Структура металлов
На предыдущих уроках мы изучили практически все понятия, связанные с возникновением электрического тока: электрические заряды, электрическое поле, источники тока, простейшие электрические цепи и электрические схемы. Теперь нам предстоит выяснить, как течёт электрический ток в металлах, какие действия оказывает электрический ток, а также направление тока.
Металлы, как мы выяснили из экспериментов на предыдущих уроках, хорошо проводят электрический ток. Для того чтобы пояснить этот факт, зададимся вопросом: а что же такое металлы?
Металлы, как правило, – это поликристаллические вещества (состоящие из множества кристаллов) (Рис. 1, 2).
Рис. 1. Металлы (
)
Рис. 2. Структура железа ()
Последовательное и параллельное соединение сопротивлений
Любая нагрузка обладает сопротивлением, препятствующим свободному течению электрического тока. Его путь проходит от источника тока, через проводники к нагрузке. Для нормального прохождения тока, проводник должен обладать хорошей проводимостью и легко отдавать электроны. Это положение пригодится далее при рассмотрении вопроса, что такое последовательное соединение.
В большинстве электрических цепей применяются медные проводники. Каждая цепь содержит приемники энергии – нагрузки, обладающие различными сопротивлениями. Параметры соединения лучше всего рассматривать на примере внешней цепи источника тока, состоящей из трех резисторов R1, R2, R3. Последовательное соединение предполагает поочередное включение этих элементов в замкнутую цепь. То есть начало R1 соединяется с концом R2, а начало R2 – с концом R3 и так далее. В такой цепочке может быть любое количество резисторов. Эти символы используют в расчетах последовательные и параллельные соединения.Сила тока на всех участках будет одинаковой: I = I1 = I2 = I3, а общее сопротивление цепи составит сумму сопротивлений всех нагрузок: R = R1 + R2 + R3. Остается лишь определить, каким будет напряжение при последовательном соединении. В соответствии с законом Ома, напряжение представляет собой силу тока и сопротивления: U = IR. Отсюда следует, что напряжение на источнике тока будет равно сумме напряжений на каждой нагрузке, поскольку ток везде одинаковый: U = U1 + U2 + U3.
При постоянном значении напряжения, ток при последовательном соединении будет находиться в зависимости от сопротивления цепи. Поэтому при изменении сопротивления хотя-бы на одной из нагрузок, произойдет изменение сопротивления во всей цепи. Кроме того, изменятся ток и напряжение на каждой нагрузке. Основным недостатком последовательного соединения считается прекращение работы всех элементов цепи, при выходе из строя даже одного из них.
Совершенно другие характеристики тока, напряжения и сопротивления получаются при использовании параллельного соединения. В этом случае начала и концы нагрузок соединяются в двух общих точках. Происходит своеобразное разветвление тока, что приводит к снижению общего сопротивления и росту общей проводимости электрической цепи.
Для того чтобы отобразить эти свойства, вновь понадобится закон Ома. В данном случае сила тока при параллельном соединении и его формула будет выглядеть так: I = U/R. Таким образом, при параллельном соединении n-го количества одинаковых резисторов, общее сопротивление цепи будет в n раз меньше любого из них: Rобщ = R/n. Это указывает на обратно пропорциональное распределение токов в нагрузках по отношению к сопротивлениям этих нагрузок. То есть, при увеличении параллельно включенных сопротивлений, сила тока в них будет пропорционально уменьшаться. В виде формул все характеристики отображаются следующим образом: сила тока – I = I1 + I2 + I3, напряжение – U = U1 = U2 = U3, сопротивление – 1/R = 1/R1 + 1/R2 + 1/R3.
При неизменном значении напряжения между элементами, токи в этих резисторах не имеют зависимости друг от друга. Если один или несколько резисторов будут выключены из цепи, это никак не повлияет на работу других устройств, остающихся включенными. Данный фактор является основным преимуществом параллельного соединения электроприборов.
В схемах обычно не используется только последовательное соединение и параллельное соединение сопротивлений, они применяются в комбинированном виде, известном как смешанное соединение. Для вычисления характеристик таких цепей применяются формулы обоих вариантов. Все расчеты разбиваются на несколько этапов, когда вначале определяются параметры отдельных участков, после чего они складываются и получается общий результат.
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Электробезопасность
Предупреждение по электробезопасности
Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.
Ток, пропущенный через организм человека или животного, производит следующие действия:
- термическое (ожоги, нагрев и повреждение кровеносных сосудов);
- электролитическое (разложение крови, нарушение физико-химического состава);
- биологическое (раздражение и возбуждение тканей организма, судороги)
- механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)
Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:
- ”безопасным” считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
- ”минимально ощутимый” человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;
- пороговым ”неотпускающим” называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;
- ”фибрилляционным порогом” называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.
В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.
Амперметр
Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.
Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.
Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.
Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.
Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).
Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.
Условия возникновения и поддержания электрического тока
Для возникновения и поддержания электрического тока необходимы два условия:
1) наличие свободных (не связанных между собой) заряженных частиц (носителей заряда). Такими носителями заряда* в металлах и полупроводниках являются электроны, в растворах электролитов — положительные и отрицательные ионы, в газах — электроны и ионы;
2) нужны еще какие-то причины, вызывающие упорядоченное движение этих частиц. Если, например, мы хотим в вакууме обеспечить упорядоченное движение электронов в определенном направлении, им необходимо хотя бы в начале движения сообщить скорость. Если дальше на пути движения электронов не встретится никаких препятствий, они будут двигаться по инерции с этой начальной скоростью.
* Подробнее об этом будет рассказано в главе «Электрический ток в различных средах».
В веществе заряженным частицам двигаться упорядоченно в определенном направлении труднее. Например, электроны, обеспечивающие электрический ток в металлическом проводнике, могут сталкиваться с ионами кристаллической решетки; взаимодействие между ионами раствора электролита и нейтральными молекулами приводит к силам «трения» между ними; упорядоченному движению заряженных частиц в газе мешают столкновения с другими заряженными или нейтральными частицами газа и т. д. Чтобы все эти помехи не прекратили упорядоченного, дрейфового движения заряженных частиц, необходима сила, действующая на частицы в определенном направлении.
На заряженные частицы, как мы знаем, действует электрическое поле с силой Обычно именно электрическое поде внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.
Если внутри проводника имеется электрическое поле, то между концами проводника существует разность потенциалов. Когда разность потенциалов не меняется во времени, в проводнике устанавливается постоянный ток. Устройства, создающие и поддерживающие разность потенциалов на концах проводника, называются источниками тока или генераторами.
Вдоль проводника, по которому течет постоянный электрический ток, потенциал уменьшается от максимального значения на одном конце проводника до минимального — на другом. Это уменьшение потенциала можно обнаружить на простом опыте.
В качестве проводника можно использовать бумажную (телеграфную) ленту, на поверхность которой наносится мягким графитом равномерный проводящий слой по всей длине. Собирают установку (рис. 2.7). Один конец ленты присоединяют к полюсу (кондуктору) электрофорной машины, ленту натягивают и другой ее конец закрепляют под винтовой зажим на изолирующем штативе.
При отсутствии тока (конец ленты на изолирующем штативе ни с чем не соединен) лента имеет одинаковый потенциал по всей ее длине. В этом легко убедиться, если пробным шариком, соединенным с электрометром, корпус которого заземлен, касаться ленты в разных ее точках. Показания электрометра, измеряющего потенциал проводника относительно земли, при этом будут одинаковыми.
Заземлим теперь один конец ленты, соединенный с зажимом штатива, и снова будем измерять потенциалы в различных точках ленты. Результаты измерений теперь показывают, что эти потенциалы оказываются неодинаковыми, т. е. поверхность проводника, по которому течет ток, не является поверхностью равного потенциала (эквипотенциальной). У полюса электрофорной машины показания электрометра максимальны, а по мере приближения к штативу наблюдается постепенное уменьшение значения потенциала, и у штатива оно доходит до нуля. Изменение потенциала вдоль проводника графически представлено на рисунке 2.8.
Где может пригодиться этот закон Джоуля-Ленца?
В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.
В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.
А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:
А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:
Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.
В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.
Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.
Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.
Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.
Задача на соединение конденсаторов, параллельное и последовательное
Условие. Имеются три конденсатора с емкостями 20, 25 и 30 мкФ. Определите их общую емкость при последовательном и параллельном соединении.
Решение. Проще начать с параллельного подключения. В этой ситуации все три значения нужно просто сложить. Таким образом, общая емкость оказывается равной 75 мкФ.
Несколько сложнее расчеты будут при последовательном соединении этих конденсаторов. Ведь сначала нужно найти отношения единицы к каждой из этих емкостей, а потом сложить их друг с другом. Получается, что единица, деленная на общую емкость, равна 37/300. Тогда искомая величина получается приблизительно 8 мкФ.
Ответ. Общая емкость при последовательном соединении 8 мкФ, при параллельном — 75 мкФ.
Проводники в электрических цепях могут соединяться последовательно и параллельно.
При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:
. |
Рисунок 1.9.1. |
По закону Ома, напряжения и на проводниках равны
. |
Общее напряжение на обоих проводниках равно сумме напряжений 1 и 2:
, |
где – электрическое сопротивление всей цепи. Отсюда следует:
= 1 + 2. |
При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.
Этот результат справедлив для любого числа последовательно соединенных проводников.
При параллельном соединении (рис. 1.9.2) напряжения 1 и 2 на обоих проводниках одинаковы:
. |
Сумма токов 1 + 2, протекающих по обоим проводникам, равна току в неразветвленной цепи:
= 1 + 2. |
Этот результат следует из того, что в точках разветвления токов (узлы и ) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу за время Δ подтекает заряд Δ, а утекает от узла за то же время заряд 1Δ + 2Δ. Следовательно, = 1 + 2.
Рисунок 1.9.2. |
Записывая на основании закона Ома
где – электрическое сопротивление всей цепи, получим
При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Этот результат справедлив для любого числа параллельно включенных проводников.
Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.
Рисунок 1.9.3. |
Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.
Рисунок 1.9.4. |
Цепи, подобные изображенной на рис. 1.9.4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.
Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при паралл ельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.
Как найти силу тока через сопротивление и напряжение
Сила тока обозначается латинскими или , и она зависит от количества заряда, перенесенного от одного полюса к другому за определенный промежуток времени, т.е. I = q/t. Измеряется сила тока в амперах, а узнать её значение в цепи можно при помощи амперметра.
Мужчина считает силу тока
Существуют формулы определения силы тока через напряжение и сопротивление. В первом случае произведение силы тока на время равняется работе, деленной на напряжение: I*t = A/U, во втором – по закону Ома, I = U/R. Через мощность сила будет равняться P/U.
При последовательном соединении, сила тока одинакова на всех участках цепи, следовательно, равна общему значению в цепи. В противоположном случае сила электрического тока равняется сумме силы тока всех нагрузок.
Таким образом, существует огромное множество формул для нахождения силы тока, напряжения и сопротивления. Они всегда могут пригодиться для теории, а на практике всегда помогут специальные приборы – амперметр и вольтметр.
Направление тока: от минуса к плюсу или наоборот?
Суть вопроса
Как известно, в проводнике электричество переносят электроны, в электролитах – катионы и анионы (или попросту ионы), в полупроводниках электроны работают с так называемыми «дырками», в газах – ионы с электронами. От наличия свободных элементарных частиц в том или ином материале и зависит его электропроводность.
При отсутствии электрического поля в металлическом проводнике ток идти не будет. Но как только на двух его участках возникнет разность потенциалов, т.е. появится напряжение, в движении электронов прекратится хаос и наступит порядок: они начнут отталкиваться от минуса и направятся в сторону плюса. Казалось бы, вот и ответ на вопрос «Каково направление тока?». Но не тут-то было.
Достаточно заглянуть в энциклопедический словарь или просто в любой учебник по физике, как сразу станет заметно некое противоречие. Там говорится, что условно словосочетание «направление тока» обозначает направленное движение положительных зарядов, другими словами: от плюса к минусу.
Как быть с этим утверждением? Ведь здесь невооруженным глазом заметно противоречие!
Сила привычки
Когда люди научились составлять цепь постоянного тока, они еще не знали о существовании электрона. Тем более, в то время не подозревали что он движется от минуса к плюсу.
Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов.
А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.
«Золотая середина»
В электролитах отрицательно заряженные частицы движутся к катоду, а положительные — к аноду. То же самое происходит и в газах. Если подумать, какое направление тока будет в этом случае, в голову приходит только один вариант: перемещение разнополярных электрических зарядов в замкнутой цепи происходит навстречу друг другу.
Если принять это утверждение за основу, то оно снимет существующее ныне противоречие. Возможно, это вызовет удивление, но еще более 70 лет назад ученые получили документальные подтверждения того, что противоположные по знаку электрические заряды в проводящей среде действительно движутся друг другу навстречу.
Данное утверждение будет справедливо для любого проводника вне зависимости от его типа: металла, газа, электролита, полупроводника. Как бы там ни было, остается надеяться, что со временем физики устранят путаницу в терминологии и примут однозначное определение того, что же все-таки такое направление движения тока.
Привычку, конечно, менять сложно, но ведь нужно же наконец поставить все на свои места.
ток течет от плюса к минусу или наоборот?
На самом деле — НАВСТРЕЧУ ДРУГ-ДРУГУ!
«Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов. А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.
. В электролитах отрицательно заряженные частицы движутся к катоду, а положительные — к аноду. То же самое происходит и в газах. Если подумать, какое направление тока будет в этом случае, в голову приходит только один вариант: перемещение разнополярных электрических зарядов в замкнутой цепи происходит навстречу друг другу. Если принять это утверждение за основу, то оно снимет существующее ныне противоречие. Возможно, это вызовет удивление, но еще более 70 лет назад ученые получили документальные подтверждения того, что противоположные по знаку электрические заряды в проводящей среде действительно движутся друг другу навстречу. Данное утверждение будет справедливо для любого проводника вне зависимости от его типа: металла, газа, электролита, полупроводника. Как бы там ни было, остается надеяться, что со временем физики устранят путаницу в терминологии и примут однозначное определение того, что же все-таки такое направление движения тока. Привычку, конечно, менять сложно, но ведь нужно же наконец поставить все на свои места. _https://fb.ru/article/99367/napravlenie-toka-ot-minusa-k-plyusu-ili-naoborot_