Внешний вид: тип цоколя
Восприятие дизайна интерьера во многом зависит от качественного освещения помещения. Правильно подобранный вариант освещения подчеркнет достоинства интерьера и скроет недостатки. Важный аспект, без которого не получится реализовать такой дизайнерский ход, — выбор подходящей формы и приятного внешнего вида ламп для современных осветительных приборов.
Определившись с видом лампочки, человек обращает внимание на тип цоколя. Они бывают:
- Стандартные или винтовые. Больше всего распространены в быту: Е14 (миньон) и Е27. Цифрой обозначается диаметр цоколя. Особенностей монтажа не предусмотрено. Лампочки с цоколем типа Е40, Е27 или Е14 разрешено монтировать в патроны стандартных ламп накаливания. Цоколь Е27 имеет резьбу в 27 миллиметров, а Е14 — уменьшенную резьбу в 14 миллиметров.
- Штырьковые. В быту применяются не так часто, как винтовые. Штырьковые контакты чаще применяются в светильниках современных вариантов освещения. Маркировка патрона очень важна.
Число, которое следует за буквенной маркировкой такого типа цоколя — это расстояние между штырьками, обозначенное в миллиметрах (GU4 или GU5.3 и т.п.).
После выбора цоколя подбирается вид и размер осветительных электроэлементов. Более оригинальная форма (свеча, шар) и красивый дизайн — у светодиодных и галогеновых ламп. Люминесцентные могут иметь лишь форму спирали или трубки.
КПД и световая отдача
В данном случае мы говорим о КПД как о той части затраченной энергии, которая пошла непосредственно на получение света от источника. Есть распространённое заблуждение, что светодиоды имеют в данном случае какие-то рекордные показатели – чуть ли не 99%. Но это не так. КПД даже самых передовых разработок в этом направлении пока не превышает 40%
. И это только сам светодиод. Добавим к этому КПД блока питания и получим реальное значение для распространённых коммерческих продуктов со светоотдачей около 140 люмен на ваттна уровне 20-25%% . Всё остальное превращается в тепло. В том числе и по этой причине светодиодные лампочки в корпусах из дешёвого пластика с низкой теплопроводностью имеют такой маленький срок службы – они просто перегреваются.
Люминесцентная лампа здесь также проигрывает своим более современным собратьям. Поскольку фундаментальные разработки в данном направлении практически не ведутся, световая отдача этих источников света в обозримом будущем вряд ли поднимется выше современных 80-100 люмен на ватт, что даёт КПД около 10-15%%
. То есть в самом оптимистичном – для люминесцентных ламп – варианте на четверть ниже светодиодов. В реальной жизни разница больше.
Подготовка к тестированию
Для начала мне надо было переделать встраиваемый тестер для измерения реальной мощности, которую потребляют лампочки: приделать к нему розетку и вилку, чтобы подключить через него светильник. Розетку для модификации встраиваемого тестера купил в ОБИ. Сетевой шнур от компа был в наличии. Основой для устройства стал обрезок 20-миллиметровой доски. Розетка и тестер. Фото автора
Сетевой провод будет зафиксирован на доске самодельным хомутом из оцинковки. Сгибаем прямоугольник из жести по форме провода.
Делаем хомут из жести. Фото автора
Сверлим отверстия диаметром 3 мм для шурупов.
Сверлим отверстия аккумуляторным шуруповертом Greenworks. Фото автора
Также делаем пару хомутов для фиксации на доске самого встраиваемого тестера.
Хомуты из оцинковки. Фото автора
Розетка закреплена двумя шурупами на основании. Сетевой провод и тестер зафиксированы жестяными хомутами. Подключаем сетевой провод и розетку к тестеру.
Монтируем розетку и тестер. Фото автора
Подключаем устройство к сети. Тестер заработал: подключили правильно. Можно приступать к контрольным замерам параметров лампочек.
Тестер собран — тестер работает. Фото автора
Теоретические основы
Перед тем, как сравнить два светильника, неплохо бы рассмотреть, какие теоретические основы процесса и конструктивные особенности есть у каждого. Но сначала придется ввести некоторое уточнение или пояснение. Дело в том, что под термином «энергосберегающие» с позиции простого обывателя скрывается не что иное, как компактные люминесцентные лампы (КЛЛ). Они действительно имеют более низкое потребление электричества, чем у ниточных, вольфрамовых аналогов при одинаковом уровне освещенности и лучше для дома. Но с точки зрения науки, технологии также справедлив термин «энергосберегающие светодиодные лампы». У них совершенно иной принцип и теория действия, но базовые цели те же. В этой статье мы не будем стараться поставить все на свои места в плане терминологии, поскольку в маркетинговом отношении она уже устоялась.
Итак, люминесцентной, компактной люминесцентной или энергосберегающей принято называть целую группу искусственных газоразрядных источников света. Принцип их действия базируется на создании и пропускании электрического разряда в замкнутом пространстве, заполненном, чаще всего, парами ртути. Это приводит к генерированию ультрафиолетового излучения, но для преобразования его в видимое, направленное потребуется дополнительная реакция.
Оказывается, если внутренние стенки условной колбы, в которой создается разряд, покрыть люминофором, то ультрафиолетовые лучи вызовут в нем химическую реакцию. При поглощении энергии происходит свечение или люминесценция. В качестве реагента обычно используют орто- или галофосфаты кальция, цинка в смеси с другими компонентами. Состав люминофора прямо влияет на оттенок и цветовую температуру, какими характеризуется лампа.
На концах колбы находятся электроды, пропускание тока через которые приводит к термоэлектронной эмиссии – высвобождению отдельных электронов с поверхности катода. Таким образом, поддерживается дуговой разряд в среде инертных газов и паров ртути.
Светодиодные лампочки имеют совершенной иной принцип действия. Он базируется на свойствах полупроводников, чем, собственно говоря, диоды и являются. В классическом варианте, когда граница или p-n-переход разделят кремниевый и германиевый элементы, происходит перераспределение дырок и электронов, то есть однонаправленный электрический ток. Но если, применить другие материалы, например, нитрид и арсенид галлия (GaN и GaAs), то рекомбинация элементарных частиц будет связана переходом между энергетическими уровнями и выделением фотонов, то есть свечением. Уже на основании одного этого факта, можно судить о том, что в сравнении с люминесцентными, такие лампы лучше для дома, более безопасны, ведь не используют в работе ртуть.
Почему газоразрядные лампы называют энергосберегающими
Лампы накаливания появились в домах и офисах в конце XIX века. Считается, что изобрел этот источник света со светящейся нитью Эдисон. Произошло это в 1879 году. Историки полагают, что одновременно над темой независимо работали около 10 разных ученых. Но в этих лампочках использовались угольные светящиеся элементы. Вольфрам впервые предложил использовать инженер Лодыгин. С 1890 года практически все лампочки накаливания были уже с вольфрамовой нитью.
Газоразрядные лампы были изобретены еще в 1875 году, но широкого распространения сначала не получили. Лишь в 1938 году они вышли на рынок и стали вытеснять лампочки накаливания.
Источником света в них был возбужденный электричеством газ. Следующим этапом развития технологии стало изобретение люминесцентных ламп. Их отличие от обычных газоразрядных — колба, покрытая люминофором — веществом, способным преобразовывать энергию возбужденного электричеством газа в световую. Это позволило изменить спектр свечения, приблизить его к дневному свету. Он более комфортен для людей и обеспечивает хорошую цветопередачу.
Но сначала это были длинные лампы-трубки, требовавшие светильников особой конструкции. Компактные люминесцентные лампочки вставлялись в специальные разъемы G11 и прочие.В обычные светильники их также поставить было нельзя. Это ограничивало сферу применения.
Энергосберегающими люминесцентные лампочки стали называть, когда появились модели со стандартным цоколем E14 и E27. У потребителей появилась альтернатива. Можно было заменить в люстре или светильнике лампу на потребляющую меньше электричества без потери величины светового потока и сэкономить на счетах за электричество.
Энергосберегающие лампы имеют следующие преимущества над традиционными:
Спектр света близок к дневному солнцу. Лампочки накаливания обладали желтым свечением. Оно соответствует утреннему солнцу и несколько искажает цвета освещаемых предметов. Люминесцентные обеспечивают естественную цветопередачу.
Низкое, в сравнении с лампочками накаливания, энергопотребление. В традиционных источниках света с раскаленной вольфрамовой нитью много энергии уходит на нагревание. В газоразрядных эти потери меньше.
Более долгий срок эксплуатации. Современные люминесцентные источники света служат до 8 раз дольше, чем традиционные лампочки накаливания. Хотя здесь многое зависит от производителя, модели и режима использования. Преимущество в долговечности раскрывается максимально при пользовании светом на 8-10 часов ежедневно. В режиме 1 час в сутки лампочка накаливания способна проработать 10 и более лет.
В какой-то момент времени казалось, что газоразрядная технология сможет полностью вытеснить конкурента с рынка. Вероятно, так бы и произошло. Но появление светодиодной технологии резко изменило расклад сил.
Сравнение энергосберегающих и светодиодных ламп
Чтобы определить, какая лампа лучше: светодиодная или энергосберегающая, недостаточно ознакомиться только с их характеристиками
Важно обратить внимания на условия эксплуатации
Энергопотребление разных видов лампочек.
Когда затрагивается вопрос экологичности, предпочтение также отдается светодиодной лампе, поскольку внутри неё нет вредных паров. Стоит учесть, что КЛЛ нецелесообразно устанавливать вместе с выключателем, регулирующим интенсивность света. Она может гореть либо в полную мощность, либо быть выключенной. Это объясняется ионизацией газа, которую невозможно контролировать.
Потребляемая мощность
По итогам исследований выяснилось, что люминесцентные (энергосберегающие) лампы экономнее обычных ламп накаливания на 20-30%. Светодиодные, в свою очередь, бывают более экономными, чем КЛЛ примерно на 10-15%. Всё зависит от мощности и брендов.
Сравнение показателей экономичности, срока службы и цены разных видов ламп.
Единственное преимущество энергосберегающей лампы в данном случае – это стоимость. Светодиодная обойдётся намного дороже. Но при надлежащих условиях эксплуатации она прослужит в 2-3 раза дольше.
Экологическая безопасность
КЛЛ содержит в себе примерно 5 мл. ртути, ее количество может незначительно увеличиться или уменьшиться в зависимости от размеров изделия. Данный металл считается вредным для организма человека. Его относят к самому высокому классу опасности. Выбрасывать такую лампочку вместе с остальным мусором запрещено, поэтому её придётся сдавать в специализированный пункт приёма.
Влияние КЛЛ на организм.
Рабочая температура
Максимальная температура накаливания люминесцентной лампы достигает 60 градусов. Она не спровоцирует возгорание и не способна травмировать кожу человека. Но если возникнут сбои в работе проводки, температура может значительно повыситься. Считается, что вероятность возникновения такой ситуации крайне мала, однако риск все же есть.
Говоря о светодиодных лампочках, они практически не нагреваются. Особенно, если выбираются качественные изделия от популярных брендов. Это объясняется полупроводниковой технологией на основе кристаллов LED. Для большинства людей показатели нагрева являются несущественными, так как у них не возникает необходимости дотрагиваться до лампы в момент её работы.
Срок службы
Если бюджет неограничен и нужно купить лампочку с самым длительным периодом службы, лучше приобрести светодиодную. Но чтобы цена себя оправдала, следует покупать изделия от популярных брендов, о которых будет сказано ниже.
Срок службы разных типов лампочек.
Изучив итоги исследований, можно прийти к следующему выводу: в среднем светодиодные источники света служат в 4-5 раз больше, чем люминесцентные. Чтобы проверить эту информацию, достаточно ознакомиться с текстом на упаковке. Led-лампочка при надлежащих условиях эксплуатации работает до 50 000 часов, а энергосберегающая около 10 000.
Итоги сравнений (таблица)
Вид лампочки | Экономия электроэнергии | Срок эксплуатации | Безопасность и утилизация | Нагрев корпуса | Стоимость |
Светодиодная | + | + | + | + | — |
Энергосберегающая | — | — | — | — | + |
Итог | 4:1 Победитель светодиодная лампа |
Расчет окупаемости при замене ламп на светодиодные
Теперь посчитаем затраты на электричество при использовании светодиодных ламп: 10 Ватт х 90 часов х 20 ламп = 18 кВт., что в пересчете на деньги получается 72 рубля. При разнице в цене между среднестатистической лампой накаливания в 50 рублей и недорогой российской светодиодной лампой аналогичной световой отдачи в 350 рублей, получаем, что ежемесячно окупается почти 2 светодиодных лампы. Все 20 ламп в квартире окупят затраты на приобретение менее, чем за год! А дальше Вы будете экономить на электроэнергии по 5-6 тысяч рублей в год!
Если приобретать светодиодные лампы от именитых марок (брендов), стоимость которых на сегодняшний день, примерно в 2-2,5 раза выше, то окупаемость произойдет за 2 года, но в данном случае Вы приобретаете гораздо более надежные лампы с многолетней гарантией.
Дополнительные плюсы:
— лампы накаливания часто перегорают, их надо покупать и менять, а светодиодные лампы практически «вечные». В более длинном периоде светодиодная лампа окупается даже без учета экономии электроэнергии;
— покупать светодиодные лампы тем выгоднее, чем больше они используются, т.е. в помещениях, где свет горит всегда или почти всегда, светодиодные лампы окупаются значительно быстрее;
— светодиодные лампы экологичны и неприхотливы в использовании.
Экономика перехода с люминесцентных ламп на светодиодные поражает воображение уже не так сильно, но тем не менее, учитывая все факторы, тоже имеет смысл. Основываясь на предложенной методике расчета Вы можете самостоятельно расчитать экономический эффект по своей квартире, дому или офису.
Теплоотдача
Теплоотдача осветительного прибора – это негативная и вредная характеристика для ламп освещения. Чем выше температура прибора при его работе, тем больше энергии он тратит впустую на никому ненужный нагрев. Более того, чрезмерная температура лампы может привести к ожогам (при случайном прикосновении к лампе) или к пожару и порче отделочных материалов (например, может расплавится пластиковый или натяжной потолок). По этому параметру лампы накаливания заметно уступают светодиодным, они очень сильно нагреваются и тратят большое количество энергии на нагрев. Это, безусловно, связано с принципом работы данного осветительного прибора.
Светодиоды — «светлое будущее» или «дорогостоящее настоящее»?
Цена — самый болезненный, на сегодняшний день, вопрос для светодиодной индустрии. Даже если светильник и собирается в нашей стране, то, как правило, большинство его комплектующих импортные. Ответ напрашивается сам собой: что бы снизить стоимость светодиодной продукции необходимо наладить их отечественное производство.
По словам, Алексея Свичкарева, руководителя отдела рекламы и маркетинга ООО «МДМ-Лайт»: Первое полноценное производство светодиодных светильников должно заработать под Санкт-Петербургом в этом году. Оно принадлежит АО «Оптоган». На предприятии планируется осуществить полный цикл производства — от выращивая кристаллов, до сборки светильников. Компания сможет производить до 1,5 млрд. диодов, и около 1-2 млн. светильников. Предположительно, оптовая цена светодиодной лампочки под стандартный цоколь E27 с российскими кристаллами внутри, по яркости свечения сопоставимой с лампочкой накаливания мощностью 60 Вт, будет около 350 рублей.
Возможно, цены снизятся, но будет ли этого достаточно для массового применения светодиодных светильников?
Основные виды энергосберегающих ламп
Существуют определенные категории осветительных приборов, обладающих светоотдачей во много раз большей, чем у традиционных ламп накаливания. При этом, потребление электричества у тех и у других будет примерно одинаковым.
Такие источники света считаются энергосберегающими, с более высоким коэффициентом полезного действия. На единицу светового потока они затрачивают электроэнергии примерно в 5 раз меньше, при минимальных тепловых и других потерях. Все энергосберегающие лампочки объединяются в две основные группы.
Люминесцентные лампы
Вошли в эту категорию сравнительно недавно, поскольку конфигурация в виде трубок не позволяла получить нужный эффект. Для нормальной эксплуатации приходилось использовать особые конструкции светильников, а установка и замена до сих пор считается очень неудобной. С появлением компактных фигурных ламп ситуация полностью изменилась. У этих приборов появились цоколи, которые можно вкрутить в обычные светильники.
В конструкцию таких ламп входят следующие компоненты: стеклянная колба, заполненная аргоном и ртутными парами, цоколь и пускорегулирующее устройство. Последний элемент обеспечивает генерацию электромагнитного излучения и направленное движение электроном со спирали. Далее, возникает тлеющий разряд, вызывающий ультрафиолетовое излучение в ртутных парах. Попадая на люминофор, это излучение подвергается трансформации и превращается в видимый свет.
Светодиодные лампы (LED)
В этих приборах свет создается специальными полупроводниковыми устройствами – светодиодами. При подключении к питанию они начинают излучать световой поток. Данные лампы потребляют электроэнергию в минимальных количествах, сохраняя высокую светоотдачу и яркость свечения. Светодиодная лампочка мощностью 6 ватт, производит столько же света, как и лампа накаливания на 60 Вт. Потребление электроэнергии получается ниже примерно в 8 раз.
О разнообразии профильных светильников
Никакой другой источник света не сравнится со светодиодом способностью воспроизводить разную цветовую температуру света. Фото: «Светильники, Малая Ордынка 39» На основе светодиодной ленты создаются так называемые линейные светильники. Они представляют собой профиль, внутри которого подключена светодиодная лента. Такие светильники универсальны: их можно использовать как в технических помещениях, так и для освещения общественных и жилых интерьеров. В корпусе некоторых моделей профиля предусмотрен отсек для блока питания, что значительно улучшает внешний вид готового светильника. Монтаж светильников осуществляется с помощью специальных креплений для накладного или подвесного монтажа.
Линейные светильники могут использоваться как для основного, так и для локального освещения. Преимуществом подобных устройств является их сравнительно небольшая глубина, ограниченная толщиной профиля, что позволяет создавать практически плоские конструкции.
В качестве локального подобное освещение чаще всего используется на кухне в рабочей зоне. Для этого применяют линейные светильники, которые монтируются на нижнюю поверхность шкафчика. Однако потребность в подобном освещении может возникнуть в мастерской, на рабочем месте школьника или студента.
Для создания равномерного освещения используются светильники с широкими рассеивающими экранами. Для декоративной подсветки — светильники с направленными лучами света.
Алюминиевый профиль дополняется большим количеством комплектующих: соединителей, заглушек, креплений. Это позволяет создавать интересные дизайнерские модели светильников: накладные или подвесные, прямые или кубические, строгих линий или оригинальные.
LED-диммер серии D-life (Shneider Electric) автоматически распознаёт тип подключённой нагрузки и работает с любыми лампами, включая диммируемые светодиодные от 7 Вт. Может управляться c приложения Wiser Room. Фото: Shneider Electric
Перед обычными готовыми светильниками такие модели имеют ряд преимуществ:
- Эксклюзивный дизайн светильника при более низких затратах.
- Возможность изменить освещение за счёт простой замены ленты (цвет свечения), добавить контроллер и сделать динамическую подсветку.
- Простота замены ленты, как лампочки в обычном светильнике.
- Надёжная лента обеспечит долгий срок службы светильника.
Производство эксклюзивных дизайнерских светильников — интересная задача, в которой творческий потенциал практически не ограничивается техническими рамками. Например, существует специальный гибкий профиль Arlight ARH-BENT для создания светильников в виде волн, окружностей или сфер. Нужную форму профилю можно придать непосредственно руками, но для получения безупречных изгибов мы рекомендуем использовать жёсткие каркасы или болванки. Просто оберните профиль вокруг каркаса с небольшим натяжением, а затем аккуратно снимите его. Диаметр окружности при этом должен быть не менее 20 см. Профиль KLUS PDS45-KUB интересен другим: он используется для создания объёмных кубических конструкций, например оригинальных дизайнерских светильников: подвесных, настенных или напольных. Однако даже с помощью универсальных моделей профиля можно создавать действительно уникальные конструкции. Например, профили KLUS PDS-S и KLUS PLS-GIP чаще всего применяются для изготовления линий света, но хорошее воображение и умелое исполнение позволяют использовать их для создания оригинальных дизайнерских люстр.
Виталий Берелидзе
Технический директор Арлайт Рус
Особенности люминесцентных светильников
Хорошо всем известные люминесцентные лампы-трубки излучают свет за счет протекания тока через смесь инертного газа (аргона) и ртутных паров. Для образования токового канала между электродами производится пробой газового облака напряжением 1 кВ. Под воздействием электрического разряда появляется ультрафиолетовое излучение, которое не видно человеческому глазу. На помощь приходит люминофор, покрывающий внутреннюю поверхность лампы. Люминофорный слой поглощает уф-излучение и преобразует его в видимый световой поток.
Ртуть необходима для увеличения светоотдачи, поскольку повышает рабочий ток благодаря росту количества свободных электронов, образующихся в процессе ионизации ее атомов. В современных компактных энергосберегающих лампах (спиральных и дуговых), использующих технологию люминесценции, ртуть практически не применяется. Интенсивность светового излучения у таких источников освещения меньше, но зато они не наносят вреда экологии.
Лавинообразное нарастание тока ограничивается так называемым балластом (электромагнитным пускорегулирующим устройством), состоящим из дросселя и стартера. В современных светильниках устанавливают электронные пускорегулирующие устройства (ЭПРА) на основе диодов, транзисторов, динисторов, микросхем. Высокая частота этого варианта балласта способствует устранению эффекта 50-герцового мерцания.
Типы люминесцентных ламп
Люминесцентные лампы подразделяются по размерам и форме стеклянной колбы, типу цоколя, мощности, цветовой температуре, светоотдаче. Например, форма лампы бывает трубчатой (прямой), U-образной, спиралевидной, кольцевой. Типоразмер Т8 расшифровывается как прямая трубка диаметром 2,54 см. У Т12 диаметр составляет 3,81 см. Выпускаются модели модификации G со штырьковым двухконтактным цоколем и E с обычным винтовым цоколем.
Цветовая гамма не отличается разнообразием. Это несколько оттенков белого света или более теплый свет с желтым излучением. Хотя за счет изменения состава люминофора можно получать и другие цвета Бытовые энергосберегающие лампы всех типов хорошо зарекомендовали себя и пользовались высоким спросом пока не появилась лучшая альтернатива – светодиодные светильники.
Достоинства и недостатки люминесцентных светильников
Достоинства люминесцентных светильников можно рассматривать только в сравнении с лампами накаливания, что не входит в задачу нашего обзора. Если сравнивать их с лед-светильниками, то никаких особых преимуществ не наблюдается.
Например, по уровню световой отдачи LED-источники однозначно выигрывают, что наглядно видно из приведенной таблицы:
Энергопотребление люминофорных светильников в разы выше, чем у светодиодов, а интенсивность излучаемого света наоборот ниже. Если взять люминесцентную лампу на 15 Вт и ее лед-аналог на 5 Вт, то величина светового потока будет составлять 450 лм в каждом варианте. А вот по значению эффективности светоотдачи люминофорный светильник проигрывает из-за большего потребления электроэнергии. Вы можете посмотреть сравнение по параметрам, подготовленное специалистами:
Параметр | Лампа накаливания | Люминесцентная лампа | Светодиодная лампа |
Стоимость | Низкая | Средняя | Средняя |
Эффективность (КПД) | Низкая | Средняя | Высокая |
Расходы на эксплуатацию | Высокие | Средние | Очень низкие |
Срок службы, часы | До 1 000 | До 10 000 | До 30 000 |
Мерцание | Низкое | Высокое | Отсутствует |
Содержание ртути | Нет | Высокое | Нет |
Выход на рабочий режим | 1 секунда | 2-5 минут | Менее 1 секунды |
Перепады напряжения | Неустойчива | Неустойчива | Устойчива |
Перепады температуры | Неустойчива | Неустойчива | Устойчива |
Перегрузки в сети | При пуске | При пуске | Нет |
Устойчивость к вибрации | Неустойчива | Неустойчива | Устойчива |
Стабильность в низких темп. | Средняя | Низкая | Высокая |
Итак, в отсутствии явных преимуществ люминесцентных ламп Вы уже смогли убедиться
Рассмотрим их основные недостатки, имеющие важное значение для пользователей:
- невысокая надежность;
- большое энергопотребление (тип Т);
- за несколько месяцев теряется до 30-40% яркости светового потока;
- яркий свет появляется не сразу, а постепенно;
- мерцание с частотой электросети 50 Гц;
- лампы-трубки издают гул и имеют только белое свечение;
- световой поток рассеивается во все стороны (отсутствует фокусировка);
- наличие ртути отрицательно сказывается на экологии;
- необходимо утилизировать лампы по специальному регламенту.
Да, перечень минусов удручающе велик. У Вас еще остались сомнения по поводу пригодности люминесцентных светильников для Вашей квартиры, дома или офиса?
Подводя итоги
Мощность светодиодной лампы, при выборе, не является первостепенно важной величиной. Гораздо важнее испускаемый ею световой поток
Этот же момент относится и к энергосберегающим КЛЛ. Если подходить к замене перегоревших источников искусственного света на светодиодные аналоги более педантично, то кроме сравнения световых потоков необходимо учитывать коэффициент пульсации, индекс цветопередачи и еще ряд других моментов, подробно описанных в статье о выборе светодиодных ламп
Также рекомендуется обратить внимание и на конструктивные особенности светильника, в котором лампочка будет использоваться
Источник