Среда передачи данных медный провод

Оптоволокно

Оптоволоконный кабель (он же волоконно-оптический) – это принципиально иной тип кабеля по сравнению с другими типами электрических или медных кабелей. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент – это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Волоконно-оптический кабель состоит из тонких (5-60 микрон) гибких стек­лянных волокон (волоконных световодов), по которым распространяются свето­вые сигналы. Это наиболее качественный тип кабеля — он обеспечивает переда­чу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех (в силу особенностей распространения света такие сигналы легко экранировать).

Каждый световод состоит из центрального проводника света (сердцевины) — стеклянного волокна, и стеклянной оболочки, обладающей меньшим показате­лем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выхолят за ее пределы, отражаясь от покрывающего слоя оболочки.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля, только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае мы имеем дело с режимом так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам этот сигнал принципиально не порождает внешних электромагнитных излучений. Однако в данном случае необходимо применение специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет около 5 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах.

Однако оптоволоконный кабель имеет и некоторые недостатки. Самый главный из них – высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети.

Среда передачи данных в компьютерных сетях

Она представляет собой физическую среду, по которой происходит распространение информационных сигналов в виде электрических, световых и прочих импульсов. Они генерируются в виде аналоговых либо цифровых сигналов. Для пересылки их между компьютерами они должны быть физически переданы из одного места в другое. Сам физический путь и является средой передачи.

Каналы передачи данных по компьютерным сетям могут быть двух видов: кабель и беспроводное соединение. В первом случае передача информации осуществляется строго по определённому пути.

Сами же кабеля могут быть следующих видов: витая пара, оптические и коаксиальные. В беспроводных же средах передача сигналов может выполняться благодаря различным излучениям. Примером могут послужить радиоволны, инфракрасное или микроволновое излучение и многое другое.

Все сигналы в сети передаются при помощи волн, независимо от самой среды. В случае с кабельной средой присутствуют электромагнитные волны с определённой частотой. Когда применяется оптический кабель, то сигналы передаются в виде световых волн. Они обладают большей частотой. А вот при использовании атмосферы применяются электромагнитные волны.

Более детально об этом и многом другом каждый желающий сможет узнать на предстоящей выставке «Связь». Проходить она будет в центре Москвы, вблизи станции метро «Выставочная», на территории самого крупного выставочного комплекса ЦВК «Экспоцентр». На данной выставке будут широко представлены инновационные технологии и современные решения для спутниковой, мобильной, оптико-волоконной и беспроводной связи, теле- и радиовещания, спутниковое ТВ и многое другое.

Каналы передачи данных по компьютерным сетямПротоколы передачи данных в компьютерных сетяхСети передачи данных

Коаксиальный кабель

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку.

К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5-3 раза по сравнению с кабелем на основе витых пар). Сложнее и установка разъемов на концах кабеля. Поэтому его сейчас применяют реже, чем витую пару.

Экран выполняет 2 функции: 1) защита от электромагнитных помех. 2)передача информационных сигналов.

Преимущества: низкая чувствительность к электромагнитным помехам, высокая частота передачи (порядка 50 МГц) на длинных линиях порядка километров. Недостаток: высокий вес кабеля, сложность прокладки. Обычно служит для передачи высокочастотных сигналов. Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля обе компоненты электромагнитного поля полностью сосредоточены в пространстве между проводниками (в диэлектрической изоляции) и не выходят за пределы кабеля, что исключает потери электромагнитной энергии на излучение и защищает кабель от внешних электромагнитных наводок. В реальных кабелях ограниченные выход излучения наружу и чувствительность к наводкам обусловлены отклонениями геометрии от идеальности.

Существует два типа коаксиальных кабелей: тонкий и толстый.

Тонкий КК – это кабель диаметром 0,5 см. Прост в применении и годится практически для любых видов сетей. Подключается непосредственно к платам сетевого адаптера компьютера. Тонкий КК способен передавать сигнал на расстояния до 185 м без искажений.

Толстый КК – это кабель диаметров 1 см. Чем толще кабель, тем большее расстояние способен преодолеть сигнал. Толстый КК передает сигнал до 500 м. Для подключения к толстому КК применяют специальное устройство – трансивер.

При заземлении экрана в нескольких точках по нему начинают протекать выравнивающие токи (ведь разные “земли” обычно имеют неравные потенциалы). Такие токи могут стать причиной внешних наводок (иной раз достаточных для выхода из строя интерфейсного оборудования), именно это обстоятельство является причиной требования заземления кабеля локальной сети только в одной точке.

Наибольшее распространение получили кабели с волновым сопротивлением 50 ом. Это связано с тем, что эти кабели из-за относительно толстой центральной жилы характеризуются минимальным ослаблением сигнала (волновое сопротивление пропорционально логарифму отношения диаметров внешнего и внутреннего проводников).

RG-6 – коаксиальный кабель для передачи высокочастотных сигналов.

Кабели марки RG имеют множество разновидностей и отличаются друг от друга по некоторым характеристикам, например сопротивлению проводника, устойчивости к температурным и ударным нагрузкам, времени затухания сигнала, разновидности экрана и т.д.

Коаксиальный кабель РК-50 очень часто применяется в ультразвуковой расходометрии. Первичные преобразователи (излучатели и приемники ультразвуковых волн) соединяются с блоком электроники ультразвукового расходомера посредством отрезков коаксиального кабеля фиксированной длины.

Коаксиальный кабель является частью схемы, параметры которой определяют параметры формируемого ультразвукового импульса. Поэтому самовольное изменение длины отрезков коаксиальных кабелей входящих в комплект поставки ультразвуковых расходомеров (US-800, UFM-001 и т.п.) либо запрещено производителем вовсе, либо требует ввода “новой” длины кабелей в настройки расходомера. В противном случае погрешность измерения может оказаться выше заявленной производителем, а в некоторых случаях это может и вовсе привести к отказам в работе. К такому же эффекту может привести применение коаксиального кабеля с другим волновым сопротивлением. Например, РК-75 с волновым сопротивлением 75 Ом против 50 Ом у РК-50.

ATM

ATM (Asynchronous Transfer Mode) — технология, обеспечивающая передачу цифровых, голосовых и мультимедийных данных по одним и тем же линиям. Изначальная скорость передачи была 155 Мбит/с, потом 662 Мбит/с и до 2,488 Гбит/с. ATM используется как в локальных, так и в глобальных сетях. В отличие от традиционных технологий, применяемых в локальных сетях, АТМ — технология с установлением соединения. То есть, перед сеансом передачи устанавливается виртуальный канал «отправитель–получатель», который не может использоваться другими станциями. В традиционных же технологиях соединение не устанавливается, а в среду передачи помещаются пакеты с указанным адресом. Несколько виртуальных каналов АТМ могут одновременно сосуществовать в одном физическом канале. ATM имеет следующие особенности: • Обеспечение параллельной передачи. • Работа всегда на определенной скорости (фиксируется пропускная способность виртуального канала). • Использование пакетов фиксированной длины (53 байта). • Маршрутизация и коррекция ошибок на аппаратном уровне. • Одновременная передача данных, видео и голоса с гарантированно заданным качеством. В качестве недостатка можно указать очень высокую стоимость оборудования.

Token Ring

Token Ring (маркерное кольцо) — архитектура сетей с кольцевой логической топологией и методом доступа с передачей маркера. В 1970 году эта технология была разработана компанией IBM, а после стала основой стандарта IEEE 802.5. Когда используется этот стандарт, данные (логически) всегда передаются последовательно от станции к станции по кольцу, хотя физическая реализация этого стандарта не «кольцо», а «звезда». При использовании Token Ring в сети постоянно циркулирует пакет (по кольцу), называемый маркером. При приеме пакета станция может удерживать его в течение некоторого времени или передать далее.

В центре «звезды» находится MAU — хаб с портами подключения каждого узла. Для подключения используются специальные разъемы, чтобы обеспечить замкнутость кольца Token Ring даже при отключении узла от сети. • Среда передачи — экранированная или неэкранированная витая пара. • Стандартная скорость передачи — 4 Мбит/с, хотя существуют реализации 16 Мбит/с. Существует несколько вариантов разводки сетей на основе Token Ring. Облегченный вариант обеспечивает подключение до 96 станций к 12 хабам с максимальным удалением от хаба — 45 м. Стационарная разводка обеспечивает подключение до 260 станций и 33 хабов с максимальным расстоянием между устройствами до 100 м, но при использовании оптоволоконных кабелей расстояние увеличивается до 1 км. Основное преимущество Token Ring — заведомо ограниченное время обслуживания узла (в отличие от Ethernet), обусловленное детерминированным методом доступа и возможностью управления приоритетом.

Локальные сети: общие понятия

Под локальной сетью (ЛВС, LAN) обычно подразумевают объединение компьютеров, расположенных в ограниченном пространстве. Локальные сети можно объединять в более крупные сети, такие как CAN (группа зданий), MAN (город), WAN (широкомасштабная сеть), GAN (глобальная сеть). При построении современных сетей (и вообще создании коммуникационной инфраструктуры зданий) используется концепция СКС (структурированных кабельных систем). Существуют несколько стандартов на построение этих систем — ISO/IEC 11801 (международный), EN 50173:1995 (Европа), ANSI/TIA/EIA-568-A (США), но принцип в них заложен один и тот же. Каждое рабочее место должно быть оборудовано телекоммуникационным разъемом (ТР), соединенным горизонтальным кабелем (не более 90 м) с распределительным пунктом (РП) этажа. 10 метров отводятся для подключения компьютеров и оборудования к ТР. Все РП этажей соединяются вертикальными кабелями (рекомендуется не более 500 м) с РП здания и составляют магистральную подсистему здания. Ну и, наконец, все РП зданий соединяются кабелями длиной до 1500 м с РП комплекса и образуют магистральную систему комплекса. Вообще говоря, соблюдение этих длин не обязательно (хотя очень желательно), так как сетевые кабели находятся за рамками этих стандартов. Стандартом также определяется максимальная допустимая длина кабеля между источником и приемником в зависимости от физической среды передачи для различных технологий.

Network Media (medium) – Сетевые среды.

Если поставить 2 компьютера рядом друг с другом, то конечно же они не смогут обмениваться данными между собой. Их требуется чем-то соединить. Вот для этого к нам на помощь и приходит media.

Компонент сети Media – это среды передачи данных, то есть в том, или по чему передаются данные. Network Media – это металлические провода (медная витая пара, телефонный кабель), стекло (стекловолокно), или даже «воздух» (Bluetooth, Wi-Fi, 3G, LTE). Под «воздухом» следует понимать среды передачи данных без участия проводов, то есть «беспроводные».

Вот теперь мы можем поставить два компьютера относительно рядом и соединить их либо проводом (например, медной витой парой или стекловолокном), либо с помощью беспроводной связи.

Следует оговориться, что для соединения кабелем (витой парой, стекловолокном или другими кабелями) или беспроводной связью (IR, Bluetooth, Wi-Fi) требуется специальный сетевой адаптер или модем ССЫЛКА ССЫЛКА ССЫЛКА ССЫЛКА ССЫЛКА. Теоретически, модем можно отнести к другим устройствам, не конечным, но пока мы можем считать их частью конечных устройств (например, в недалеком прошлом, модем в ноутбуке (или домашнем компьютере) являлся частью материнской платы, которая в свою очередь является одной из самых важных частей в конечном устройстве). Читайте про модемы ниже.

В предыдущем абзаце я упомянул о каких-то других устройствах, отличных от конечных, пора рассказать и об этих важных сетевых устройствах.

LonWorks

Кратко представим кабели, разработанные и производимые на НПП “Спецкабель”, которые используются для технологии LonWorks компании Echelon Corporation, изначально предназначенной для систем автоматизации жизнеобеспечения зданий, а затем постепенно нашедшей широкое применение в различных областях промышленности и транспорта. Официальное признание данной технологии определяется стандартом EIA-709 Ассоциации Производителей Бытовой Электроники (CEMA – Customer Electronics Manufactures Association) в области автоматизации жилых помещений (Home Automation). Согласно данному стандарту сеть управления LonWorks поддерживает различные среды передачи данных: симметричные кабели на основе “витой пары”, коаксиальный кабель, радио- и инфракрасный канал, силовые линии. Наряду с привычными типа ми сетевых топологий (шина, звезда, кольцо) в технологии LonWorks существует так называемая свободная или произвольная топология (Free Topology), позволяющая в рамках одного сегмента (управление климатом, освещением, системами безопасности, контролем доступа и пр.) комбинировать в системах управления зданиями все три стандартных типа топологии. Free Topology является наиболее популярной в системах управления зданиями, поскольку лучше всего соответствует внутренней разводке в помещениях. Общая спецификация на протокол LonTalk, который лежит в основе LonWorks, установлена в ANSI/EIA/CEA-709.1, а в двух других частях (709.2 и 709.3) устанавливается спецификация сетей управления на основе силовых линий и спецификация произвольной топологии на основе “витой пары” соответственно. Согласно последней, тип кабеля, рекомендуемый для сетей данной спецификации, должен удовлетворять требованиям, предъявляемым к неэкранированным кабелям категории 5 стандарта ANSI/EIA/TIA 586A с размером проводника 24 AWG.

Рис.9

НПП “Спецкабель” разработало и производит по ТУ16.К99-024-2005 две марки кабелей с исполнением без экрана и в экране, соответствующих спецификации EIA-709.3. Конструкция неэкранированных ка белей следующая: кабели для автоматизации (КА) с одной или двумя парами скрученных однопроволочных медных проводников диаметром 0,64 мм (22AWG), изолированных пористым полиэтиленом, заключенными в общую защитную оболочку из светостабилизированного полиэтилена (П), поливинилхлоридного пластиката (В) или безгалогенной композиции (П-NH). Конструкция экранированных кабелей аналогична, но с тем отличием, что скрученные пары заключены в общий экран (Эф), состоящий из алюмолавсановой ленты с проложенным под ней дренажным многопроволочным медным луженым проводником (рис. 9).

Таблица 5
Тип каналаМарка кабеляДлина магистрального кабеля (максимальное расстояние между узлами), мДлина ответви- тельного кабеля, м
TP/FT-10 (произвол. технология)КАВ, КАВЭф500 (400)
КВП, КВПЭф450(250)
КСПВЭВ500 (320)
TP/FT-10 (шинная технология)КАВ, КАВЭф14003
КВП, КВПЭф900
КСПВЭВ
TP/XF-78КАВ, КАВЭф1400
TP/XF-1250КАВ, КАВЭф1300,3
КВП, КВПЭф

Необходимо отметить, что данные марки кабелей соответствуют спецификации кабеля типа Level IV NEMA (национальной ассоциации производителей электротехнической промышленности – National Electrical Manufacturers’ Association), который рекомендован самой компанией Echelon для трех применяемых в сетях LonWorks типов каналов с различными скоростями передачи данных – TP/FT-10 (канал произвольной/свободной и шинной топологии, 78 кБит/с, соответствует стандарту EIA-709.3), TP/ХF-78 и TP/ХF1-1250 (каналы шинной топологии, 78 кБит/с и 1,25 Мбит/с). Данный кабель является универсальным для всех трех типов каналов. Для канала TP/FT-10 компания Echelon также рекомендует и другие типы кабелей такие, как обычный кабель 5-й категории по стандарту TIA 586A (также может использоваться для TP/ХF-1250) и кабель типа JY(st)Y (диаметр проводника 0,8 мм). Соответствующие этим типам кабели, разработанные и производимые на НПП “Спецкабель”, имеют марки КВП или КВПЭф и КПСВЭВ (с диаметром проводников 0,52 и 0,8 мм) соответственно (табл. 5). Помимо этого сети LonWorks могут использовать канал TP-RS-485 с интерфейсом RS-485 в основе. В этом случае НПП “Спецкабель” для применения рекомендует кабели сер. RS-485, рассмотренные выше.

Типы проводников

Провод изготавливают из разных материалов с различной толщиной. И от их качества и сечения сильно зависит цена.

Материал

Каноничным металлом для провода считается медь. Но она довольно дорога сама по себе, и не всегда нужна для применения. Поэтому в данный момент можно увидеть три основных материала:

  • Алюминий. Провод, сделанный из алюминия, значительно легче и дешевле медного. Это все его преимущества, дальше идут только недостатки. Электропроводность алюминия ниже, чем у меди, в 1,7 раз. На небольших участках это не заметно, но на длинных участках, граничащих с максимально допустимыми длинами, это может стать серьёзной проблемой. С алюминиевых проводов со временем могут сползать коннекторы. Материал сильно подвержен коррозии и его применение недопустимо в сырых помещениях или на улице, поскольку из-за повреждения коррозией электропроводность жилы значительно ухудшается. Провод из алюминия не такой гибкий, как медный, поэтому его несколько сложнее монтировать и проще повредить. Идеальное место применения кабеля с алюминиевыми жилами — это сухое помещение, например, квартира или офис, где длины кабеля не превышают половины, разрешённой используемым стандартом. Таким кабелем не получится запитать устройства по технологии PoE (Power over Ethernet). Эта технология позволяет передавать на устройство сигнал и электропитание через данный провод;
  • Омеднённый алюминий. Представляет собой алюминиевый кабель с нанесённым на его поверхность медным слоем. Этот кабель тоже значительно легче медного, но уже не так дёшев. Разница с медным кабелем составляет около 15%. Преимущество над кабелем из чистого алюминия заключается в улучшенной электропроводности и защите от коррозии. Но даже несмотря на то, что проводимость уже значительно лучше, чем у алюминиевого, технология PoE плохо работает на таком кабеле;
  • Медь. Провод, изготовленный из меди, тяжелее и дороже всех остальных. Но именно она позволяет выжать из использованной технологии всё, что задумано. И именно при медном исполнении пропускная способность витой пары будет максимальна. Сеть, построенная из медного кабеля будет самой качественной и долговечной.

Исполнение проводников

Проводники могут быть одножильными и многожильными.

  • Одножильный (Solid). Представляет из себя цельную жилу из одного проводника. Подходит для передачи сигнала на длительные расстояния. Подходит для обжима ручным инструментом;
  • Многожильный (Stranded), состоит из нескольких проводников скрученных по спирали. Более гибкий и хорошо подходит для изготовления патч-кордов. Не очень подходит для обжима ручным инструментом.

Сечение

Чем толще сечение жилы витой пары, тем больше можно пропустить по нему информации, и тем выше дальность передачи. Деление на категории уже само подразумевает то, что для выбранной категории кабеля будет выдержано требуемое сечение провода. Для маркировки сечения проводника придумана маркировка – AWG. На русский язык эта аббревиатура переводится как – Американский калибр проводов. Если говорить упрощённо, то для каждого значения AWG есть свой диаметр жилы и площадь её поперечного сечения. Для одножильного и многожильного кабеля эти значения будут разными.

Для категории Cat.5e стандарт – 24AWG. Это означает что для его полноценной работы диаметр каждого провода должен составлять 0,511 мм, что означает площадь поперечного сечения 0,205 кв. мм.

Протокол передачи данных

Это набор определённых соглашений, определяющих обмен информацией между программами. Протоколы передачи данных в компьютерных сетях задают способы доставки самого сообщения, а также обработки ошибок. Позволяют они разрабатывать и определённые стандарты, которые не относятся к конкретной аппаратной платформе.

Как и любая компьютерная сеть, интернет основан на огромном количестве компьютеров. Все они соединяются между собой при помощи проводов посредством спутниковой связи. Но этого для передачи данных недостаточно, так как передающей и принимающей стороне нужны определённого рода соглашения, с помощью которых регламентируется эта передача. Также им необходимо гарантировать тот факт, что всё пройдёт без искажений и потери информации. Этот набор правил и есть протоколы передачи данных в сети интернет. С его помощью осуществляется взаимодействие в интернете и выполняется обмен информацией в удобной форме.

Разные цели – различные протоколы. Какие они бывают?

  • TCP/IP. Протокол управления передачей для глобальной сети.
  • HTTP. С его помощью выполняется передача гипертекста.
  • РОР3.
  • WAP.
  • FTP и многие другие.

Топология сетей передачи данных

Конфигурация самой сети, а точнее, последовательность соединения её объектов и называется топологией.

Основными типами тут являются:

  • Звезда. В данном случае сам сервер осуществляет обработку всех данных с подключённых к нему компьютеров. Все данные между любыми рабочими станциями проходят через основной узел в вычислительной сети по отдельным линиям. Пропускная способность в данном случае определяется мощностью самого узла. Топология «Звезда» является самой быстродействующей.
  • Кольцо. Тут все рабочие станции соединяются между собой по кругу. Все сообщения в такой топологической сети циркулируют по кругу. В данном случае присутствует возможность выполнить кольцевой запрос одновременно на все станции. Чем больше пользователей, тем продолжительнее происходит передача информации. В данном случае каждая такая рабочая станция должна участвовать в перемещении данных. И при выходе из строя хотя бы одной – весь процесс парализуется.
  • Шина. Передача информация в шинной топологической сети представляется в виде общей магистрали. Именно к ней и происходит подключение всех рабочих станций. При этом они могут вступать в работу и между собой. Особенностью такого типа сети является тот факт, что её работоспособность не зависит от состояния станций (рабочие либо нет). Их можно подсоединять и отсоединять в любое время, не нарушая сетевых процессов.

Принцип передачи данных в одноранговых сетях основывается на равноправии всех участников. В большинстве случаев тут может отсутствовать выделенный сервер. Именно поэтому каждый узел сети может выступать в качестве клиента и самого сервера. Данная организация даёт возможность сохранять работоспособность при любом сочетании доступных узлов.

Во время организации и работы предъявляются особые требования к сети передачи данных. Что сюда относится?

  • Безопасность.
  • Надёжность.
  • Высокая производительность.
  • Возможность масштабирования.
  • Современность.
  • Лёгкое управление.
  • Поддержка различных видов трафика.
  • Прозрачность.

Intermediary Devices – Промежуточные устройства

Соединив два компьютера между собой посредством провода, у нас не остается места для третьего. Конечно, для третьего и даже четвертого компьютеров можно добавить дополнительные сетевые карты (сетевые адаптеры) в каждый компьютер, но это не решит вопрос о надежном подключении ста компьютеров сеть, или даже тысячи компьютеров.

Вот тут-то мы начинаем задумываться о различных топологиях сети, но на данный момент лучше гибридной топологии ничего не придумали. В каждой гибридной топологии есть элемент от топологии звезды – некоторое связующее устройство или промежуточное устройство.

Компонент сети Intermediary Devices или Промежуточные устройства, это такие устройства, которые объединяют конечные устройства в локальные (или глобальные) сети передачи данных.

К промежуточным устройствам относятся: хабы (hubs), свитчи (switches, коммутаторы), роутеры (routers, маршрутизаторы), модемы (modems), беспроводные точки доступа (Wireless Access Point) и файерволы (firewalls, брендмауеры).

Главное отличие у промежуточных устройств от конечных устройств заключается в том, что оно (промежуточное устройство) не инициализирует передачу данных, то есть не начинает первым отправку сообщений другим устройствам.

Еще одна оговорка: хоть маршрутизаторы обмениваются информацией (таблицами маршрутизации) между собой, цель этого процесса – поддержание актуальных сведений для обработки пакетов от конечных устройств, то есть они служат конечным устройствам.

А теперь про модемы, они присутствуют как в конечных устройствах (причем, как часть конечных устройств), так и отдельно. Я считаю, что обычные модемы (или карты расширения беспроводной связи) в ноутбуках, это часть конечного устройства, и поэтому относится к конечным устройствам. А внешние модемы, которые используются для преобразования оптоволоконной среды в пригодную для маршрутизатора, являются отдельными промежуточными устройствами.

Итак, улучшим нашу сеточку. Объединим все наши компьютеры (допустим 10 штук) в локальную сеть, соединив их все с одним коммутатором. Готово, сеть построена.


Допустим, у нас есть две такие сети, из коммутатора и десяти компьютеров, соединим коммутаторы с маршрутизатором, и вот у нас уже 2 отдельные сети объединены в одну большую.


На этом этапе физическая часть компонентов сети заканчивается и начинается программная часть.

Подключение интернета с помощью оптоволокна

Самый распространённый в РФ интернет, сеть которого функционирует на основе оптоволокна, предоставляется провайдером Ростелеком. Как подключить оптоволоконный интернет?

Сначала следует просто убедиться в том, что оптический кабель подведён к дому. Затем нужно заказать подключение к интернету у провайдера. Последний должен сообщить данные, обеспечивающие подключение. Потом нужно выполнить настройку оборудования.

Она осуществляется так:

  • После проведения оптоволокна и подключения оборудования, обеспечивающего работу в оптических пассивных сетях, сотрудниками фирмы-провайдера, вся последующая настройка выполняется самостоятельно.
  • Прежде всего устанавливаются жёлтый кабель и розетка так, как изображено на рисунке ниже.
  • Можно иметь собственный Wi-Fi роутер, не обязательно приобретать маршрутизатор от Ростелекома. К Wi-Fi подключают оптоволоконный кабель, оптический терминал и основной шнур, посредством которого происходит подключение роутера к оптической розетке.
  • Нужно выбрать для установки всего оборудования как можно более вентилируемое место. Монтажнику из компании-провайдера следует указать, где именно нужно установить элементы сети.

Терминал оборудован специальным гнездом, позволяющим соединяться с компьютером и соединять роутер с интернетом. Кроме того, терминал имеет 2 дополнительных гнезда, позволяющих подключить к оптоволоконному соединению аналоговый домашний телефон, а также ещё несколько гнёзд предусмотрены для подключения телевидения.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий