Схема генератора обратной мощности для электросчетчиков

Асинхронный генератор: особенности и преимущества

По типу вращения ротора генераторы бывают синхронными и асинхронными. Первые имеют сложную конструкцию, а также более чувствительны к перепадам напряжения в сети, что сказывается на их продуктивности. Асинхронные, напротив, обладают более простым принципом действия, а также имеют отличные технические характеристики.

На роторе синхронного генератора помещаются магнитные катушки, что усложняет процесс движения ротора, в то время как ротор асинхронного генератора скорее похож на обычный маховик. Конструктивные особенности значительно влияют на КПД, и в синхронном есть его потери (до 11%). В асинхронном показатель потери энергии снижается до 5%, что делает его более востребованным не только в быту, но и в производстве.

Также есть и другие преимущества асинхронных генераторов:

  1. Более простой корпус защищает двигатель от попадания влаги и отработанного топлива, снижая необходимость частого технического обслуживания.
  2. Генератор устойчив к перепадам напряжения, а также имеет выпрямитель на выходе, который защищает подключенные электроприборы от поломки.
  3. Устройство способно служить источником питания для приборов, имеющих омическую нагрузку и высокую чувствительность к скачкам напряжения: сварочные аппараты, компьютерная и вычислительная техника, лампы накаливания.
  4. Обладает высоким КПД, который сочетается с минимальным клирфактором (показатель потери энергии, которая затрачивается на нагрев самого прибора).
  5. Имеет срок службы не менее 15 лет, поскольку все используемые детали достаточно надежные и не поддаются быстрому износу в процессе эксплуатации.

Все эти преимущества дают повод к использованию именно асинхронного агрегата, а простота его конструкции позволяет собрать в домашних условиях.Вариант электрогенератора с асинхронным двигателем Toyota

Как подобрать электродвигатель

Чтобы исключить ошибки на стадии проекта необходимо уделить внимание конструкции приобретаемого двигателя, а также его электрическим характеристикам: потребляемой мощности, величине напряжения питания, числу оборотов ротора. Асинхронные машины обратимы

Асинхронные машины обратимы.

Они способны работать в режиме:

· электродвигателя, когда на них подается внешнее напряжение;

· или генератора, если их ротор вращает источник механической энергии, например, водяное либо ветряное колесо, двигатель внутреннего сгорания.

Обращаем внимание на заводскую табличку, конструкцию ротора и статора. Учитываем их особенности при создании генератора

Сдвиг по фазе

Как известно, в бытовой электросети применяется переменное напряжение. Если его изобразить на графике, то получится синусоида (волна). По оси ординат определяется напряжение, а по абсцисс – время. Учитывая, что частота в сети 50 Гц, фаза длится 1/50 секунды. За это время на графике потенциал фазы возрастает от 0 до +220. Потом падает до -220 и возрастает опять до 0, то есть полный цикл. Теперь представим, что подключили нагрузку, например, утюг и появился ток.

Добавим на графике еще одну синусоиду теперь уже тока, а не напряжения. Руководствуясь законом Ома, определим его величину для каждого полупериода и увидим, что получилась идентичная синусоида, в которой гребни и впадины волн по вертикали полностью совпадают с графиком напряжения. Другими словами, ток не отстает и не опережает напряжение, то есть сдвига нет.

Ситуация кардинально меняется, когда вместо утюга включаем в цепь пылесос или вентилятор. Если посмотреть на графики, полученные на осциллографе, то увидим, что ток отстает от напряжения, то есть происходит сдвиг тока по фазе. Величина сдвига определяется через косинус угла сдвига и является коэффициентом мощности.

Представим работу генератора. В момент вращения, когда южный полюс, возбуждающей обмотки ротора, выравнивается с магнитопроводом статора индукционной катушки фазы «А», напряжение фазы достигает пикового значения. По мере проворачивания ротора напряжение фазы «А» падает. А теперь добавим схему с вентилятором, когда ток отстает от напряжения. Это значит, что ток достигнет пика позже, чем напряжение и ротор уже провернется на какой-то угол. Вот именно этот угол и называется «φ».

Экспериментальные данные по проверке погрешности индукционных и электронных электросчетчиков

Для начала к обоим типам счетчиков подключал активную нагрузку в виде инфракрасного обогревателя марки ИК-2,0 мощностью 2 кВт. По истечении одной минуты показания по приборам учета составили: электронный насчитал 34 импульса, диск индукционного совершил 20 оборотов. С учетом длины подключаемого кабеля и переходного сопротивления в местах его присоединения оба счетчика насчитали по 34 Вт. Согласно паспортным данным обогревателя потребляемая из сети мощность составляет 2 кВт в час. Из курса электротехники известно, что мощность активной нагрузки в цепях переменного тока равна произведению силы тока на напряжение. Поскольку ИК-2,0 за 60 минут теоретически потребляет 2 кВт, то поделив 2000 Вт на 60 минут получим, что за одну минуту его потребление электричества составит 33,33 Вт.

В технических характеристиках обоих счетчиков указано, что они учитывают только активную нагрузку. Но в паспортных данных электросчетчика СОЭ-55 50Ш-Т-112 есть пункт, указывающий на то, что он ведет учет полной мощности потребляемых цепями напряжения и тока, 8 В*А и 0,04 В*А соответственно, то есть учитывают и внутреннюю реактивную мощность!

Затем для проверки использовал активно-индуктивную нагрузку в качестве светильника ЛБ-2*40, считая ее только в качестве активной. В итоге получилось следующее: индукционный счетчик за 1,15 мин. “насчитал” 1,67 Вт, а электронный 2 Вт за такое же время, где разница составила 0,33 Вт.

Связано это с тем, что электронный счетчик помимо активной мощности учитывает еще и реактивную мощность, которая создает дополнительную нагрузку на электрические сети, однако индуктивными счетчиками не учитывается.

Схема генератора

Схема очень простая и не нуждается в наличии специальных знаний и умений. Если запустить разработку не подключая ее к сети, начнется вращение и, после выхода на синхронную частоту, статорная обмотка станет образовывать электрическую энергию.

Прикрепив к ее зажимам специальную батарею из нескольких конденсаторов (С) можно получить опережающий емкостный ток, который будет создавать намагничивание. Емкость конденсаторов должна быть выше критического обозначения С0, которое зависит от габаритов и характеристик генератора.

В данной ситуации происходит процесс самостоятельного запуска, а на статорной обмотке монтируется система с симметричным трехфазным напряжением. Показатель создаваемого тока напрямую зависит от емкости для конденсаторов, а также характеристики машины.

Простейшая схема включения асинхронного двигателя

Принцип работы

За счет постоянного совершенствования технологий совершенствуются и счетчики электроэнергии. Все однофазные модели представленные на современном рынке подразделяются на индукционные и электронные.

Первый вариант является первопроходцем в системе учета электрической энергии, несмотря на их простоту и доступность, электронные электросчетчики постепенно вытесняют их за счет высокой точности и расширенной функциональности.

Индукционные счетчики электроэнергии

Индукционные счетчики электроэнергии обладают простой и понятной конструкцией, на примере которой относительно легко разобраться с устройством и принципом действия простейшего электросчетчика.

Конструктивно данная модель состоит из:

  • Токовой обмотки – представляет собой катушку индуктивности, включаемую в цепь последовательно нагрузке. Предназначена для измерения величины тока, потребляемого нагрузкой, изготавливается из проволоки большого сечения из нескольких витков.
  • Обмотки напряжения – также представлена катушкой индуктивности, но подключенной параллельно по отношению к токовой обмотке. Изготавливается из тонкой проволоки и укладывается большим количеством витков, применяется для измерения величины напряжения.
  • Алюминиевый диск – элемент счетчика электроэнергии, предназначенный для преобразования электромагнитного усилия в механическую работу. Устанавливается на ось для вращения по направлению усилий электромагнитного поля катушек индуктивности.
  • Счетный механизм – преобразует количество оборотов алюминиевого диска в цифровое отображение результатов измерения мощности. Состоит из механического циферблата шестеренчатого типа.
  • Постоянный магнит – применяется для сглаживания механических колебаний подвижного диска. Создает постоянный магнитный поток и обеспечивает плавность хода.

Принцип действия индукционного счетчика электроэнергии заключается в том, что при подключении в электрическую цепь на обмотку напряжения подается действующее номинальное напряжение. В случае подключения нагрузки к выводам электросчетчика через токовую катушку будет протекать определенная величина тока. При взаимодействии двух электромагнитных полей в алюминиевом диске начнут наводиться вихревые токи, что создаст его собственное электромагнитное поле. Механическое усилие от диска через систему шестеренок передастся счетному механизму.

Величина ЭДС, наводимая обмоткой тока и напряжения вступает во взаимодействие с собственным полем подвижного элемента, которое генерируется за счет вихревых токов. Мера данного взаимодействия и определяет скорость вращения алюминиевого диска. Чем больше сила тока, протекающего через токовую катушку, тем больше результат геометрического произведения напряжения и тока.

Результирующее значение мощности будет быстрее вращать диск, что приведет к ускорению начисления показаний счетчика электроэнергии.

Электронные счетчики электроэнергии

С развитием и совершенствованием технических средств произошла модернизация классических индукционных электросчетчиков. Изначально выпускались гибридные электронно-механические модели, но со временем электроника все более и более вытесняла подвижные части. Конструктивно современная электронная модель счетчика электроэнергии состоит из:

  • Датчика тока – измеряет величину электрического тока, протекающего через счетчик электроэнергии;
  • Датчика напряжения – предназначен для измерения разности потенциалов, приложенной к зажимам счетчика;
  • Электронного преобразователя – осуществляет подсчет мощности, пропускаемой через счетчик электроэнергии;
  • Микроконтроллера – передает показания на дисплей и в блок памяти, может извлекать данные, обрабатывать их и передавать по каналам связи;
  • Дисплея – предназначен для вывода данных опроса со счетчика электроэнергии, может переключать информацию в многотарифных моделях;
  • Блока ОЗУ и ПЗУ – оперативная и долговременная память, предназначенная для хранения и обработки информации.

Принцип действия электронного счетчика электроэнергии основан на измерении силы тока и величины напряжения приложенного к подключенной нагрузке. Фиксация показаний осуществляется за счет датчиков и передается на электронный преобразователь, который рассчитывает величину мощности и преобразует единицу измеряемой величины в счетный импульс. Сигнал с преобразователя передается на микроконтроллер, который, в зависимости от установленной программы срабатывания, выдает на дисплей необходимые параметры электрической цепи. Помимо трансляции текущих показаний на дисплей, микроконтроллер записывает информацию в блок памяти, и извлекать ее в случае необходимости.

Защита генераторов

Первые усовершенствования в защите генераторов были рассмотрены в предыдущей статье по истории РЗ и А. Поскольку мощности генераторов увеличивались, то были разработаны специальные защитные функции, которые и будут рассмотрены в этой статье.

Защита от реверса мощности

Сначала обнаружение реверса мощности только сигнализировалось. Компания V&B в 1894 г выпустила устройство, показывающее как направление, так реверс (Рис.1) Это достигалось вращением красного диска на белом фоне. Направленные реле использовались для отличия КЗ на шинах от КЗ на фидере или повреждения в генераторе. Они могли выявить, куда течет ток: от генератора в систему или наоборот. Эти реле подключались к ТТ генераторных выключателей; такое местоположение было границей, где выявление увеличения тока должно отключаться без выдержки времени. В 1903 г компания AEG представила комбинированное реле МТЗ и обнаружения реверса мощности (Рис.5). Алюминиевый диск управлялся магнитным трехстержневым магнитопроводом. Наружные стержни напряжением, а средний (внутренний) током. При нормальном направлении, даже при больших величинах тока реле работало с выдержкой времени, а при реверсе тока оно работало практически без задержки. В 1920 г на генераторах стали устанавливаться двухфазные (или еще лучше трехфазные) устройства отключения в случае выявления реверса тока с чувствительной уставкой: реле должны были действовать на отключение в случае внутренних повреждений. Резервная защита делалась с помощью МТЗ с большой выдержкой времени. При отключении генераторного выключателя необходимо было снимать возбуждение с генератора. Это предохраняло от возгорания обмоток генераторов.

Компенсация реактивной энергии

В силу характера работы таких приборов избежать эффекта реактивной энергии нельзя, но его можно компенсировать. Можно провести эксперимент, подключив в сеть катушку (трансформатор на холостом ходу) и замерив ток в цепи

Важно не показание, а его наличие. Теперь рассмотрим такую же схему с конденсатором вместо катушки

Ток также будет. Это значит, что никакой работы не производится, а счетчик считает.

Если же подключить катушку и конденсатор параллельно, то амперметры 1 и 2 покажут ток на катушке и на емкости. В то же время амперметр 3 при условии равенства коэффициента мощности обеих потребителей покажет значение ноль. Задача выполнена и сдвиг тока в одну сторону компенсирован аналогичным сдвигом в другую сторону.

Именно по этому принципу и работает так называемый «генератор обратной мощности». Но как это работает на практике и какая будет экономия?

Как увеличить мощность бензогенератора своими руками

Если рассматривать устройство бензогенератора, то можно увидеть, что в него входят всего два основных элемента: двигатель и генератор.

Вся сложность изготовления устройства заключается в регулировке характеристик взаимодействия составляющих. Качество выдаваемой электроэнергии определяется двумя величинами – частотой и напряжением.

И если стабилизацию величины напряжения выполнить достаточно просто, то регулировка частоты сопряжена со значительными трудностями.

Схема недорогого бензогенератора

Конструкция самодельного бензогенератора

Все элементы конструкции необходимо закрепить на жестком основании. Для основания проще всего сделать раму из стальных уголков 50х50 мм. На раме нужно предусмотреть крепления для двигателя, генератора, преобразователя и бензобака.

Для уменьшения вибраций все элементы должны быть закреплены через амортизирующие прокладки из толстой резины.

Пример расчета бензинового генератора

Рассчитывать самодельный бензогенератор в каждом индивидуальном случае нужно, исходя из имеющихся деталей. В качестве примера можно привести расчет для двигателя от бензопилы и распространенного генератора от автомобиля ВАЗ 2110 5102.3771.

Двигатель имеет мощность 2 кВт при 10000 об/мин. Генератор 5102.3771 выдает напряжение 14 В током до 80 А при 5000 об/мин. Мощность генератора составляет 1120 Вт.

Для получения необходимого количества оборотов на валу генератора требуется понижающая передача с передаточным отношением 1:2.

Если оставить на валу генератора его стандартный шкив с диаметром 51 мм, то на вал двигателя нужно будет устанавливать шкив с диаметром 25 мм. Это очень мало. Ремень передачи будет сильно изогнут и будет испытывать большие нагрузки.

Лучше, если шкив генератора установить на двигатель, а на его место поставить шкив диаметром 100 мм. Шкив можно выточить на токарном станке из дюралюминия.

Во время работы двигателя на номинальных оборотах 10000 об/мин, ротор генератора будет вращаться с частотой 5000 об/мин, что является оптимальным значением. Для того чтобы полностью использовать запас мощности генератора, необходим преобразователь с мощностью не менее 1.5 кВт.

. Бензогенератор своими руками.

Изготавливать бензогенератор своими руками имеет смысл только при наличии большей части необходимых комплектующих. Покупка всех составляющих не позволит сделать бензиновый генератор дешевле, чем готовый промышленный. Необходимо также учесть потраченное время и риск поломок в результате настройки и регулировки.

Бытовые устройства

Целесообразность покупки генератора обратной мощности для дома остается под большим сомнением. Производители таких устройств попросту не могут знать какая техника у вас дома, когда и сколько работает пылесос, вентилятор, какой мощности у вас холодильник и сколько в доме электроники с конденсаторами и блоками питания. Обычно подобные устройства рассчитываются, как говорится, «на глаз» и речи о 5% экономии быть не может. Максимум чего можно достичь – это 0,5 или от силы 1 %. Учитывая цену перелагаемых в интернете устройств, при такой эффективности их окупаемость почти нулевая. Так стоит ли?

Намного эффективнее применить этот принцип индивидуально и на основе замеров угла отклонения самому подобрать нужную емкость для каждого более-менее мощного оборудования с электродвигателем.

Выбор подходящей модели

В продаже встречаются самые различные модели генераторов. Многие предназначены для применения на строительных площадках или в промышленных сооружениях. Домашняя электростанция представлена двигателем внутреннего сгорания, который соединен с генератором. Именно генератор вырабатывает электричество, преобразуя механическую энергию. Для дома в большинстве случаев выбирают четырехтактную модель с частотой вращения до 3 000 об/мин, объем топливного бака составляет 10−15 литров.

При выборе уделяется внимание следующим характеристикам:

  1. Мощность.
  2. Экономичность.
  3. Моторесурс.
  4. Комфорт в применении.
  5. Надежность.

Мощность выбирается в зависимости от того, как много оборудования будет питаться от генератора. Экономичность во многом зависит от особенностей применяемого ДВС и генератора. Комфорт в применении зависит от следующих показателей:

  1. Размеров конструкции.
  2. Шума во время работы.
  3. Особенностей управления, подключения и заливки топлива.

Надежность зависит от популярности бренда, под которым выпускается генератор.

Основным вопросом при выборе также является предназначение устройства. В большинстве случаев оно приобретается для резервного применения, когда возникает аварийная ситуация на линии. Примером можно назвать случай обильного выпадения снега. В качестве основного источника питания мини-электростанция применяется крайне редко.

Для подключения устройства требуется слаженная работа нескольких элементов:

  1. Домашней сети потребления.
  2. Центральной цепи подачи энергии.
  3. Кабеля от резерва.

В продаже можно встретить самые различные варианты исполнения мини-электростанций для дома. Большей популярностью пользуются бензиновые модели:

  1. Большой выбор.
  2. Мощность подходит для бытового применения: от 0,8 до 12 кВт.
  3. В продаже есть компактные модели, не занимающие много места.
  4. Для дома продают однофазные модели, но можно приобрести и трехфазный вариант исполнения.
  5. Надежность в работе и низкий уровень шума.

Схема охлаждения зависит от того, будет ли применяться генератор постоянно или только в качестве резервного источника. Многие модели, не предназначенные для длительного применения, снабжаются воздушными вентиляторами. Если устройство будет работать круглосуточно, то следует выбирать модель с водяным охлаждением.

В продаже встречаются и дизельные генераторы, которые из-за высокой стоимости и сложности сегодня устанавливаются крайне редко. Их применение целесообразно только в случае большого объема работы.

Установки для генерации тока разделяются на несколько основных типов:

  1. Асинхронные — характеризуются простотой и надежностью. Современные модели имеют корпус, который защищает основные узлы от воздействия пыли и влаги. Рекомендуется приобретать подобные модели для активных нагрузок.
  2. Синхронные агрегаты лишены практически всех недостатков, которые присущи асинхронным. Особенности конструкции позволяют поддерживать напряжение с большей точностью. Рекомендуется выбирать бесщеточную модель, так как она характеризуется лучшими эксплуатационными качествами.
  3. Инверторные — обходятся намного дороже, чем предыдущие варианты исполнения. При этом конструкция менее надежна и устройство проявляет себя в эксплуатации хуже: не может поддерживать постоянное напряжение.

При отсутствии трехфазных потребителей следует приобретать однофазный генератор. Это связано с тем, что трехфазная модель обходится дороже.

Нюансы монтажа

Как правило, для изготовления ветро генератора из асинхронного двигателя своими руками применяется ветряк с тремя лопастями, которые в диаметре достигают двух метров. Если увеличить количество лопастей или их длину, то улучшение характеристик не произойдёт. Перед тем как выбирать модификацию устройства, тип, характеристики, габариты, необходимо осуществить правильный расчёт.

Подключать к электросети каждый из приборов нужно в определённом порядке. Сначала идут аккумуляторы, а потом уже и ветрогенератор. Вращаться вал электромотора может либо горизонтально, либо вертикально. Как правило, устанавливают в вертикальном положении, это связано с конструктивными особенностями. Для обеспечения защиты от влаги генератор оборудуют прокладками или колпаком.

В качестве основного источника электрического питания дома устройство лучше не использовать. Такое тихоходное устройство следует устанавливать для страховки от ситуаций с перебоями в электричестве или для экономии семейного бюджета, поскольку счёт за централизованную подачу существенно уменьшается.

Перед установкой проводятся необходимые расчёты. В некоторых ситуациях могут возникнуть сложности с обработкой узлов асинхронного движка. Ветряк нельзя изготовить без соответствующих модулей, а также проведения предварительных испытаний устройства. Подключение такого оборудования осуществить невозможно.

О программе управления

Код программы довольно длинный, извините.

Программа разработана с помощью бесплатного AVR Studio и использует стандартные библиотеки AVR.

В основном цикле программа проверяет напряжение на входах вводов, оценивает состояние включения контакторов, учитывает работу программных таймеров, производит необходимые корректировки включая или выключая реле и контакторы, затем уходит в спячку. Для отладки сделан вывод отладочной печати в последовательный порт микроконтроллера.

Для контроля зависаний предусмотрен сторожевой таймер.

Все циклы измерений сделаны на прерываниях и с использованием аппаратных таймеров. Счетчик секунд сделан на таймере 1. По прерыванию таймера 1 обновляются программные таймеры, отвечающие за задержки включения и отключения контакторов и реле генератора. Второй таймер используется для создания эффекта мигания светодиода статуса. Предусмотрено три паттерна мигания. Значения из паттерна мигания берутся в прерывании таймера 2. По миганию можно судить о состоянии контроллера.

Два АЦП также работают по таймерам и усредняют по 2500 сэмплов измерений напряжения. Для перевода измерений в реальные вольты предусмотрены калибровочные константы. Их значения надо исправить в ходе настройки АВР.

Кроме того, есть еще ряд констант, которые нужно определить в ходе наладки.

Реле останова генератора при работе от генератора держится включенным, блокируя поступление напряжения на цепь останова генератора. После завершения работы таймера работы генератора на холостом ходу, реле выключается и на цепь останова генератора через это реле начинает поступать ток. На самом генераторе стоит специальный блок, который после появления напряжения с некоторой задержкой замыкает цепь зажигания на массу, что приводит к останову генератора. Этот же блок содержит цепь подзаряда аккумулятора генератора. Если кому интересны детали, напишите в комментах, я сделаю отдельный пост об этом блоке. В нём нет кода, всё аппаратно.

Если кто-то надумает повторить АВР, то стоит подкорректировать значения настроек. Готовую прошивку не публикую, так как программу всё равно надо править в ходе настройки АВР.

Надо сказать, что мой АВР работает уже 4 года без проблем, так что схема можно считать проверенная как и код.

голоса

Рейтинг статьи

Схема подключения трехфазного счетчика прямого включения

Как уже сказано выше, подключение трехфазного счетчика прямого включения очень простое. Как и в случае с однофазным, к входным клеммам подключаются провода с вводного автомата. С выходных клемм уходят на нагрузку (обычно на противопожарное УЗО, а далее, уже на автоматы линий).

Схема подключения трехфазного счетчика прямого подключения

Обратите внимание, с выхода счетчика провод нейтрали заводится на шину. На другие устройства ноль подается с этой шины

Как видите, подключение совсем несложное

Важно не запутаться с фазами. Для этого лучше использовать цветные провода

Соблюдение цветовой маркировки в разы облегчает разводку электропроводки.

На схеме выше на счетчик заведено сразу четыре провода, включая нейтраль. И это правильно и резонно. Но есть и другая схема, по которой защитный PEN проводник подается не на счетчик, а заводится на шину, а с нее при помощи тонкого провода подается на соответствующий вход счетчика. Эта схема может существовать, так как в ПУЭ пункт 1.7.135 есть прямое указание на возможность такого подключения. Даже есть счетчики под такую схему — с семью выходами (а не с восемью, как обычно). Например, Энергомера СЕ303-S34.

Вторая схема подключения трехфазного счетчика прямого типа

Но не все подразделения энергосбыта одобряют эту схему. Дело в том, что при таком подключении провод PEN можно отключить. В случае с однофазной сетью это приводит к останову счетчика. С трехфазными не так. Экран погаснет, но счетчик продолжит считать, так как для работы ему достаточно наличия трех фаз. Во всяком случае так утверждают производители. Вот только они не исключают того, что погрешность учета повысится. И никто не знает в какую сторону. Чтобы предотвратить остановку счетчика, некоторые подразделения Энергосбыта ставят три пломбы — как на рисунке выше. Самое неприятное в этом случае — опломбировка шины, ведь может понадобится вносить изменения в схему.

Необходимые материалы и инструменты

Для изготовления мотора-генератора своими руками достаточно иметь антисинхронный двигатель. Остальные материалы можно найти в хозяйстве или на специализированных рынках радиотехники.

Могут понадобиться такие инструменты и материалы:

  1. Труба из стали с толщиной стенок не менее 3 мм и общим диаметром 6 см и больше. Высоту нужно подбирать индивидуально, в зависимости от скорости ветров в регионе. Но нужно помнить, что чем выше будет мачта, тем сильнее будет дуть ветер и, соответственно, вырабатываться больше электричества.
  2. Для изготовления лопастей можно использовать различные материалы, но лучше купить готовую деталь заводского производства, так как она будет идеально откалибрована. Самостоятельно изготовить её можно из труб или листов ПВХ, металла. Кроме этого, может подойти деревянная доска, профиль из стеклоткани.
  3. В качестве основы (опоры для мачты) подойдёт бетонная стяжка. С другой стороны, можно использовать металл или дерево. Нужно только помнить, что за надёжность конструкции отвечает основа. Если опора будет слабой, то мачта со временем рухнет от ветра.
  4. Дрель и набор свёрл.
  5. Ножовка.
  6. Разводной ключ.
  7. Рулетка.
  8. Лист металла, который будет служить материалом для изготовления мачты.
  9. Стальная рама. Она будет выполнять функцию основы для ветрогенератора, поворотного механизма и лопастей.
  10. Весь необходимый дополнительный инструмент, включая сварку, с помощью которого можно изготовить устройство.
  11. Хомуты для фиксации растяжек.
  12. Металлический трос с сечением 12 мм.

Генератор обратной мощности своими руками схема

Пользователь интересуется товаром MP – Комплект 2-х канального дистанционного управления МГц с 2-мя реле до 2 кВт 10А. Пользователь интересуется товаром BM – Инфракрасный барьер. Приглашаем Вас в фирменные магазины в Москве Подробнее. Приглашаем Вас в фирменные магазины в Санкт-Петербурге Подробнее. Набор компонентов для сборки функционального генератора, который позволит вам формировать сигналы различной формы в диапазоне частот от 1 до 65 кГц. Доступные формы сигнала: синус, меандр, пила, обратная пила, треугольник, ЭКГ, шум.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.По завершению появится ссылка для доступа к найденным материалам.

Перейти к результатам поиска >>>

Ветроэнергетическая установка из автомобильного генератора

Популярным решением среди людей, практикующих изготовление ВЭУ своими руками, является переделка автомобильного генератора под альтернативные нужды. Несмотря на всю привлекательность подобной затеи, следует отметить, что автомобильный генератор в том виде, в котором он устанавливается на двигатель транспортного средства, довольно проблематично использовать в составе ветроэнергетической установки. Разберемся – почему:

  1. Во-первых, обмотка катушек стандартного автомобильного генератора состоит всего из 5…7 витков. Следовательно, чтобы такой генератор начал давать зарядку АКБ, его ротор необходимо раскрутить примерно до 1200 об/мин.
  2. Во-вторых, магнитная индукция в стандартном автомобильном генераторе возникает благодаря катушке возбуждения, которая встроена в ротор устройства. Чтобы такой генератор смог работать без подключения к дополнительному источнику питания, его необходимо оснастить постоянными магнитами (желательно – неодимовыми) и внести определенные коррективы в обмотку статора.

Михаил26

Переделанный автогенератор (на магниты) имеет право на жизнь. У меня сейчас два таких. На ветре 8 м/с с двухметровыми винтами дают честные 300 Ватт каждый.

Переделка автомобильного генератора под ВЭУ требует определенной сноровки. Поэтому приступать к ней желательно, имея за плечами опыт перемотки асинхронных двигателей или генераторов со стандартным цилиндрическим статором (и те, и другие при желании можно превратить в альтернативную энергетическую установку). Переделка автомобильного генератора имеет свои нюансы. Понять их будет намного проще, если обратиться к опыту пользователей, которые успели достичь в этой сфере определенных успехов.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора

Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения

Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий