Выбор места установки
Эффективность работы солнечных батарей зависит от нескольких факторов, основным из которых является расположение панелей относительно солнца. В идеале лучи должны падать на поверхность перпендикулярно, это обеспечит максимальную производительность фотоэлектрических компонентов. Установка солнечных панелей должна соответствовать следующим требованиям:
- выбирают участок с наибольшей освещенностью
- поблизости не должны находиться высокие здания, деревья или холмы, создающие тень
Требования простые и понятные, однако, на практике добиться такого положения бывает затруднительно. Основной причиной возникающих сложностей является перемещение солнца по небосклону, изменяющееся положение источника относительно плоскости солнечных батарей. В крупных гелиосистемах используют трекинг-установки, автоматически изменяющие положение солнечных батарей в течение суток, а также учитывают сезонные изменения. Обычному домовладельцу приобрести такой комплекс сложно, и установить его негде. Поэтому выбирают некое среднее положение.
Для выбора оптимального расположения панелей руководствуются значениями угла наклона и азимута. Положение солнца над горизонтом зависит от географической широты региона. Кроме того, оно изменяется в течение года. Обеспечить правильный азимут проще — панели ориентируют точно на юг, что обеспечивает среднее значение угла наклона солнца к плоскости в течение светового дня.
Еще одним препятствием для оптимальной установки является конфигурация участка и его географическое расположение. Иногда места для монтажа солнечных батарей вовсе не имеется. Все эти соображения сделали наиболее удобным выбором места размещения панелей на скатах крыши.
Этот вариант имеет массу преимуществ:
- открытость для солнечных лучей
- невозможность повреждения панелей вандалами
- отсутствие препятствий для получения энергии
Однако, имеются и недостатки:
- расположение скатов крыши редко соответствует оптимальному направлению для панелей
- очистка снега или пыли представляет сложную и опасную процедуру
- сильный порыв ветра способен сорвать батареи с креплений
Недостатки существенные, но отсутствие альтернативных вариантов вынуждает мириться с ними. Однако, монтаж солнечных батарей на крыше — не единственный вариант. Иногда местом установки выбирают стену дома, обращенную на юг. Это удобно в регионах с большим количеством снега в зимний период, так как частая уборка требует времени и усилий. Вертикальное расположение панелей препятствует образованию сугробов на поверхности солнечных батарей. Кроме того, очистка панелей от пыли производится с земли, что безопасно и удобно для владельца.
Если ни один из этих способов по каким-либо причинам не подходит, остается использовать специальные опорные конструкции — фермы. Они представляют собой сооружение из металлических труб, прочно закрепленное на земной поверхности и поддерживающее профили для монтажа панелей. Этот вариант позволяет точнее ориентировать солнечные батареи на солнце, но требует места и обслуживания.
Мощность и выработка сетевых солнечных электростанций
Сетевая солнечная электростанция предназначена исключительно для питания объектов, подключенных к централизованной сети, так как в ее составе нет аккумуляторных батарей. В состав комплекта входит
- Фотоэлектрические модули (ФЭМ) Хевел
- Инвертор
- Сопутствующее оборудование (MC4 коннекторы, распределительный щит, силовой и солнечный кабель, опорные конструкции)
Сетевые комплектыСетевая СЭС комплект «Минимальный»Сетевая СЭС комплект «Базовый»Сетевая СЭС комплект «Стандарт»Сетевая СЭС комплект «Расширенный»
Номинальная мощность СЭС, кВт | 3,5 | 5,2 | 9,9 | 15 |
Стоимость сетевой электростанции (с учетом доставки и монтажа на объекте), руб. * | 326 580 | 477 846 | 892 234 | 1 266 346 |
Вырабатываемая энергия сетевой СЭС (расчетные данные для Москвы и МО) в год, кВт*ч | 3 590 | 5 330 | 10 150 | 15 300 |
Расчетная экономия владельца сетевой СЭС в год, руб. ** | 20 570 | 30 540 | 58 160 | 87 670 |
Расчетная экономия владельца сетевой СЭС в руб. за 25 лет ** | 720 000 | 1 100 000 | 2 150 000 | 3 300 000 |
* Не является офертой. Актуальную цену уточняйте на сайте mes-elektrik.ru ** Исходные расчетные данные: Московская область, тариф на электроэнергию для физических лиц – 5,73 руб. за кВт*ч
Типы фотоэлементов
Состоят солнечные батареи из нескольких панелей, оснащенных фотоэлементами, которые встречаются различных типов и размеров:
Компактные монокристаллические, состоящие из множества ячеек, отличаются малым весом, но в пасмурную погоду энергии для загородного дома вырабатывают немного.
Используют солнечные батареи и тогда, когда возможность подключиться к обычной сети отсутствует. Устанавливать непривередливые источники можно на балконе, на крыше или прямо на загородном участке.
Другими словами, поверхность элементов направлена должна быть на юг, чтобы на нее попадало максимальное количество лучей. Угол наклона составлять должен 90 градусов.
Чтобы работала система солнечных батарей для дома на максимальную мощность, ее расположение рекомендуется менять летом и зимой.
Еще необходимо помнить о том, что с низкими температурами фотоэлементы контактировать не должны. Поэтому, конструкции не устанавливают прямо на землю, а закрепляют в четырех точках на высоте 50 см.
Крепить фотоэлементы во избежание повреждения рекомендуется на длинной стороне, индивидуально выбрав способ: болты (крепятся через отверстия рамки), фиксаторы и пр.
Видео: Как подключить солнечную батарею к аккумулятору
На картинке ниже представлен комплект электростанции, состоящий из таких устройств:
- Поглощающих естественный свет элементов, которые преобразуют его в электрическую энергию, т.е. солнечные батареи.
- Панели подсоединяются к прибору, контролирующему уровень запасенного электричества, называемому контроллером, соединенным с АКБ. Он следит за напряжением аккумулятора: при перезарядке аккумулятора в дневное время (14 Вольтах на клеммах), он автоматически отключает зарядку, а ночью, в случае разряда, т.е. предельно низкого напряжения в 11 Вольт, прекращает работу электростанции.
- Накопитель сгенерированной энергии – аккумулятор.
- Инвертор предназначен для изменения типа тока с постоянного на переменный, нужный для работы электрооборудования в загородном доме, бытовой техники, освещения. Для всех приборов придется выделить место.
Для защиты от короткого замыкания рекомендуется в схему подключения добавить между всеми перечисленными устройствами предохранители.
Схема выглядит в простейшем случае следующим образом:
Никаких сложностей, как видно, с такой схемой подключения нет. Основное – соблюдение полярности и правильное соединение штекеров (в соответствующий разъем). Если же желают использовать солнечную энергию в загородном доме одновременно со стационарной сетью, схема подключения будет выглядеть по-иному:
Нагрузка, резервируемая в этом случае, это холодильник, котел или аварийное освещение. Под нерезервируемой понимается свет в помещении, бытовая техника и пр. Электроприборы в автономном режиме работают тем дольше, чем большую емкость имеет аккумулятор.
Разобравшись с тем, как работает схема подключения, нужно понять, как соединить панели между собой.
Рекомендуем:
- Солнечная батарея своими руками
- Солнечная батарея своими руками дома: инструкция
- Фонтан на солнечных батареях преимущества и недостатки
Способы монтажа бытовых гелиоустановок
В установке солнечных батарей нет ничего сложного. Самое главное — грамотно разместить модули
При монтаже важно придерживаться определенного угла наклона, который должен соответствовать географической широте местности. В процессе установки нужно также соблюдать азимут
Для северо-восточных он составляет 180 градусов.
Зимой КПД электростанции с солнечными батареями может упасть до минимальных значений, поскольку обильные снегопады будут препятствовать попаданию лучей солнца на наружную поверхность фотоэлектрических элементов
Поэтому при монтаже важно учесть, что на крыше потребуется свободное место для очистки конструкции от налипшего снега и грязи. Впрочем, этих хлопот можно избежать, если зафиксировать солнечные панели на поверхности южной стены под углом 60–80 градусов
На практике для коттеджей применяют разные варианты расположения фотоэлектрических модулей:
- кровля — дополнительно потребуется установка надежной опорной конструкции из металлопрофилей или направляющих рельс;
- стены — в данном случае на фасад здания монтируется рамная система для удержания фотопанелей «на весу»;
- приусадебная территория — альтернативный вариант расположения батарей, когда кровля дома сильно затенена или не рассчитана на дополнительную нагрузку.
Свободное размещение имеет множество преимуществ, но требует наличия достаточного пространства на приусадебном участке. Чтобы автоматизировать процесс наклона и движения фотоэлектрических панелей по ходу солнца, дополнительно рекомендуется использовать специальные шарнирные конструкции с электроприводом.
Окупаемость и срок эксплуатации
Применение солнечных батарей позволит сэкономить на освещении и отоплении, независимо от времени года. Самые большие показатели энгергоэффективности гелиосистемы демонстрируют в южных широтах, где количество солнечных дней преобладает. Это и неудивительно, так как обязательным условием высокопродуктивной работы электростанции является стабильное поступление инфракрасного излучения и видимого света на поверхность фотоэлектрических элементов.
По статистике, солнечные батареи для частного дома мощностью 4–5 кВт при постоянном использовании окупают себя за 8–10 лет, после чего работают впрок. При этом срок эксплуатации составляет в среднем 20-25 лет, а вот аккумуляторные батареи придется менять через каждые 5-6 лет. Многим такие сроки окупаемости покажутся большими, но в действительности оно того стоит, учитывая, что в скором времени ископаемых ресурсов на планете практически не останется, а стоимость одного киловатта электроэнергии возрастет в разы.
Комментарии
Экономическая обоснованность
Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4–5 лет. Но реальность более прозаична.
Дело в том, что декабрьские значения солнечной радиации меньше среднегодовых примерно на порядок. Поэтому для полностью автономной работы электростанции зимой требуется в 7–8 раз больше панелей, чем летом. Это существенно увеличивает вложения, но уменьшает срок окупаемости. Перспектива введения «зеленого тарифа» выглядит вполне ободряюще, но даже на сегодняшний день можно заключить договор на поставку электроэнергии в сеть по оптовой цене, которая втрое ниже розничного тарифа. И даже этого достаточно, чтобы выгодно продавать 7–8 кратный излишек выработанной электроэнергии в летний период.
Схемы подключения
Существуют 3 возможные схемы подключения солнечных панелей между собой, это: последовательное, параллельное и последовательно-параллельное соединение. Теперь о них подробнее.
Последовательное соединение
В данной схеме минусовая клемма первой панели соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и тд. Что дает такое соединение – напряжение всех панелей будет приплюсовываться. Другими словами, если вы хотите получить, например сразу 220В, данная схема поможет это сделать. но используется она крайне редко.
Разберем на примере. Имеем 4 панели с номинальной мощностью по 12В, Voc: 22.48В (это напряжение холостого хода) на выходе получаем 48В. Напряжение холостого хода = 22,48В*4=89,92В. при этом максимальная мощность тока, Imp, останется неизменной.
В данной схеме не рекомендуется использовать панели с разным значением Imp, поскольку эффективность системы будет низкая.
Параллельное соединение
К входам панелей подключаются клеммы одинакового знака, аналогично и к выходам. Удобнее всего это делать с помощью специальных Y коннекторов. Эта схема позволяет, не поднимая напряжение панелей, увеличить ток. Разберем пример. Имеем 4 панели с номинальной мощностью по 12В, напряжение холостого хода 22.48В, ток в точке максимальной мощности 5.42А. На выходе схемы номинальное напряжение и напряжение холостого хода остается без изменений, но максимальная мощность будет равна 5,42А*4=21,68А.
Последовательно-параллельное соединение
В данной схеме часть панелей соединяется последовательно, часть параллельно. Это дает возможность подобрать оптимальный режим работы электростанции путем регулирования номинальной мощности и силы тока на выходе. Разберем на примере все тех же 4х панелей с характеристиками: • Номинальное напряжение солнечной батареи: 12В. • Напряжение холостого хода Voc: 22.48В. • Ток в точке максимальной мощности Imp: 5.42А.
Соединив 2 солнечные панели последовательно и 2 параллельно на выходе мы получим напряжение 24В, напряжение холостого хода 44,96В, а ток при этом будет равен 5,42А*2=10,84А.
Это дает возможность получить сбалансированную систему и сэкономить на таком оборудовании как контроллера заряда аккумулятора, поскольку эму не нужно будет выдерживать большое напряжение в пике работы. Так же схема дает возможность использовать панели разной мощности, например 2 по 12В, преобразовать в 24В. Наиболее удобный вариант сети для дома.
Функции контроллеров
Аккумуляторы — капризны, при неправильной эксплуатации они теряют свою емкость или вовсе перестают работать. Это происходит по двум причинам:
- перезаряд
- недозаряд
Первая причина обусловлена тем, что напряжение заряда больше номинального напряжения аккумулятора. Если не отсоединить устройство в тот момент, когда оно зарядилось до номинального значения — происходит вскипание жидкости в его ячейках с дальнейшим испарением жидкого электролита. А это служит причиной потери емкости. Ячейки с электролитом могут утратить герметичность, вследствии высокого давления, образующегося при кипении жидкости. В таком случае девайс теряет свойство накапливать энергию.
Вторая причина заключается в том, что аккумуляторы не любят, когда их заряжают не полностью. И через несколько циклов заряда разряда могут потерять первоначальную емкость. В большинстве случаев это обратимый процесс, все зависит от изношенности батареи. Утрата емкости обусловлена так называемым «эффектом памяти». Особенно это явление актуально у свинцовых накопителей. Существуют экземпляры с электродами из других материалов, которым этот эффект практически не присущ. Но стоят они дороже. Свинцовые накопители хороши тем, что могут давать большие пиковые токи, что хорошо при питании двигателей и потребителей индуктивного и емкостного характера.
На практике аккумуляторы подключают к панелям последовательно с контроллером заряда. Это приспособление помогает функционировать батареям в оптимальном режиме независимо от всего и оберегает их от преждевременного износа. Эти модули следят за состоянием батареи и в зависимости от этого подают на клеммы определенные значения напряжения и тока. При дневном освещении модуль фотоэлементов генерирует определенную мощность. Ее значение указывают в инструкции, но следует помнить, что она была снята в режиме холостого хода. При подсоединении аккумулятора они уменьшатся, так как он имеет некоторое внутреннее сопротивление. Рекомендовано производить заряд током в 10 раз меньшим, чем мощность батареи. На практике этого сложно добиться так как сопротивление аккумулятора меняется при заряде. В разряженном состоянии оно наибольшее, в заряженном — наименьшее. Поэтому правильно регулировать зарядный ток динамически.
Варианты соединения гелиобатарей
Солнечные батареи состоят из нескольких отдельных панелей. Чтобы увеличить выходные параметры системы в виде мощности, напряжения и тока, элементы присоединяют друг к другу, применяя законы физики.
Соединение нескольких панелей между собой можно выполнить, применив одну из трех схем монтажа солнечных батарей:
- параллельная;
- последовательная;
- смешанная.
Параллельная схема предполагает подключение одноименных клемм друг к другу, при котором элементы имеют два общих узла схождения проводников и их разветвления.
При параллельной схеме «плюсы» соединяются с «плюсами», а «минусы» с «минусами», в результате чего выходной ток увеличивается, а напряжение на выходе остается в пределах 12 Вольт
Величина максимально возможного тока на выходе при параллельной схеме прямо пропорциональна количеству подключенных элементов. Принципы расчета количества приведены в рекомендуемой нами статье.
Последовательная схема предполагает подключение противоположных полюсов: «плюс» первой панели к «минусу» второй. Оставшийся незадействованный «плюс» второй панели и «минус» первой батареи подключают к расположенному дальше по схеме контроллеру.
Такой вид соединения создает условия для протекания электрического тока, при котором остается единственный путь для передачи энергоносителя от источника к потребителю.
При последовательной схеме подключения напряжение на выходе увеличивается и достигает отметки в 24 Вольт, чего бывает достаточно для запитки портативной техники, светодиодных ламп и некоторых электроприемников
Последовательно-параллельную или смешанную схему чаще всего используют при необходимости соединения нескольких групп батарей. Посредством применения этой схемы на выходе можно увеличить и напряжение и ток.
При последовательно-параллельной схеме подключения напряжение на выходе достигает отметки, характеристики которой наиболее подходят для решения основной массы бытовых задач
Такой вариант выгоден и в том плане, что в случае выхода из строя одного из конструктивных элементов системы, другие связующие цепи продолжают функционировать. Это существенно повышает надежность работы всей системы.
Галерея изображений
Фото из
Соединение ячеек солнечной батареи
Количество панелей в зависимости от потребностей
Последовательное соединение солнечных приборов
Прямое подключение к приборам освещения
Принцип сборки комбинированной схемы построен на том, что устройства внутри каждой группы соединяются параллельно. А подключение всех групп в одну цепь осуществляется последовательно.
Комбинируя разные типы соединений, не составит труда собрать батарею с необходимыми параметрами. Главное – число соединенных элементов должно быть таким, чтобы подводимое к аккумуляторам рабочее напряжение с учетом его падения в зарядной цепи превышало напряжение самих аккумуляторов, а нагрузочный ток батареи при этом обеспечивал необходимую величину зарядного тока.
Технические особенности и преимущества электроснабжения загородного дома солнечными батареями:
1. Солнечные батареи обеспечивают электроснабжение загородного дома, коттеджа, бесперебойной, качественной электроэнергией. Бесперебойный источник питания (БИП) – энергия Солнца, мощная , вечная, неиссякаемая!
2. Инвертор преобразует постоянный электрический ток от солнечных батарей в переменный, как в электросети (230 В АС). Вы можете пользоваться привычным электрооборудованием.
3. Система электроснабжения дома имеет 100% автоматическую защиту. Солнечный контроллер – это пульт управления и защитная автоматика Вашей энергосистемы. Контроллер не допускает перегрузки системы или обратного тока в ночное время.
4. Электросчетчик показывает сколько электроэнергии продается собственником дома в общую сеть или сколько потребляется при необходимости, например, в зимнее время.
5. Проект электроснабжения дома солнечными батареями – не требует согласования. Солнечные батареи просто работают на Вас.
6. Вам не нужно платить высокую стоимость за подключение к общей электросети и за разрешение на применение солнечных батарей.
7. Не требуется заключать договор электроснабжения, если вся энергосистема работает на солнечных модулях.
8. Энергосберегающая светотехника и современные технологии помогают нам экономично и в ногу со временем решать проблемы автономного электроснабжения своего дома.