С помощью какого устройства можно получить электрический ток

Основные виды проводников

В электропроводящих веществах (проводниках) существуют свободные частицы (носители) некомпенсированного заряда. Именно они и приходят в движение, находясь под действием сил электрических потенциалов. Именно они и «отвечают» за образование электрического тока.

Вольтамперные показатели – то есть зависимость силы тока от его напряжения – вот что считается основной характеристикой любого проводника.

В случае с металлами и электролитами такая зависимость самая простая: чем больше напряжение – тем больше и сила тока. Это выявил еще знаменитый ученый Георг Ом и отобразил в своем законе.

В металлических проводниках в качестве носителей электрического тока выступают свободные электроны, рассматриваемые в данный момент физиками как некий электронный газ. Действительно, эти частицы весьма явно проявляют свойства вырожденного газа.

Различают и такое особое агрегатное состояние вещества, как плазма. Она представляет собой ионизированный газ. В ней с помощью ионов и свободных электронов переносятся электрозаряды. Свободные электроны в плазме формируются из-за действия рентгеновского или ультрафиолетового излучений, либо после значительного нагревания среды.

Электролиты – часто жидкие, но могут быть и твердые – вещества, имеющие значительную концентрацию ионов. Это обуславливает прохождение через них тока. Ионы в электролитах формируются в результате так называемой электролитической диссоциации. Чем выше температура электролитической среды – тем ниже ее показатели сопротивления. Это объясняется ростом количества молекул, разложившихся на ионы. Когда ток проходит через электролит, ионы устремляются к электродам, оседают на них и приходят в нейтральное состояние. Это явление носит название электролиза.

Закон электролиза выявил знаменитый ученый Майкл Фарадей. Он определяет массу вещества, которое оседает на электроде.

Наконец, существует еще и вакуумный электрический ток, который находит применение в электронно-лучевых трубках всевозможных приборах и бытовой техники.

Электробезопасность

Предупреждение по электробезопасности

Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • »безопасным» считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • »минимально ощутимый» человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;
  • пороговым »неотпускающим» называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;
  • »фибрилляционным порогом» называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Источник электрического тока

Самым простым и общеизвестным источником электрического тока является аккумулятор, в уменьшенном виде аккумуляторная или простая батарейка. Это источники постоянного тока. У этих источников есть плюса.

Есть положительный полюс, который обозначается знаком плюс (+). И отрицательный полюс который обозначается знаком минус (-).

Если полюса соединить с потребителем электрического тока, например лампочкой с помощью проводника (проводов), то  электрический ток начнет движение в определенном направлении (под действием электрического поля) и лампочка загорится.

Ток течет от плюса к минусу, хотя обычно принято говорить что наоборот

Но, на начальном этапе это не столь важно

Какие бывают источники электрического тока, выделим три основных:

  1. Гальванический источник – батарейка или аккумулятор.
  2. Термический источник или термоэлемент, в таком элементе электрический ток появляется при повышении температуры.
  3. Фотоэлемент – электричество появляется при воздействии излучения.

Гальванический элемент

Выше я привел обозначение гальванического элемента на схеме. Гальванический элемент это такое устройство, в котором происходят химические реакции. При этих реакциях выделяется энергия, которая превращается в электрическую энергию.

Гальваническими элементами можно считать батарейку и аккумулятор. Суть этих элементов такова.

Есть два металлических элемента, один из них анод (например, цинк) и катод (например, медь). Эти элементы помещены в определенную среду (электролит). Причем не важен форм-фактор этих элементов. Это может быть цинковая пластина и угольный стрежень, или две пластины, не суть.

Изображение из Википедии https://ru.wikipedia.org/

Катод и анод имеют разные заряды, положительный и отрицательный. В результате разных зарядов в электролите начинается движение электронов, то есть появляется электрическое поле, благодаря которому образуется электрический ток.

Со временем происходящие в гальваническом элементе реакции ослабевают, и поэтому приходится покупать новую батарейку или заряжать автомобильный (например) аккумулятор.

Остальные элементы (источники) в данной статье я не рассматриваю. Надеюсь что в целом все понятно. Перейдем к проводнику.

Проводник электрического тока

Проводник это неотъемлемая часть электрической цепи. Он служит для передачи электрического тока от источника к потребителю (приемнику).

Как вы уже знаете проводник обычно это металл. Провода электрического тока в наших квартирах это, обычно, медные или алюминиевые проводники. Как же происходит движение электричества в металле?

Металлы в твердом состоянии имеют кристаллическую решетку. В этой решетке расположены положительно заряженные ионы, а между ними движутся отрицательно заряженные электроны. Отрицательный заряд электронов (всех) равен положительному заряду электронов (всех). Поэтому в своем обычном состоянии провода не баются током.

Кристаллическая решетка металла

Электроны в металле, как и во многих других средах, движутся беспорядочно. Но если мы соединяем источник и потребитель с помощью провода, то от источника на металл начинает действовать электрическое поле и электроны начинают двигаться быстрее и в определенном направлении.

Некоторое беспорядочное движение электронов присутствует,  но это движение можно сравнить с перемещением частиц воздуха в автомобиле, который едет с большой скоростью.

При этом электрический ток происходит по всему проводу (проводнику) который подключен к источнику электрического тока.

Потребитель электрического тока

Приемник или потребитель электрического тока это то, что потребляет ток для какой-либо работы.

Например, лампочка потребляет электрический ток для освещения, обогреватель для повышения окружающей температуры, электрооборудование для выполнения различной работы.

Без потребителя в цепи произойдет замыкание, о нем я расскажу в следующих материалах настоящего самоучителя электрика.

На потребителях не будем останавливаться подробно, тут все в целом должно быть понятно – все то, что для выполнения своей работы нуждается в электрическом токе, можно называть потребителем.

Современный чайник является хорошим примером потребителя электрического тока.

Замыкатель электрической цепи

Замыкателем электрического тока выступает любое устройство, которое замыкает и размыкает электрическую цепь.

Что бы загорелась лампочка нужно щелкнуть выключателем. Что бы чайник начал нагревать воду воду нужно щелкнуть выключателем. Все это замыкатели электрической цепи.

Электромагнитная индукция и закон Фарадея

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Ф=B*S*cosα

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Действие электрического тока, некоторые факты об электричестве

Как правило, электрический переменный ток, наиболее распространенный в быту, оказывает на человеческий организм негативное влияние. Степень которого зависит от значения такой его характеристики, как сила тока:

  • При силе тока от 5 до 7 милиампер наблюдаются судороги в мышцах рук;
  • Токи с силой от 8 до 25 милиампер приводят к появлению болевых ощущений, нарушению дыхания;
  • Ток с силой 50-80 милиампер вызывает паралич дыхания и нарушение работы сердца;
  • Ток с силой свыше 80 милиампер вызывает остановку сердца и паралич дыхания.
  • Токи небольшой силы (до 1,5 милиампер) приводят к легкому дрожанию пальцев и не вызывают болевых ощущений.

Простые факты, как вырабатывается электричество

Чтобы добыть электричество из магнита от динамика, на него наматывают два медных провода. И два конца спаивают вместе, к оставшимся подсоединяют небольшую лампочку, светодиодную ленту. Для того, чтобы сделать источник питания для лампы накаливания на 220 В, нужно использовать более мощные и крупные магниты, толстые медные провода большого сечения. Самой древней батарейкой считается найденное при раскопках в Египте устройство, представляющее собой медный сосуд с вставленным в него железным стержнем, не касающимся стенок.

Интересный опыт проводили при дворе короля Людовика. Для того чтобы показать, как вырабатывается и протекает электричество, сделали взаимосвязь с Лейденской банкой и строем солдат. Взявшиеся за руки солдаты при этом образовывали ни что иное, как первую в мире полноценную живую электрическую цепь; Из-за большого количества смертей от даров молний в Италии в XVIII веке во многих европейских странах появилась очень странная мода на шляпки и зонтики с громоотводами; В скандинавских странах главный, порой и единственный, источник электроэнергии – это гидроэлектростанции. Благодаря таким станциям, в этих государствах очень низкий уровень загрязнения атмосферы.

Электричество: как это работает?

Никогда не помешает знать то, как работает привычное нам всем электричество

Во-первых это очень познавательно, а во-вторых ,это немаловажно для не только для расширения кругозора,но и для обеспечения собственной безопасности в современном мире, где достаточно опасная электроэнергия встречается почти на каждом шагу

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Способы

Таким образом, для получения переменного тока достаточно вращать в поле постоянного магнита проволочную рамку с подсоединенной к ее концам электрической цепью. Источником энергии выступает сила, вращающая рамку и преодолевающая сопротивление магнитного поля.

Каждые пол-оборота проводники рамки меняют направление движения относительно полюсов магнита, соответственно, меняется и направление ЭДС в рамке.

Получение переменного тока

Угол между вектором скорости и силовыми линиями поля меняется по закону α = w*t, где:

  • W — угловая скорость вращения рамки, рад/с;
  • T — время, прошедшее с начального момента, когда вектор скорости был параллелен силовым линиям, с.

То есть ЭДС зависит от sin (wt): E = f (sin (wt)). Следовательно, график изменения значения ЭДС с течением времени имеет вид синусоиды. Вызванный этой ЭДС переменный ток называют, соответственно, синусоидальным.

Описанный простейший генератор можно усовершенствовать:

  1. постоянный магнит меняют на электрический, размещая в статоре несколько катушек (обмотка возбуждения). В итоге получают равномерное магнитное поле и тем самым добиваются идеальной синусоидальности ЭДС (повышается качество работы приборов). Обмотку возбуждения питает маломощный генератор постоянного тока либо аккумулятор;
  2. вместо одной рамки размещают на роторе несколько: ЭДС кратно увеличивается. То есть ротор также представляет собой обмотку.

Проблемная часть такого генератора — подвижный контакт между вращающимся ротором и электрической цепью.

Он состоит из медного кольца и графитовых щеток, прижимаемых к кольцу пружинами. Чем выше мощность генератора, тем менее надежен этот узел: он искрит, быстро изнашивается. Поэтому в мощных промышленных генераторах, установленных на электростанциях, обмотки статора и ротора меняют местами: обмотку возбуждения размещают на роторе, а индуцирующую — на статоре.

Подвижный контакт остается, но из-за малой мощности обмотки возбуждений требования к нему снижаются. Частота промышленного переменного тока — 50 Гц. То есть напряжение периодически меняет направление и величину 50 раз в секунду или 3000 раз в минуту. При наличии 2-х полюсов в обмотке возбуждения для достижения такой частоты и ротор должен вращаться со скоростью 3000 об/мин.

В генераторах тепловых и атомных электростанций так и происходит. Но в гидроэлектростанциях вращать ротор с такой скоростью невозможно физически: движителем служит падающая вода, а ее скорость намного меньше скорости перегретого пара с давлением в 500 атм.

Кроме того, ротор гидростанции имеет огромные размеры и при частоте вращения в 3000 об/мин.

Его удаленные от центра участки двигались бы со скоростью сверхзвукового истребителя, что приведет к разрушению конструкции. Для сокращения количества оборотов увеличивают число пар полюсов в электромагните. Частота вращения при этом составит W = 3000 / n, где n — число пар полюсов. То есть при наличии 10-ти пар полюсов для генерации переменного тока с частотой 50 Гц ротор необходимо вращать со скоростью всего 300 об/мин, а при 20-ти парах — 150 об/мин.

В электротехнике практикуют и другой способ получения переменного тока — преобразованием постоянного. Применяется электронное устройство — инвертор, состоящее из силовых транзисторов, управляющей ими микросхемы и прочих элементов. На выходе инвертора можно получить переменное напряжение любой величины и частоты. Самые простые схемы выдают прямоугольное переменное напряжение, более сложные и дорогие — стабилизированное синусоидальное.

Примеры применения инверторов:

  • импульсные блоки питания и инверторные сварочные аппараты. Сетевой ток с частотой 50 Гц выпрямляется и затем подается на инвертор, дающий на выходе переменный ток с частотой 60-80 кГц. Назначение: при столь высокой частоте резко уменьшаются габариты трансформатора и потери в нем, то есть устройство в целом становится более компактным и экономичным;
  • автономные дизельные и бензиновые генераторы для питания оборудования, чувствительного к качеству напряжения. Дизель-генератор в чистом виде дает низкокачественный ток, поскольку при преобразовании нагрузки частота вращения вала у него меняется. Инвертор устраняет все эти колебания и дает на выходе стабильное, качественное напряжение;
  • ЛЭП на постоянном токе.

Источник

Солнечные паруса

В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.

LightSail 2 во время развертывания

(Фото: The Planetary Society)

Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.

Как это применять: используя наработки Планетарного общества, в 2021 году NASA с помощью паруса планирует долететь до Луны, а затем отправиться к околоземному астероиду 1991 VG.

Зеленая экономика

Съедобная упаковка и солнечный парус: новинки космических эко-технологий

Экономика производства электроэнергии

Строительство объектов электроэнергетики очень затратно, срок их окупаемости велик. Экономическая эффективность того или иного способа производства электроэнергии зависит от многих параметров, в первую очередь, от спроса на электроэнергию и от региона. В зависимости от соотношения этих параметров варьируются и отпускные цены не электроэнергию, например, цена электроэнергии в Венесуэле составляет 3 цента за кВтч, а в Дании — 40 центов за кВтч.

Выбор типа электростанции также основывается в первую очередь на учете местных потребностей в электроэнергии и колебаниях спроса. Кроме того, все электрические сети имеют различные нагрузки, но электростанции, которые подключены к сети и работают непрерывно должны обеспечить базовую нагрузку — дневной минимум потребления. Базовую нагрузку могут обеспечить только крупные тепловые и атомные электростанции, мощность которых можно в определенных пределах регулировать. В гидроэлектростанциях возможность регулирования мощности значительно меньше..

Тепловые электростанции предпочтительно строить в районах с высокой плотностью промышленных потребителей. Отрицательное влияние загрязнения местности отходами может быть сведено к минимуму, поскольку электростанции обычно располагаются вдали от жилых районов. Существенным для теплоэлектростанции является вид сжигаемого топлива. Обычно самым дешевым топливом для тепловых электростанций является уголь. Но если цена природного газа опускается ниже определенного предела, его использование для выработки электроэнергии становится более предпочтительным чем выработка электроэнергии путем сжигания угля  .

Главным достоинством атомных электростанций является большая мощность каждого энергетического блока при относительно небольших размерах и высокая экологичность при чётком соблюдении всех правил работы. Однако потенциальные опасности от сбоя атомных станций очень велики.

Гидроэлектростанции строятся, как правило, в отдаленных районах и являются чрезвычайно экологичными, но их мощность сильно меняется в зависимости от времени года, и они не могут регулировать выдаваемую в электрическую сеть мощность в широких пределах.

Стоимость выработки электроэнергии из возобновляемых источников (за исключением гидроэнергии) в последнее время значительно упала. Стоимость электроэнергии, добываемой из солнечной энергии, энергии ветра, энергии приливов во многих случаях уже сопоставима со стоимостью электроэнергии, добываемой на тепловых электростанциях. С учётом государственных субсидий строительство электростанций работающих с возобновляемыми источниками экономически целесообразно. Однако главный недостаток подобных электростанций — непостоянный характер их работы и невозможность регулировать их мощность.

В 2018 году производство электроэнергии на ветровых электростанциях, расположенных в море, стало дешевле производства электроэнергии на атомных электростанциях  .

Условия, необходимые для получения электротока

Для существования электротока нужны следующие условия: наличие частиц, имеющих заряд, электропроводный материал, по которому будут двигаться частицы, источник напряжения. Важным условием получения электротока является наличие напряжения, которое определяется разностью потенциалов. Иными словами, сила, создаваемая заряженными частицами отталкивания, в одной точке больше, чем в другой.

Природных источников напряжения не существует, по этой причине вокруг нас равномерно распределяются электроны, но такие изобретения, как батарейки дали возможность накапливать в них электрическую энергию.

Другим важным условием является электрическое сопротивление, или проводник, по которому будут двигаться частицы, имеющие заряд. Материалы, в которых это действие возможно, называются электропроводными, а те, в которых нет свободного движения электронов, — изоляторами. Обыкновенный провод имеет проводящую металлическую жилу и изолирующую оболочку.

Электроток в проводниках

В любом проводнике есть носители электрического заряда, которые приходят в движение под воздействием силы поля, создаваемого электрической машиной.

Металлические проводники переносят заряд при помощи электронов. Чем выше температура проводника и нагрев провода, тем хуже протекает ток, так как в нем начинается хаотическое движение атомов от теплового воздействия, увеличивается сопротивление проводящего материала. Чем ниже температура проводника (в идеале — стремление к нулю), тем меньше его сопротивление.

Движение заряженных частиц в проводнике:


Движение заряженных частиц в проводнике

Жидкости могут проводить электроток при помощи ионов (электролиты). Перемещение происходит к электроду, имеющему противоположный с ионом знак, и, оседая на нем, ионы осуществляют процесс электролиза. Анионы — положительно заряженные ионы, двигающиеся к катоду. Катионы — ионы, имеющие отрицательный заряд, двигаются к аноду. В процессе нагревания электролита уменьшается его сопротивление.

Газ также имеет проводимость, электроток в нем — плазма. Движение происходит при помощи заряженных ионов или свободных электронов, которые получаются в процессе излучения.

Электронно-лучевая трубка — это пример электротока в вакууме от стержня катода к стержню анода.

Электроток в полупроводниках

Для понимания прохождения тока в этом материале дадим ему определение. Полупроводник — промежуточный материал между проводником и изолятором, зависит от удельной проводимости, наличия в нем примесей, температурного состояния и воздействующего на него излучения. Чем ниже температура, тем больше сопротивление полупроводника, свойства его влияют на измерения характеристик. Электроток в полупроводнике — это сумма электронного и дырочного тока.

Когда повышается температура полупроводника, происходит разрыв ковалентных связей от действия тепловой энергии на валентные электроны, образуются свободные электроны, в точке разрыва получается дырка. Она занимается валентным электроном другой пары, а сама перемещается далее в кристалле. Когда свободный электрон встречается с дыркой, между ними происходит рекомбинация, восстановление электронных связей. Когда на полупроводник воздействуют энергией электромагнитного излучения, появляются в нем электронно-дырочные пары.

Возникновение электротока в полупроводнике:


Возникновение электротока в полупроводнике

Мощность

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление — сопротивление теплообразованию;
  • реактивное сопротивление — «сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно)» (БСЭ)  .

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

P=IU=I2R=U2R{displaystyle P=IU=I^{2}R={frac {U^{2}}{R}}}

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь p{displaystyle p}определяется скалярным произведением вектора плотности тока j→{displaystyle {vec {j}}}и вектора напряжённости электрического поля E→{displaystyle {vec {E}}}в данной точке:

p=(j→E→)=σE2=j2σ{displaystyle p=left({vec {j}}{vec {E}}right)=sigma E^{2}={frac {j^{2}}{sigma }}}

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны λ{displaystyle lambda }, зависимость сопротивления от длины волны и проводника относительно проста:

R=3200(Lλ){displaystyle R=3200left({frac {L}{lambda }}right)}

Наиболее применяемому электрическому току со стандартной частотой 50 Гц соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX — первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Законы электрического тока

В электротехнике применяются основные законы, которые дают определение электрического тока. Один из главнейших — закон Ома, особенностью которого является быстрота передачи энергии без изменения ее формы из одной точки в другую.

Закон Ома:


Закон Ома

Этот закон показывает связь между напряжением и силой тока, а также сопротивлением проводника или участка цепи. Сопротивление измеряется в омах.

Работу электротока определяют законом Джоуля-Ленца, который говорит о том, что в любой точке цепи ток выполняет работу.


Звуон Джоуля — Ленца

Фарадей открыл магнитную индукцию, а также опытным способом установил, что при пересечении линии магнитной индукции поверхностью замкнутого проводника в нем появляется электроток. Он вывел закон электромагнитной индукции:


Закон электромагнитной индукции

Не замкнутые проводники, пересекающие линии магнитного поля, получают на концах напряжение, что говорит о появлении ЭДС индукции. Если магнитный поток неизменен и пересекает замкнутый контур, то в нем не возникает электротока. ЭДС индукции замкнутого контура, когда меняется магнитный поток, равен модулю его скорости изменения.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector