Снижение токов включения трансформатора

Типы магнитопроводов силовых трансформаторов.

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.

Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

Магнитопроводы бывают:

1, 4 – броневые,

2, 5 – стержневые,

3, 6 – кольцевые.

Правда, кольцевых штампованных магнитопроводов я никогда не видел.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Подробнее о магнитопроводах в главе – «Разборка и сборка трансформаторов».

Как происходит первое включение

Существуют также и вспомогательные тесты, которые помогают установить, как происходит первое включение трансформатора:

Испытание трансформаторов тока толчком на номинальное напряжение

При особых условиях эксплуатации выполняют испытание трансформаторов тока толчком на номинальное напряжение. Этим тестом проверяется функционирование устройства в экстремальных условиях. Контроль тока и напряжения осуществляется на понижающей обмотке.

Величины значений напряжения (линия-земля и линия-линия) должны быть очень близкими. Если это не так, питание отключают и вызывают представителя фирмы-производителя.

Проверка работы холостого хода

При совпадении номиналов подключают нагрузку и подают питание на устройство: так можно проверить работу холостого хода. При контроле напряжений и токов нагружение должно быть безударным, и увеличиваться ступенчато, пока не будет достигнута полная нагрузка. И напряжения, и токи должны меняться одинаково. Максимальная длительная нагрузка указывается в паспортных данных.

После установки проверяют выходное напряжение трансформатора. Проверка должна производиться в некоторой безопасной точке доступа к нагрузке, но не в самом устройстве.

Проверяем правильность работы устройства

Для протяженных кабельных трасс падение напряжения существенно возрастает. Когда напряжение на стороне нагрузки низкое, то для поднятия этого параметра следует использовать отводные соединения ниже 100% напряжения сети. Если напряжение на стороне нагрузки высокое, то для его снижения необходимо использовать ответвительные соединения, превышающие 100% линейного напряжения.

Что представляет собой симистор

У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.

Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.

Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.

Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.

Описание процесса

Намагничивание трансформатора изза включения его под напряжение считается самым неблагоприятным случаем, вызывающим БНТ наибольшей амплитуды. Когда производится отключение трансформатора, напряжение намагничивания оказывается равным нулю, ток намагничивания снижается до нуля, в то время как магнитная индукция изменяется согласно характеристике намагничивания сердечника. Указанное обуславливает наличие остаточной индукции в сердечнике. Когда, по истечении некоторого времени, производится повторное включение трансформатора под напряжение, изменяющееся по синусоидальному закону, магнитная индукция начинает изменяться по тому же закону, однако со смещением на значение остаточной индукции. Остаточная индукция может составлять 80–90% номинальной индукции, и, таким образом, точка может переместиться за излом характеристики намагничивания, что, в свою очередь, обуславливает большую амплитуду и искажение формы кривой тока.

На рисунке представлена характерная форма БНТ. Данная осциллограмма отображает наличие длительно затухающей апериодической составляющей, может быть охарактеризована содержанием различных гармоник и большой амплитудой тока в начальный момент времени (до 30 раз превышающей значение номинального тока трансформатора). Кривая значительным образом затухает через десятые секунды, однако полное затухание характерно через несколько секунд. При определенных обстоятельствах БНТ затухает лишь спустя минуты после включения трансформатора под напряжение.

Другие простые варианты регулировки напряжения в первичке

Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:

  • Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
  • Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
  • Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.

Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.

. Предлагаемая универсальная конструкция предназначена для зарядки кислотных 12-ти и 6-ти вольтовых аккумуляторов и в состоянии обеспечить зарядный ток до 5-6 А. Регулировка тока – плавная. В отличие от распространенных схем, в этой конструкции управляющий элемент (тиристор VS1) включен в цепь первичной обмотки, что значительно уменьшило рассеиваемую на нем мощность и позволило обойтись без установки тиристора на радиатор. Схема контроля, собранная на стрелочном приборе PA1, тоже достаточно экономична, поскольку не имеет мощного шунта, включаемого обычно во вторичную цепь. Взглянем на принципиальную схему зарядного устройства.

Для схемы «РЕЗЕРВНОЕ ЭЛЕКТРОПИТАНИЕ»

ЭлектропитаниеРЕЗЕРВНОЕ ЭЛЕКТРОПИТАНИЕЮ.ГУМЕНЮК, 275100, Украина, Черновицкая обл., п.Кельменцы, ул.Западная, 5, тел.2-17-59.В последнее пора появились перебои в снабжении электроэнергией. Бывает, что в селах свет подается 10…12 часов в сутки, что, безусловно, доставляет большие неудобства. Для устранения этих неудобств я предлагаю систему резервного электропитания. Стартерныи тракторный аккумулятор 6СТ132 при наличии сети 220 В заряжается от сетевого выпрямителя. Когда электроэнергия отключается, аккумулятор питает несколько ламп 12 Вх40 Вт (по сути дела, это аварийное освещение) и конвертор (преобразователь) постоянного напряжения 12 В в переменное 220 В (рис.1). На рис.2 приведена схема выпрямителя для зарядки аккумулятора. Регулировка заряда производится галетным переключателем S1 за счет изменения числа витков обмотки. Описание микросхемы 0401 Выпрямитель обеспечивает ток заряда 10…15 А. Трансформатор Т1 можно использовать любой с габаритной мощностью не менее 400 Вт. Первичная обмотка Т1 содержит 369+50+50+50+50 витков провода диаметром 0,7 мм. Вторичная обмотка содержит 38 витков провода диаметром 3 мм. Диоды выпрямительного мостика VD1…VD4 — любые с допустимым прямым током не менее 10 А. В цепь нагрузки включен амперметр РА1 с пределом измерения 20 А. Диоды VD1…VD4 надобно установить на радиатор площадью порядка 100 см.кв. Думаю, нелишне будет напомнить, что токи, протекающие в выпрямителе, значительны, поэтому провода к аккумулятору и нагрузке должны иметь соответствующее сечение (не менее 1 мм.кв.).Другим важным узлом системы резервного электропитания является преобразователь постоянно…

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

Схема дуговой сварки.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную. Вторичное напряжение трансформатора составляет 70 В.

Понятие холостого хода

Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:

  • намагничивание сердечника;
  • магнитное поле рассеивания сердечника;
  • электромагнитное рассеивание обмотки;
  • междувитковую емкость проводов обмотки.

В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода. При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.

Условия

Существуют определенные условия параллельной работы трансформаторов. Всего установлено 5 пунктов. Включенные приборы работают правильно при следующих условиях:

  1. Фазировка. Выполнение этого условия трансформаторами является обязательным. Иначе будет наблюдаться короткое замыкание. Токи вторичных цепей позволяют выполнить фазировку. Фазы соединений согласовываются со стороны низкого, высокого напряжения.
  2. Напряжение на обмотках вторичных и первичных катушек при соединении должно быть разным. Это условие выполняется с соблюдением особенностей изоляции. Коэффициент трансформации всех элементов системы должен быть идентичным. Соединить устройство допускается, если отклонение показателя не превышает 0,5 %.
  3. Напряжение короткого замыкания равно для всех агрегатов. Это способствует выполнению обмотками установленных функций. Сопротивление контура возрастает при высоком напряжении короткого замыкания. Увеличивая его уровень для маломощного агрегата, можно получить перегрузку. Для нормальных условий функционирования системы при выполнении стандартов отклонение между показателями короткого замыкания устройств не превышает 10%.
  4. Включить параллельным соединением допускается одинаковые обмотки, соответствующие друг другу. При несоблюдении этого условия работающими приборами вырабатываются уравнительные токи. Наблюдается сдвиг фазы.
  5. Мощность аппаратуры не должна отличаться в 3 раза. Это является важным условием правильной работы системы. В противном случае мощный прибор увеличивает нагрузку на следующие приборы. Маломощные агрегаты будут перегружены. Соединять подобные устройства запрещается правилами безопасности.

Следуя перечисленным условиям, обеспечивается стабильная, эффективная работа силового оборудования. Безопасность и надежность функционирования системы повышается.

Что делает трансформатор

У трансформатора много полезных и важных функций:

Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.

Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.

Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.

Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).

Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.

  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.

Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.

Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.

Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.

Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Высокий ток КЗ – это хорошо или плохо?

Как я показал на графике ранее, чем дальше место замыкания от источника питания, тем меньше будет ток короткого замыкания, поскольку сопротивление линии будет больше. Высокий ток КЗ обычно бывает в тех местах электросети, которые расположены наиболее близко к подстанции, а кабельные линии имеют большое сечение проводов. В питающих сетях с напряжением 0,4 кВ относительно высокими считаются токи КЗ более 6кА, а токи КЗ выше 15 кА практически не встречаются. Итак, что мы имеем:

Минусы низкого тока КЗ

  • большое падение напряжения при достаточно мощной нагрузке;
  • как правило, низкое напряжение на электроприборах. При этом стабилизатор поможет не всегда;
  • нестабильность напряжения на электроприборах в зависимости от времени суток или времени года. По нормам на напряжение и его допуски я провёл расследование;
  • высокое (вплоть до бесконечности) время срабатывания автоматических выключателей при КЗ на землю (работает только тепловой расцепитель);
  • необходимость установки автоматических выключателей с характеристикой отключения “В” с целью более вероятного срабатывания электромагнитного расцепителя при КЗ. Этот спорный вопрос обсуждается в моей статье на Дзене Зачем ставить автоматы с характеристикой “В”;
  • обязательная установка УЗО – при этом, кроме своих “основных” обязанностей (отключение питания при высоком токе утечки, а также для защиты человека при прямом и косвенном прикосновении), УЗО выполняет функцию защиты от КЗ на землю (ПУЭ 1.7.59, 7.1.72).

Плюсы низкого тока КЗ

  • можно устанавливать дешевые автоматические выключатели с низкой номинальной наибольшей отключающей способностью (Icn = 4500 А);
  • сравнительно легко можно обеспечить селективность между вводным и нижестоящим автоматами. Но нужен расчет и измерение точного значения тока КЗ,
  • низкий пусковой ток электродвигателей и другой инерционной нагрузки. Статья Что такое пусковой ток, как его измерить и посчитать.

Минусы высокого тока КЗ

  • невозможность обеспечить селективность между вышестоящими и нижестоящими автоматами. Выход – установка рубильника либо селективного по времени автоматического выключателя;
  • необходимость установки АВ с высокой номинальной наибольшей отключающей способностью (Icn = 6000, 10000 А и т.д.). Отключающая способность должна быть выше, чем ток КЗ в начале защищаемого участка (ПУЭ п. 3.1.3);
  • большие негативные последствия при возникновении КЗ.

Плюсы высокого тока КЗ

  • легко гарантировать стабильное напряжение на нагрузке и вообще качество электроэнергии;
  • имеется перспектива подключения новых потребителей и увеличения нагрузки;
  • гарантированное отключение линии при КЗ.

Резюмируя плюсы и минусы, можно сказать, что значение тока КЗ – палка о двух концах. В бытовом секторе ток КЗ часто бывает низким, и его стараются увеличить, прокладывая новые линии с высоким сечением проводов и устанавливая новые трансформаторные подстанции. В серьезной энергетике наоборот, применяют методы по уменьшению тока КЗ.

Силовой трансформатор: формулы для определения мощности, тока, uk%

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора

— указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные — более 5 кВА

Номинальное напряжение обмотки

— напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки

— ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Причины возникновения броска тока намагничивания

Причиной возникновения БНТ в силовых трансформаторах является резкое изменение уровня напряжения намагничивания. Хотя обычно возникновение БНТ связывают с включением трансформатора под напряжение, он также может быть обусловлен:

  • Возникновением внешнего КЗ,
  • Восстановлением уровня напряжения после отключения внешнего КЗ,
  • Переходом КЗ из одного вида в другой (к примеру, переход однофазного КЗ в двухфазное КЗ на землю),
  • Несинхронным подключением генератора к системе.

Поскольку ветвь намагничивания схемы замещения трансформатора, может быть представлена как шунт при его насыщении, ток намагничивания нарушает баланс между токами на выводах трансформатора. Дифференциальная защита воспринимает ток БНТ как дифференциальный, однако должна устойчиво функционировать в таком случае. Отключение трансформатора при БНТ является нежелательным с точки зрения условий обеспечения длительного срока службы трансформатора (отключение тока индуктивного характера вызывает высокие перенапряжения, что может представлять угрозу для трансформатора и быть косвенной причиной возникновения внутреннего КЗ).

Приложение 7.1

Термин Определение
Потребитель электрической энергии Организация, учреждение, территориально обособленный цех, объект, площадка, строение, квартира и т п.., присоединенные к электрическим сетям и использующие энергию с помощью имеющихся приемников электрической энергии
Абонент Потребитель, непосредственно присоединенный к сетям энергоснабжающей организации, имеющий с ней границу балансовой принадлежности электрических сетей, право и условия пользования электрической энергией которого, обусловлены договором энергоснабжающей организации с потребителем или его вышестоящей организацией. Для бытовых потребителей — квартира, строение или группа территориально объединенных строений личной собственности
Граница балансовой принадлежности Точка раздела электрической сети между энергоснабжающей организацией и абонентом, определяемая по балансовой принадлежности электрической сети
Точка учета расхода электроэнергии Точка схемы электроснабжения, в которой с помощью измерительного прибора (расчетного счетчика, системы учета и т. п.) или иным методом определяются значения расходов электрической энергии и мощности, используемые при коммерческих расчетах.. Точка учета соответствует границе балансовой принадлежности электрической сети
Расчетный прибор учета Прибор учета, система учета на основании показаний, которых в точке учета определяется расход электрической энергии абонентом (субабонентом), подлежащей оплате
Контрольный прибор учета Прибор учета, на основании показаний которого в данной точке сети определяется расход электрической энергии, используемой для контроля
Присоединенная мощность потребителя Суммарная мощность присоединенных к электрической сети трансформаторов потребителя, преобразующих энергию на рабочее (непосредственно питающее токоприемники) напряжение и электродвигателей напряжением выше 1000 В. В тех случаях, когда питание электроустановок потребителей производится от трансформаторов или низковольтных сетей энергоснабжающей организации, за присоединенную мощность потребителя принимается разрешенная к использованию мощность, размер которой устанавливается энергоснабжающей организацией и указывается в договоре на отпуск электрической энергии

Принцип работы трансформаторов

Принцип действия всех трансформаторов основан на явлении электромагнитной индукции.

Если первичную обмотку трансформатора подключить к сети источника переменного тока, то по ней будет проходить переменный ток, который возбуждает в сердечнике трансформатора переменный магнитный поток. Который, в свою очередь, пронизывая витки вторичной обмотки трансформатора, возбуждает в этой обмотке ЭДС. Под действием этой ЭДС по вторичной обмотке и через приемник энергии будет протекать ток.

Обмотку, подключенную к источнику питания, принято называть первичной, а обмотку, к которой подключены потребители — вторичной.

Таким образом и происходит преобразование и распределение электрической энергии.

Для улучшения магнитной связи между первичной и вторичной обмотками их размещают на магнитопроводе, собранным из отдельных листов электротехнической стали. Сами обмотки выполнены из изолированного провода.

В зависимости от формы магнитопровода и расположения обмоток, трансформаторы могут быть стержневыми, броневыми и тороидальными.

Магнитопровод стержневого однофазного трансформатора имеет два стержня, на которых помещены его обмотки. Эти стержни соединены ярмом с двух сторон так, что магнитный поток замыкается по стали.

Магнитопровод броневого однофазного трансформатора имеет один стержень, на котором полностью помещены обмотки трансформатора. Стержень с двух сторон охватывается (бронируется) ярмом так, что обмотка частично защищена магнитопроводом от механических повреждений.

У тороидального трансформатора сердечник выполнен из стальной ленты в виде кольца. Благодаря своей форме, он имеет ряд преимуществ перед другими типами — более высокий КПД, улучшенные тепловые характеристики, что благоприятно влияет на охлаждение трансформатора, более компактные габариты.

Оборудование и схема для проверки вольт-амперной характеристики трансформаторов тока

В качестве регулируемого источника напряжения для снятия ВАХ используется лабораторный автотрансформатор (ЛАТР), или устройства, содержащие его в своем составе. Напряжение должно быть абсолютно синусоидальным, поэтому тиристорные источники питания для испытаний непригодны.

При использовании встроенных в источник питания приборов важно учесть, что амперметр должен измерять среднеквадратичное значение, а вольтметр – средневыпрямленное. Важен и порядок включения приборов в измерительную цепь

Амперметр должен измерять только ток непосредственно в проверяемой обмотке. Вольтметр подключается до него, ток через обмотку прибора не должен учитываться, чтобы не вносить в измерения дополнительную погрешность


Важен и порядок включения приборов в измерительную цепь. Амперметр должен измерять только ток непосредственно в проверяемой обмотке. Вольтметр подключается до него, ток через обмотку прибора не должен учитываться, чтобы не вносить в измерения дополнительную погрешность.

Самым точным вариантом измерений является подключение измерительного комплекса непосредственно к выводам трансформатора тока.

Измерение с клеммников, находящихся на значительном удалении и соединенных с объектом измерения контрольными кабелями, недопустимо. В этом случае к сопротивлению обмотки добавляется сопротивление жил кабельной линии, соизмеримое с ней по величине.

Поэтому между источником регулируемого напряжения и проверяемой обмоткой можно подключить разделительный трансформатор 220/36 В или любой другой. При этом предел регулирования расширяется.

В целях безопасности в цепи подключения ЛАТРа к сети питающего напряжения должен быть защитный аппарат – автоматический выключатель. А также предусмотрена возможность создания видимого разрыва при переключениях между трансформаторами или их обмотками. Достаточно вилки, которая втыкается в розетку удлинителя, положение которой видно с границ рабочего места.

Интересное видео о снятии ВАХ с ТТ с помощью ретома-21 смотрите ниже:

Выполнение фазировки

Чтобы избежать появления короткого замыкания, на низшем выводе напряжения проводится фазировка. Если этот показатель в указанной точке не превышает 1000 В, применяется вольтметр. Его настраивают на соответствующий уровень напряжения.

Фазируемые обмотки соединяют. Это позволит получить замкнутый контур. Обмотки могут иметь заземленную нейтраль или выпускаться без нее. В первом случае контур замыкается через землю. Сопротивление между выводами замеряется. Результат сопоставляется с указанными производителем значениями.

Если нейтраль в конструкции не предусмотрена, потребуется ставить последовательно перемычку между соответствующими выводами двух трансформаторов. Между ними замеряют напряжение. Чтобы обеспечить безопасную работу агрегатов, соединяют те выводы, между которыми при замере не было напряжения.

Рассмотрев особенности параллельного соединения трансформаторных устройств, а также условия и рекомендации по проведению этого процесса, можно обеспечить стабильную и безопасную работу системы. Это предоставляет массу преимуществ в процессе энергоснабжения потребителей электричеством.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий