Ток короткого замыкания в сетях постоянного тока

Виды и причины

В быту короткие замыкания бывают:

  • однофазные – когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего;
  • двухфазные – когда одна фаза замыкается на другую;
  • трехфазные – когда замыкаются сразу три фазы. Это самый проблемный вид КЗ.

Например, утром в воскресенье ваш сосед за стенкой соединяет фазу и ноль в розетке, включив в нее перфоратор. Это значит, что цепь замыкается, и ток идет через нагрузку, то есть через включенный в розетку прибор. Если же сосед соединит провода фазы и нуля в розетке без подключения нагрузки, то в цепи возникнет КЗ, но вы сможете поспать подольше.

Тем, кто не знает, для лучшего понимания полезно будет почитать, что такое фаза и ноль в электричестве. Короткое замыкание называют коротким, так как ток при таком замыкании цепи как бы идет по короткому пути, минуя нагрузку. Контролируемое или длинное замыкание – это обычное, привычное всем включение приборов в розетку.

Электрическая цепь — это, как правило, два проводника с разноименным потенциалом и подключенным потребителем тока. Каждый конечный потребитель имеет свое внутреннее сопротивление, которое сопротивляется току и ограничивает, тем самым дозируя его количество и плотность в проводнике, заставляя производить работу.

Поиск поврежденного участка

Если вызов и ожидание мастера-профи не вариант, то хозяевам приходится самим проводить осмотр всей электросети — открытых участков проводки, а также подключенных бытовых и специальных приборов, в том числе сетевых удлинителей. Перед операцией электроцепь обесточивают, отключая автоматы, которые не сработали, затем из розеток вытаскивают вилки всех бытовых приборов.

Как найти короткое замыкание в скрытой проводке? Идеальный вариант — наличие плана электропроводки, однако этих документов у владельцев жилья на руках чаще нет. Иногда они и вовсе бесполезны, так как чертеж и реальная схема — «две большие разницы». Причина — предприимчивость электриков во время строительства объекта. Поэтому чаще хозяева вынуждены проводить «изыскания» довольно тернистыми путями.

Первые симптомы — запах гари и почернение (выгорание) участка, на котором произошло короткое замыкание. Когда осмотр видимой проводки, распределительной коробки и розеток с выключателями результата не принес, переходят к проверке бытовых и осветительных приборов. Если и в этом случае поиски не увенчались успехом, то исследование продолжают. Оно включает в себя несколько этапов.

Подготовка к поискам повреждения при КЗ

Как найти короткое замыкание в скрытой проводке? В первую очередь, обеспечить условие, при котором поиск вообще возможен. Если при обрыве сети операция иногда сложностей не обещает, то при коротком замыкании приходится действовать по-другому, так как при подаче напряжения автомат попросту отключается.

Исключение — отгорание проводов, идущих на выключатель или розетку. Проверить, произошло ли это, легко индикаторной отверткой: достаточно убедиться в наличии фазы в приборе. Если она есть, то можно говорить о том, что, по крайней мере, один проводник в порядке. Найти обрыв нейтрали очень сложно, если нет опыта подобной работы. В этом случае рекомендуют удалить участок полностью, а потом заменить его новой проводкой.

Чтобы предотвратить короткое замыкание, препятствующее возобновлению питания, его необходимо из «сценария» предусмотрительно исключить. Поскольку чаще КЗ — контакт между нейтралью и фазой, один из проводников отключают. Обычно им становится нулевой провод, изоляция которого синего или голубого цвета. Его отсоединяют, изолируют, а затем отводят в сторону.

Надо еще раз напомнить, что перед этой операцией все электроприборы должны быть отключены от розеток. Если в сети больше нет «травмированных» участков, после исключения ноля из схемы автомат срабатывать не будет.

Поиск участка замыкания

Первым делом надо определить проблемный участок, так как найти короткое замыкание в скрытой проводке можно лишь после того, как мастер точно определит, в каком месте оно произошло.

В домах или квартирах принцип разводки одинаков: от распределительной коробки проводка расходится лучами к розеткам, а для выключателей предусматривается отдельные кабели. Работа намного упрощается, если в распоряжении хозяев имеется схема разводки. Но чаще она отсутствует.

Сначала распределительную коробку открывают, потом на каждой линии измеряют сопротивление и напряжение. Если обнаруживают линию, где показания отсутствуют, то это и есть участок, которые необходимо проверять. Следующий этап — поиски конкретного места короткого замыкания.

Помощь измерительных приборов

Оптимальный вариант — проверка сопротивления на «подозреваемом» участке цепи (или изоляции) мегаомметром, так как мультиметр имеет одно серьезное ограничение. Из-за малого напряжения он подходит только для обследования коротких участков электроцепи — до 3 м, но не более.

Одним проводом мегаомметр подключают к фазовому проводнику, другим к нулю, затем к фазе и заземлению. Если на дисплее высвечивается значение, которое меньше единицы (0,5), то можно констатировать, что с проводкой все в порядке. Когда на нем появляется другая цифра (1), или показатели меняются, это значит, что оголенные проводники в каком-то месте соприкасаются.

Поиск виновника среди бытовых приборов

Нередки случаи, когда короткое замыкание возникает в электроприборах. Чтобы точно определить его источник, используют метод исключения. Сначала от розеток отключают абсолютно всю домашнюю технику, затем восстанавливают работу автомата. Все приборы подключают по одному, по очереди. Виновник будет найден, когда сработает автомат.

Народный метод

В этом случае исследователю важно иметь хороший слух, поскольку в месте, где произошло короткое замыкание, должен улавливаться звук — тихое потрескивание. Однако данный вариант относится к «дедовским методам», поэтому на результат надеяться можно, но сильно полагаться на то, что он будет, не нужно

Причины возникновения короткого замыкания

Коротит проводка — причины и способы устранения проблемы

Несмотря на то, что этот нежелательный аварийный процесс считается случайным, на его создание могут влиять следующие причины, связанные с некачественным монтажом или неправильной эксплуатацией электрического оборудования (цепей). Вот основные причины появления короткого замыкания:

  1. Снижение качества изоляции токоведущих проводников. Это одна из самых распространенных причин перехода сети в режим КЗ, который возникает вследствие пересыхания, механического повреждения или разрушения изоляции между проводниками с разным потенциалом. Чаще всего все перечисленные причины снижения сопротивления изоляции и её разрушения связаны с воздействием на неё вредных факторов, на которые она не рассчитана. Например, при длительном воздействии солнечных лучей на изоляцию, которая боится ультрафиолетового излучения, происходят пересыхание, потрескивание и, как следствие, короткое замыкание.

Нужно отметить! У любой изоляции есть свой срок использования, старение её приводит к аварийным режимам.

  1. Изменение физических параметров электрической сети, например, перенапряжение. Такое явление возможно во время грозы, а именно попадания молнии в проводник с током.
  2. Неправильная коммутация, ошибки монтажа или укладки кабеля, с несоответствием техническим условиям, заявленным заводом производителем.

Любой электромонтажник или электромонтер не застрахован от ошибочных, неправильных действий при монтаже электропроводки или при выполнении оперативных переключений. В низковольтных цепях такие ошибки менее опасны, чем в высоковольтных цепях с мощными источниками энергии, например, на высоковольтных силовых подстанциях электроснабжения. Даже с современными элементами и устройствами защиты от превышения нагрузок процесс КЗ в силовых высоковольтных цепях опасен не только для оборудования, но и для обслуживающего персонала, из-за появления мощной электрической дуги.

  1. Длительная эксплуатация электрического оборудования и линий в режиме перегрузок или в условиях с завышенными температурами окружающей среды. Это приводит к перегреву изоляции между обмотками электрооборудования, значит, происходит снижение сопротивления изоляции, которое в какой-то момент достигает критического значения.

Выполнение монтажа качественными материалами, правильная организация работ в электроустановках, а также своевременное обслуживание, с заменой повреждённых участков линии, снизят риск появления короткого замыкания.

Преобразователь с альтернативным плечом (AAC)

Что привело к разработке AAC?

В отличие от модульного многоуровневого преобразователя типа полумост (HB-MMC), который может получать напряжение постоянного тока только одной полярности, MMC с полным мостом может создавать как положительное, так и отрицательное напряжение постоянного тока. Эта способность получать как отрицательное, так и положительное напряжение постоянного тока, лежит в основе его способности подавлять постоянный ток короткого замыкания. Но FB-MMC может создавать намного большее отрицательное напряжение постоянного тока, чем, фактически, необходимо для устранения неисправности. Именно поэтому и была разработана новая концепция, ААС, направленная на предоставление более эффективной возможности устранения неисправностей с использованием меньшего количества подмодулей.

Как работает AAC?

В MMC, каждый из шести «вентилей» должен содержать достаточное количество подмодулей, чтобы независимо обеспечить нужное напряжения постоянного тока. Но в течение большей части времени эта полная возможность не требуется. AAC позволяет избежать этой ситуации, имея отдельный «главный выключатель», подключенный последовательно с подмодулями. Этот главный выключатель состоит из нескольких последовательно соединенных БТИЗ, что позволяет почти вдвое уменьшить количество подмодулей. Это означает, что потери энергии значительно снижаются по сравнению с традиционным преобразователем FB-MMC, и становятся близкими к тем, которые достигаются в HB-MMC — но при этом добавляется возможность устранения постоянного тока короткого замыкания.

Последовательные цепи для разной формы волны на стороне постоянного тока

Существуют ли другие положительные моменты?

Еще один положительный момент заключается в том, что все БТИЗ в главном выключателе намного менее массивны, чем подмодули, которые ими заменяются (в состав подмодулей входят большие конденсаторы). Поэтому, за счет минимизации количества подмодулей можно уменьшить занимаемое пространство. Более того, главные выключатели могут быть устроены таким образом, что при нормальной работе они включаются и выключаются, когда и напряжение и ток равны нулю (так называемое, «мягкое выключение»). Это означает, что главный выключатель не имеет потерь при выключении, а проблемы с одновременной правильной поочередной работой большого количества БТИЗ, намного упрощаются.

Почему происходит короткое замыкание

Для того чтобы понять почему происходит короткое замыкание, нужно вспомнить закон Ома для участка цепи – «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке», формула при этом следующая:

I=U/R

 где I – сила тока, U – напряжение на участке цепи, R – сопротивление.

Любой электроприбор в квартире, включающийся в розетку, это активное сопротивление (R – в формуле), напряжение в бытовой электросети вам должно быть известно – 220В-230 В и оно практически не меняется. Соответственно, чем выше сопротивление электроприбора (или материала, проводника и т.д.) включаемого в сеть, тем меньше величина тока, так, как зависимость между этими величинами обратно пропорциональная.

Теперь представьте, что мы включаем в сеть электроприбор практически без сопротивления, допустим его величина R=0.05 Ом, считаем, что тогда будет с силой тока по закону Ома.

I=220В(U)/0,05(Ом)=4400А

В результате получается очень высокий ток, для сравнения стандартная электрическая розетка в нашей квартире, выдерживает лишь ток 10-16А, а у нас по расчетам 4,4 кА.

Современные медные провода, используемые в проводке, имеют настолько хорошие показатели электрической проводимости, что их сопротивление, при относительно небольшой длине, можно принять за ноль. Соответственно, прямое соединение фазного и нулевого провода, можно сравнить, с подключением к сети электроприбора, с очень низким сопротивлением. Чаще всего, в бытовых условиях, мы сталкиваемся именно с таким типом короткого замыкания.

Конечно, это очень грубый пример, в реальных условиях, при расчете силы тока при коротком замыкании, учитывать приходится гораздо больше показателей, таких как: сопротивление всей линии проводов, идущих к вам, соединений, дополнительного оборудования сети и даже дуги образующейся при коротком замыкании, а также некоторых других.Поэтому, чаще всего, сопротивление будет выше тех 0,05 Ом, что мы взяли в расчете, но общий принцип возникновения КЗ и его разрушительных эффектов понятен.

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет – она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I = U / R,

где:

I – величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? – спросит настырный оппонент, — Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U – та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R – электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников – малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

Методы защиты

Простейший, но достаточно эффективный автоматический «выключатель» показан на первой картинке. При увеличении плотности тока в цепи выше определенного уровня плавкая вставка разрушается.

Подобное устройство стоит недорого. Минусы:

  • медленное срабатывание;
  • отсутствие регулировок;
  • однократное применение.

Чтобы исключить перечисленные недостатки, рекомендуется применить специализированный автомат. Корректный выбор модели сопровождается оценкой чувствительности. Для упрощения оборудование этой категории разделено на группы. Класс В, например, будет отключать питание не более, чем за 0,015 с после регистрации двукратного увеличения тока, по сравнению с номиналом.

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания. Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.
  2. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  3. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  4. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  5. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗПроцентное соотношение к общему числу (%)
К(З)5,0
K(2)10,0
K(1)65,0
K(1,1) и K(1+1)20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

8.Дуговые короткие замыкания

Категория: И.Л. Небрат «Расчеты токов короткого замыкания в сетях 0,4 кВ»

         Выше указывалось, что наибольшая часть КЗ в сетях нпряжением до 1 кВ является дуговыми КЗ. Многочисленные исследования показывают, что при дуговом КЗ ток КЗ всегда меньше тока металлического КЗ в этой же точке. Однако определить точное значение RД в месте КЗ не представляется возможным. Существующие методики расчетов дуговых КЗ позволяют лишь примерно оценить значение RД в месте КЗ.

       Рассмотрим более подробно некоторые методики расчетов дуговых КЗ.

       Все расчеты токов дуговых КЗ, также как и металлических, сводятся к определению суммарного сопротивления до точки КЗ для данного вида КЗ, по которому при известном напряжении сети можно вычислить ток КЗ. В общем виде это можно выразить следующей формулой :

, кА     (24)

   где n – вид КЗ;

   — суммарное сопротивление до места КЗ

Расчетные формулы для определения суммарных сопротивлений до места КЗ и токов дуговых КЗ приведены в таблице 2

Таблица 2

Расчетные формулы для определения суммарных сопротивлений и токов в сети 0,4 кВ для дуговых КЗ

Суммарное сопротивление Zå, мОм

Суммарный ток IКå, кА

Трехфазное, К(3)

Двухфазное, К(2)

Однофазное, К(1)

           Сопротивления R1å и X1å рассчитываются также, как для металлических КЗ.Учет сопротивления дуги в месте КЗ в данном случае выполняется введением в расчетную схему активного сопротивления дуги RД , причем RД либо принимается равным 15 мОм, либо определяется из таблицы № 3, в которой значение сопротивления RД получены экспериментально в зависимости от места КЗ и мощности питающего трансформатора .

Таблица 3

Значение активного сопротивления дуги

Расчетные условия КЗ

Активное сопротивление дуги (RД ), мОм, при КЗ за трансформаторами мощностью, кВА

250

400

630

1000

1600

2500

КЗ вблизи выводов низшего

напряжения трансформатора:

— в разделке кабелей напряжением:

0,4 кВ

15

10

7

5

4

3,0

0,525 кВ

14

8

6

1,5

3,5

2,5

0,69 кВ

12

7

5

4

3,0

2,0

— в шинопроводе типа ШМА напряжением :

0,4 кВ

6

4

3,0

0,525 кВ

5

3,5

2,5

0,69 кВ

4

3,0

2,0

КЗ в конце шинопровода типа ШМА длиной 100 – 150 м.

напряжением:

0,4 кВ

6-8

5-7

4-6

0,525 кВ

5-7

4-6

3-5

0,69 кВ

4-6

3-5

2-4

       Значение коэффициентов Кс в зависимости от удаленности точки КЗ, т.е. кривые Кс = были получены в результате обработки экспериментальных данных реальных опытов КЗ за трансформаторами мощностью 630 и 1000 кВА. Эти кривые приведены на рис. 6

где — ток трехфазного металлического КЗ, кА;

Какие бывают виды

Короткое замыкание. Каждый слышал это словосочетание. Многие видели надпись «Не закорачивать!» Часто, когда ломается какой-нибудь электроприбор, говорят: «Коротнуло!» И несмотря на негативный оттенок этих слов, профессионалы знают, что короткое замыкание – не печальный приговор. Иногда с коротким замыканием (КЗ) бороться бессмысленно, а порой и принципиально невозможно. В этой статье будут даны ответы на самые важные вопросы: что такое короткое замыкание и какие виды КЗ встречаются в технике.

Будет интересно Что такое статическое электричество и как от него избавиться

Начнем рассматривать эти вопросы под необычным углом – узнаем, в каких случаях короткие замыкания неизбежны и где они не играют роль повреждений. Возьмем за оба конца обыкновенный металлический провод. Соединим концы вместе. Провод замкнулся накоротко – произошло КЗ. Но так как в цепи отсутствуют источники электрической энергии и нагрузка, такое короткое замыкание никакого вреда не несет. В некоторых областях электротехники КЗ, которое мы рассмотрели, играет на руку, например, в электрических аппаратах и электрических машинах.

Взглянем на однофазное реле или пускатель, в конструкции которых есть магнитная система с подвижными частями – электромагнит, притягивающий якорь. Из-за постоянно меняющейся полярности тока, текущего в обмотках электромагнита, его магнитный поток периодически становится равен нулю, что вызывает дребезжание якоря, появляются вибрации и характерное, знакомое всем электрикам гудение. Чтобы избавиться от этого явления, на торец сердечника электромагнита или якоря прикрепляют короткозамкнутый виток – кольцо или прямоугольник из меди или алюминия.

Из-за явления электромагнитной индукции в витке создается ток, создающий свой магнитный поток, компенсирующий пропадание основного магнитного потока, создаваемого электромагнитом, что приводит к уменьшению или исчезновению вибраций, разрушающих конструкцию.

Так же на руку играет короткое замыкание и в роторе асинхронного электродвигателя. Благодаря взаимодействию магнитного поля, создаваемого обмотками статора, с короткозамкнутым ротором, в роторе по уже упомянутому закону появляются свои токи, создающие свое поле, что приводит ротор во вращение

Конечно, важно грамотное проектирование электродвигателя или электрического аппарата, чтобы токи, протекающие в короткозамкнутых элементах, не приводили к перегреву и порче изоляции основных обмоток

Возгорание розетки

Подобным образом понятие «короткое замыкание» используется применительно к трансформаторам. Люди, так или иначе связанные с энергетикой, знают, что одна из важнейших характеристик трансформатора – это напряжение короткого замыкания, UКЗ, измеряемое в процентах. Возьмем трансформатор. Одну из его обмоток, скажем, низшего напряжения (НН) закоротим амперметром, сопротивление которого, как известно, принимается равным нулю. Обмотку высшего напряжения (ВН) подключаем к источнику напряжения. Повышаем напряжение на обмотке ВН до тех пор, пока ток в обмотке НН не станет равным номинальному, фиксируем это напряжение.

Делим его на номинальное напряжение высшей стороны, умножаем на 100%, получаем UКЗ. Эта величина характеризует потери мощности в трансформаторе и его сопротивление, от которого зависит ток короткого замыкания, ведущий к повреждениям. Поговорим наконец о коротких замыканиях, несущих негативные последствия. Такие короткие замыкания появляются, когда ток от источника питания протекает не через нагрузку, а только через провода, обладающие ничтожно маленьким сопротивлением. Например, трехфазный кабель питается от трансформатора, и одним неосторожным движением ковша экскаватора происходит его повреждение – две фазы закорачиваются через ковш. Такое КЗ называют двухфазным. Аналогично по количеству замкнутых фаз называют другие КЗ.

Однофазное замыкание на землю в сетях с изолированной нейтралью не является коротким, но может представлять угрозу жизни живых существ. Металлическим называют КЗ, в котором переходное сопротивление равно нулю – например, при болтовом или сварочном соединении. Токи КЗ в зависимости от напряжения и вида повреждения могут достигать тысяч и сотен тысяч ампер, приводить к пожарам и колоссальным электродинамическим усилиям, «выворачивающим» шины и провода. Защита от КЗ может осуществляться автоматическими выключателями или предохранителями, а в высоковольтных сетях – средствами релейной защиты и автоматики.

Защита блока питания от короткого замыкания.

Что позволит избежать короткого замыкания

Электричество, как источник энергии, имеет неоспоримо огромную мощь, но, чтобы удержать его под контролем, много навыков не нужно. Первое и самое надёжное, что потребуется – это отказаться от использования поврежденных электроприборов и старых проводов с сомнительного качества изоляцией. 

В числе мер, которые может предпринять любая хозяйка самостоятельно — это аккуратное обращение с электроприборами

Важно следить за тем, чтобы в них не попадала ни вода, ни металлические предметы, которые могут привести к короткому замыканию. Не менее важно следить за состоянием розеток и выключателей

При малейшем подозрении лучше их сразу поменять. 

На распределительных щитках крайне важно устанавливать автоматические предохранители. Как правило, они выполняют функции сразу двух коммутационных приборов: защитных устройств отключения (ЗУО) и автоматического выключателя

Такие предохранители могут использоваться не только в квартирах, но и на производстве. 

Вам потребуется измерение параметров устройств защитного отключения.

В чём их польза? Прежде всего, они очень быстро среагируют на возникновение перегрузки и не менее оперативно отключат сеть. Часто можно наблюдать ситуацию, когда прибор отключается несколько раз подряд. В данной ситуации требуется отключить от сети все мощные приборы, подождать некоторое время и снова попробовать включить предохранитель

Скорее всего – это повод обратить внимание на то, что вы потребляете слишком большое количество электроэнергии…  

Если ничего не изменится – нужно в срочном порядке вызывать мастера, проверить состояние проводки и неполадки в сети

Причину установить важно! Ведь такие «осечки» могут сигнализировать об очень тревожных обстоятельствах

Предохранители играют очень важную роль, а потому на данном вопросе нельзя экономить. Покупайте только бренды и только в сертифицированных магазинах

Обращайте внимание, чтобы мощность прибора соответствовала объёмам вашего потребления. 

Также во избежание короткого замыкания важно быть предельно внимательным при осуществлении электромонтажных работ. Их, к слову, лучше доверить профессионалам

Нужно использовать только качественную изоляцию, а если снимать её, то аккуратно, не резать провод ножом вдоль жил. Опасно штробить и сверлить стены там, где проложен кабель. 

Категорически запрещено скручивать провода одним пучком. Плотность таких контактов может быстро ослабнуть, а площадь взаимодействия снизиться, что вскоре приведёт к искрению, а значит – к короткому замыканию. Такие провода рекомендуется соединить спайкой, гильзованием или клеммниками, что предотвратит возможность негативных последствий. 

А при проведении скрытой электропроводки (к примеру, за подвесными потолками) рекомендуется использовать кабель, не распространяющий горение или же – как вариант — специальные стальные трубки, которые не будут иметь ни малейшего шанса прожечься в случае возникновения короткого замыкания. 

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector