Сбалансированный мост постоянного тока

Преимущества и недостатки

Преимущества диодного моста общеизвестны:

  • отработанные десятилетиями схемы;
  • простота сборки и подключения;
  • несложная диагностика неисправности и простота ремонта.

В качестве недостатков надо упомянуть рост габаритов и веса схемы при увеличении мощности, а также необходимости использования радиаторов для мощных диодов. Но с этим сделать ничего нельзя – физику не обмануть. Когда эти условия станут неприемлемыми, надо решать вопрос о переходе к импульсной схеме источника питания. Кстати, мостовое включение диодов может быть использовано и в ней.

Также надо отметить форму выходного напряжения, далекую от постоянной. Для работы с потребителями, предъявляющими требования к стабильности питающего напряжения, надо использовать мост совместно со сглаживающими фильтрами, а при необходимости и стабилизаторами на выходе.

Смотрите это видео на YouTube

Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей

Принцип работы и основные характеристики стабилитрона

Для чего нужен диммер, что это такое, схема подключения диммера и принцип его работы

Что такое импульсный блок питания и где применяется

Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Разновидности

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.
  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла. Измеряет низкодобротную индуктивность неизвестной величины.

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Как выбрать диоды для изготовления диодного моста?

Главными критериями выбора являются напряжение и сила тока, при которой диод не перегревается. При прямом включении на нем падает напряжение около 0,6 В, поскольку он обладает внутренним сопротивлением. Обратное напряжение, которое диод выдерживает, не входя в режим теплового и электрического пробоя, имеет определенный предел. Если он рассчитан на 220 В, то берется запас не ниже 25 %. Но лучше брать его достаточно большим, чтобы уберечь от случайных скачков напряжения в сети.

Ток также берется с запасом. Если нужно, предусматривается охлаждающий радиатор.

Для правильного выбора пользуются справочной таблицей диодов и диодных мостов.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Возможно, вам также будет интересно

Введение Изменение величины напряжения переменного тока требуется в электромеханических системах автоматики, в электропитании и во многих других областях. Для этого традиционно применяют магнитные усилители, многообмоточные силовые трансформаторы с тиристорной коммутацией обмоток, различные тиристорные схемы, изменяющие величину напряжения за счет искажения формы синусоиды . Указанные устройства отличаются неудовлетворительными массогабаритными показателями или не обеспечивают требуемые пределы и

Порядковый номер кратной по отношению к промышленной частоте (f1 = 50 Гц) резонансной гармоники — nр, определяется по выражению : где SКЗ — мощность короткого замыкания сети в месте установки КБ с реактивной мощностью (РМ) — QКБ. Для наиболее часто встречающегося варианта централизованного присоединения батарей КРМ низковольтных сетей (до 1 кВ) непосредственно на сборные шины

В первой части этой статьи были описаны основные электромагнитные аномалии в сетях электропитания и их воздействие на импульсные источники вторичного питания (ИВЭ). Указано, что импульсные источники питания сами являются источником электромагнитных помех. Были рассмотрены виды электромагнитных помех и допустимые нормы значений параметров помех на основе международных и отечественных стандартов электромагнитной совместимости. Рассмотрены задачи по обеспечению электромагнитной совместимости источников питания. В общем виде сформулированы основные меры по подавлению (ослаблению) электромагнитных аномалий и помех. Во второй части статьи описаны специальные структурные и схемотехнические методы применяемые для адаптации источников питания к «плохой» электросети. Даны сведения о компонентах и устройствах для подавления импульсных и высокочастотных помех на входе источников. Приведены основные обоснования и расчетные соотношения по их выбору и проектированию.
В третьей части предлагаются конкретные структурные, схемотехнические и конструктивно-технологические рекомендации по уменьшению уровня помех как внутри источника, так и на его выходе.

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

Будет интересно Что такое геркон и как применяется в быту?

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Измерительные мосты постоянного и переменного тока. Принципы измерений: мост Уитстона

При обслуживании металлических кабельных линий наиболее часто пользуются измерительными мостами, хотя для поиска мест повреждения кабеля существуют и другие приборы. Во-первых, они обеспечивают высокую точность в широком диапазоне измеряемых величин. Во-вторых, их применение позволяет организовать измерения таким образом, чтобы компенсировать посторонние влияния, что незаменимо для локализации неисправности. В-третьих, они недороги.

Учитывая сказанное, полезно ознакомиться не только с устройством измерительных мостов, но и с принципами их применения для локализации неисправностей. Впрочем, говоря языком математики, для построения оптимальных схем измерения такие знания необходимы, но недостаточны. Диагностика — это всегда и опыт, и искусство.

Принцип работы мостовой схемы измерения продемонстрировано на Рисунке 1 (RM1a), а способ ее применения на практике — на Рисунке 2 (RM2a). Сопротивление R1 вычисляется исходя из полученного при балансировке моста соотношения R4/R3, в качестве R2 используется резистор с известным значением. Конечно, сказанное дает только самое общее представление об измерительной схеме моста. На самом деле он устроен гораздо сложнее — современные мосты создаются на основе цифровых процессоров. Микропроцессорное ядро позволяет автоматизировать процедуру измерения (в первых моделях оператор должен был пользоваться калькулятором, сегодня же все расчеты выполняются аппаратурой), обеспечить многофункциональность устройства (многие мосты интегрированы с другими измерительными приборами — мультиметрами, рефлектометрами и т. п.), устранить помехи (посторонние постоянные и переменные напряжения почти всегда присутствуют на жилах кабелей), организовать дальнейшую обработку накопленных результатов измерений (хранение, обмен с компьютером, печать протоколов) и др.

Рассмотренный выше мост, используемый для измерения сопротивления, носит имя Уитстона (Wheatstone). Для подключения измеряемых цепей в нем применяются всего две клеммы (B и C). Более сложные схемы реализованы в двух других мостах — Муррея (Murray) и Купфмюллера (Kupfmuller) (RM2в). Здесь измеряемые цепи подключаются с помощью трех клемм (A, B и C). В более сложных схемах Хиборна/Графа (Hilborn/Graf) задействуются четыре клеммы (A, B, B’ и C) (RM3). Смысл увеличения числа точек подключения станет понятен при рассмотрении схем измерения с применением мостов.

Принцип работы моста Уитстона

Мостовая схема Ч. Уинстона состоит из 2-х плеч. В каждом 2 резистора. Соединяет 2 параллельные ветви еще одна. Ее название – мостик. Ток проходит от клеммы с минусом к верхнему пику мостовой схемы.

Разделившись по 2 параллельным ветвям, ток идёт к положительной клемме. Величина сопротивления в каждой ветви непосредственно влияет на количество тока. Равное сопротивление на обеих ветвях говорит о том, что в них течет аналогичное количество тока. В таких условиях мостовой элемент уравновешен.

Если в ветвях неравное сопротивление, ток в электросхеме начинает движение от ветви с высоким уровнем сопротивления к ветви с наименьшим. Так продолжается, пока 2 верхних элемента цепей остаются равны по своей величине. Аналогичное положение резисторы имеют в схемах, которые используют в системах контроля и измерения.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

H-мост на механических переключателях

Направление вращения вала у двигателя постоянного тока зависит от полярности питания. Чтобы изменить эту полярность, без переподключения источника питания, мы можем использовать 4 переключателя, как показано на следующем рисунке.

Этот тип соединения известен как «H Bridge» (H мост) — по форме схемы, которая похожа на букву «H». Эта схема подключения двигателя имеет очень интересные свойства, которые мы опишем в этой статье.

Если мы замкнем верхний левый и нижний правый переключатели, то двигатель будет подключен справа на минус, а слева на плюс. В результате этого он будет вращаться в одном направлении (путь прохождения тока указан красными линиями и стрелками).

Если же мы замкнем верхний правый и нижний левый переключатели, то двигатель будет подключен справа на плюс, а слева на минус. В таком случае двигатель будет вращаться в противоположном направлении.

Эта схема управления имеет один существенный недостаток: если оба переключателя слева или оба переключателя справа замкнуть одновременно, то произойдет короткое замыкание источника питания, поэтому необходимо избегать такой ситуации.

Интересным состоянием следующей схемы является то, что используя только два верхних или нижних переключателя, мы отключаем двигатель от питания, в результате чего двигатель останавливается.

Конечно, H-мост, выполненный исключительно только на переключателях, не очень универсален. Мы привели этот пример только для того, чтобы простым и наглядным образом объяснить принцип работы H-моста.

Но если мы заменим механические переключатели электронными ключами, то конструкция будет более интересна, поскольку в этом случае электронные ключи могут быть активированы логическими схемами, например, микроконтроллером.

Бестрансформаторная схема диодного моста выпрямителя 24 вольта

В радиолюбительской практике широко используются маломощные блоки питания без трансформаторов.

Питание 220 В подается через конденсатор балласта С1. Выпрямитель состоит из диодов VD1, VD2 и стабилитронов VD3, VD4. Чтобы устранить броски тока через мост, при подключении питания последовательно с конденсатором устанавливается резистор ограничения тока сопротивлением 50-100 Ом. Чтобы разрядить конденсатор при неработающей схеме, к нему параллельно подключается резистор на 150-300 кОм.

На выход схемы устанавливается сглаживающий конденсатор емкостью 2000 мкф.

Отсутствие гальванической связи создает опасность удара электрическим током.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора

В автоматических электронных уравновешен­ный мостах движок реохорда перемещается не вручную, а автоматически (рис. 14). Измерительная схема таких мостов питается как постоянным, так и переменным током. В автоматических мостах переменного тока решающее значение имеют активные сопротивления, поэтому выведенные выше соотношения для мостов постоянного тока сохраняются и для автоматических мостов переменного тока. Последние имеют ряд преимуществ перед мостами постоянного тока: измерительная схема питается от одной из обмоток силового трансформатора электронного усилителя, т. е. не требуется дополнительного источника питания (сухого элемента) и отпадает необходимость в применении вибрационного преобразователя. .

Существуют различные модификации автоматических уравновешенных мостов, однако принцип их работы одинаков. В качестве примера здесь рассматривается принципиальная схема электронного автоматического уравновешенного моста на переменном токе (рис. 14). Постоянные сопротивления R1, R2, R3

иR4 измерительной схемы выполнены из манганина, а рео­хордRp — из манганина или специального сплава. Измеритель­ная схема питается переменным током напряжения 6,3 В.

Напряжение разбаланса на вершинах моста а

иЬ подается на вход электронного усилителя. В нем оно усиливается до величины, достаточной для приведения в действие реверсивного электродвигателяРД. Этот двигатель, вращаясь в ту или другую сторону (в зависимости от знака разбаланса), через систему пере­дач перемещает движок реохорда, уравновешивая измерительную схему моста, а также перемещает показывающую стрелку. Если мост находится в равновесии, то реверсивный двигатель не вра­щается, так как напряжение на вход электронного усилителя не подается.

Серийно изготовляемые электронные автоматические уравно­вешенные мосты могут быть использованы и при измерении темпе­ратуры полупроводниковыми термосопротивлениями. В связи с большой разницей в характеристиках металлических термоме­тров сопротивления и полупроводниковых термосопротивлений измерительную схему моста следует рассчитать.

Неуравновешенные мосты

Возможность непосредственного отсчета температуры — преимущество неуравновешенного моста перед лабораторным уравновешенным мос­том.

На принципиальной схеме неурав­новешенного моста (рис. 15) в которой R1, R2

иR3 — постоянные сопротивления плеч моста;R — реостат;RK — контроль­ное сопротивление;Rt — сопротивление термо­метра;I м — сила тока, протекаю­щего по рамке милливольтметра .

Рис. 15. Схема неуравновешенного

измерительного моста

Для контроля разности потен­циалов в схему моста параллельно термометру включается манганиновое контрольное сопротивление Rк, равное сопротивлению термометра при опре­деленной температуре, отмеченной красной чертой на шкале милливольт­метра .

Для контроля разности потенциалов Uab

переключатель ста­вят в положение 2 и с помощью реостатаR устанавливают стрелку мил­ливольтметра точно на красной черте. После этого переклю­чатель ставят в положение 1и по шкале снимают отсчет, соответ­ствующий температуре термометра.

Неуравновешенные мосты питаются от батареи или от сети (через трансформатор и выпрямитель). Показания неуравновешенных мостов зависят от напряжения Uab,,

поэтому они не используются для промышленных измерений. Эти мосты используются иногда в лабораторной практике, а также в измерительных схемах других приборов

В технике обычно применяют приборы, с помощью которых измерения производят лишь с определенной заранее заданной и установленной ГОСТом допустимой основной

(при нормальных условиях)при­веденной относительной погрешностью. По ее величине измерительные при­боры делят на классы точности 0,05 — 4,0. Промышленные логометры и автоматические уравновешенные мосты в большин­стве случаев выпускаются с классами точности 0,5; 1,0; 1,5. Например, прибор класса 1,5 имеет максимально допустимую основную приведенную относительную погрешность ±1,5%. Класс точности прибора обычно указывают на его шкале.

Что такое диодный мост

Словосочетание «диодный мост» образуется от слова «диод«. Значит, диодный мост — это радиодеталь, которая состоит из диодов

Здесь очень важно то, как соединены эти диоды, иначе диодный мост превратится просто в кучку из диодов

Диод на электрических схемах обозначается вот так.

Самый простой диодный мост состоит из 4 диодов, которые соединяются вот так.

Эта рисунок также является самой распространенным обозначением диодного моста на электрических схемах.

Упрощенный вариант выглядит вот так.

Можно увидеть на схемах даже что-то типа этого.

Для правильной эксплуатации диодного моста, мы должны его правильно подсоединить. Правильное подключение диодного моста выглядит таким образом.

Как вы видите, на вход диодного моста мы подаем переменное напряжение, а на выходе диодного моста снимаем постоянное напряжение. Отсюда можно сделать вывод:

Диодный мост используется в схемах для того, чтобы получить из переменного тока постоянный ток.

Видео на тему: Что такое диодный мост:

Электрический уравновешенный мост.

Электрическим мостом принято называть 4 сопротивления, активных или реактивных, соединенных друг за другом по кольцу. Каждое из сопротивлений называется плечом моста. Плечи, имеющие общую точку, — смежные плечи моста, а плечи, не имеющие общих точек, — противоположные. dc –

питающая диагональ моста, к ней подключается источник питания.bd – измерительная диагональ моста, в нее включается измерительный прибор. В уравновешенных мостах этим прибором служит 0-индикатор, например, магнитоэлектрическая система.

Мосты широко применяются для измерения сопротивлений R различных чувствительных элементов, например, фоторезисторов, тензорезисторов, терморезисторов.

Измерение с помощью уравновешенного моста осуществляется следующим образом: наблюдают за положением стрелки 0-индикатора и перемещают движок переменного резистора R до тех пор, пока стрелка не установится на нулевой отметке. Такое состояние моста – равновесие. В этом случае потенциалы точек b

иd одинаковы, а через измерительную диагональ ток равен 0.

Значение R определяют по положению движка переменного резистора на шкале Шк.

Наибольшее применение имеют уравновешенные мосты постоянного тока с активными резисторами.

Состояние равновесия моста может быть описано системой уравнений (1), (2) и (3) , которую в соответствии с законом Ома можно преобразовать к виду:

Уравнение (7) является условием равновесия моста.

В положении равновесия произведение сопротивлений противоположных плеч моста равны.

Следовательно, из уравнения (7) получаем уравнение (8), из которого можно видеть, что о значении искомого R можно судить по значению переменного сопротивления R . Оно справедливо в том случае, если сопротивление проводов постоянно.

Из уравнения (7) также следует, что изменение напряжения питания моста не влияет на результат измерения.

Трехпроводная схема подключения измеряемого резистора (сопротивления) к уравновешенному мосту.

Очень часто измеряемый резистор подключается к мосту с помощью длинных проводов, поэтому могут возникать погрешности, связанные с изменением сопротивления проводов от температуры. Поэтому в уравнении (8) такое явление будет отождествляться с изменением сопротивления R .

Для исключения влияния проводов на результат измерения и применяют трехпроводную схему подключения к мосту. Если в предыдущей схеме к резистору подходят 2 провода, то в данной схеме – 3. А именно: 1 полюс источника питания также подключается к резистору R в точке С`. Используя условие равновесия моста для данной схемы, можно записать уравнение (*).

Решая последнее уравнение относительно R , и предварительно изготавливая R и R равными друг другу, можно видеть, что при всех изменениях сопротивления проводов, они не влияют на результат измерений.

Автоматические уравновешенные мосты.

Автоматический уравновешенный мост функционирует так же, как и мост с ручным уравновешением. Отличие: в качестве 0-индикатора здесь используется электронный усилитель. Причем питание уравновешенных мостов с активными сопротивлениями осуществляется от источников с переменным током. Когда из-за изменения сопротивления R возникает разбалансирование электрического моста, этот разбаланс воспринимается ЭУ, усиливается, и управляет работой реверсивный двигатель РД. Ротор двигателя механически соединен с движком резистора R (конструкция этого резистора аналогична конструкции реохорда потенциометра). Перемещение ротора двигателя будет происходить до тех пор. Пока разность потенциалов между точками b

иc не станет равной 0. по положению стрелки, которая соединена с ротором, на шкале судят о значении сопротивления R .

Такие приборы выпускаются показывающими, самопишущими, одно- и многоточечными. Класс точности Λ =0,25-1,5.

Неуравновешенные электрические мосты.

Неуравновешенный мост работает специальным образом: при некотором начальном значении R с помощью переменного резистора R устанавливают равновесие моста, при всех других значениях R , например, при увеличении R , между точками b

иd возникает разность потенциалов, а через прибор, включенный в диагональbd, протекает ток. Причем, чем больше изменение R , тем больше этот ток. Т.е. для получения измерительной информации используется разбалансированность.

Ток и разбаланс, как видно из формулы, зависят от R и U , причем величина М в знаменателе выражения также зависит от R . Однако, эта величина R входит в виде суммы с другими сопротивлениями, поэтому изменение R мало влияет на величину М. Установлено, что при изменении R на 10-15% практически не изменяется линейка зависимости между током и значением R .

Источник

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий