной области электрона и соответствующей области ядра. В целом эта величина достаточно хорошо показывает некую асимметричность электронного облака, которая возникает при образовании химической связи. Сложность состоит в том, что определить, какая именно область нахождения электрона принадлежит именно этой связи (особенно в сложных молекулах) почти что невозможно. Так что, как и в случае разделения химических связей на ионные и ковалентные, ученые прибегают к упрощениям и моделям. При этом отбрасываются те факторы и значения, которые влияют на результат незначительно.

Последствия неправильной установки

Встречаются случаи, когда неопытные водители путают клеммы и неправильно подсоединяют АКБ. В этой ситуации сразу появятся искры, возникнет угроза пожара, также могут перегореть некоторые детали электрооборудования в автомобиле. Большинство современных машин имеет специальную защиту от таких действий водителя (при коротком замыкании просто сгорают предохранители, которые потом меняются, зато все оборудование остается целым и невредимым). Однако рекомендуется все же знать, как определить полярность аккумулятора и корректно включить его в цепь, чтобы избежать различных неприятностей.

Зарядка для аккумуляторов 18650

Проблемами в результате того, что водитель неправильно установил и подсоединил батарею (у АКБ обратная полярность, а он подключил ее как источник питания с прямой) являются:

  • Исчезновение подсветки на панели приборов;
  • Поломка реле напряжения или диодного моста, из-за чего автомобиль перестает заводиться;
  • Блок управления двигателем перестает работать, автомобиль глохнет и не заводится, могут также появиться проблемы с корректной работой агрегата (троит, повышенный расход топлива и так далее);
  • Выход из строя силового предохранителя, что негативно сказывается на функционировании автомобиля.

Важно! Некорректно подсоединить АКБ достаточно сложно. Во-первых, у проводов при присоединении к АКБ имеется разница в длине, часто неправильная установка батареи просто не позволяет подключить один из проводов

Во-вторых, при некорректной установке начинается сильное искрение, что сразу настораживает любого водителя. В-третьих, разный диаметр клемм не позволяет зафиксировать провода неправильно.


Некорректное подключение АКБ

Механизм действия и виды устройств

Работа импульсного трансформатора обеспечивается за счёт пары катушек, соединённых магнитоводом и имеющих обмотку различной конфигурации. Количество витков на обмотке определяет мощность электрической энергии, получаемой на выходе.

Первичный контур обмотки принимает на себя однополярные импульсные сигналы. На ней же определяются импульсы с коротким временным интервалом, имеющие прямоугольную форму. Затем эти же импульсы находят отражение на вторичной обмотке. Принцип отражения является основным в работе всех ИТ.

Трансформаторы могут иметь различное устройство. В зависимости от типа обмотки выделяют следующие разновидности прибора:

  • тороидальный,
  • стержневой,
  • броневой,
  • бронестержневой.

Оборудование и схема для проверки вольт-амперной характеристики трансформаторов тока

В качестве регулируемого источника напряжения для снятия ВАХ используется лабораторный автотрансформатор (ЛАТР), или устройства, содержащие его в своем составе. Напряжение должно быть абсолютно синусоидальным, поэтому тиристорные источники питания для испытаний непригодны.

При использовании встроенных в источник питания приборов важно учесть, что амперметр должен измерять среднеквадратичное значение, а вольтметр – средневыпрямленное. Важен и порядок включения приборов в измерительную цепь

Амперметр должен измерять только ток непосредственно в проверяемой обмотке. Вольтметр подключается до него, ток через обмотку прибора не должен учитываться, чтобы не вносить в измерения дополнительную погрешность

Важен и порядок включения приборов в измерительную цепь. Амперметр должен измерять только ток непосредственно в проверяемой обмотке. Вольтметр подключается до него, ток через обмотку прибора не должен учитываться, чтобы не вносить в измерения дополнительную погрешность.

Самым точным вариантом измерений является подключение измерительного комплекса непосредственно к выводам трансформатора тока.

Измерение с клеммников, находящихся на значительном удалении и соединенных с объектом измерения контрольными кабелями, недопустимо. В этом случае к сопротивлению обмотки добавляется сопротивление жил кабельной линии, соизмеримое с ней по величине.

Поэтому между источником регулируемого напряжения и проверяемой обмоткой можно подключить разделительный трансформатор 220/36 В или любой другой. При этом предел регулирования расширяется.

В целях безопасности в цепи подключения ЛАТРа к сети питающего напряжения должен быть защитный аппарат – автоматический выключатель. А также предусмотрена возможность создания видимого разрыва при переключениях между трансформаторами или их обмотками. Достаточно вилки, которая втыкается в розетку удлинителя, положение которой видно с границ рабочего места.

Интересное видео о снятии ВАХ с ТТ с помощью ретома-21 смотрите ниже:

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий