RS-триггер и его принцип работы

Классификация

RS триггер

Изделия этой категории разделены на две основные группы по принципу сигналов управления. В первой – формируется заданная последовательность выходных сигналов, если установлено состояние «1». После переходе в «0» генерация прекращается. Вторая – способна переключать выходное напряжение соответствующим образом. Как правило, «1» примерно соответствует уровню источника питания.

Также триггеры различают по следующим параметрам:

  • синхронность рабочих циклов;
  • статические (динамические) способы управления;
  • сложность логических схем;
  • одно,- или двухступенчатые.

Триггеры на логических элементах и на операционном усилителе

Для реализации статических триггеров хорошо подходит схема усилителя с двумя каскадами. Связь между ними организуют прямую либо с ограничительными резисторами в соответствующих цепях.


Триггер на логических элементах

Триггер (Trigger) Шмитта

Изделия этой категории могут быть созданы с применением разной элементной базы. В данном разделе рассмотрен триггер Шмитта на транзисторах. Он управляется изменением аналогового сигнала. В зависимости от уровня напряжения, выполняется переключение состояния памяти в соответствующее положение «0» или «1».


Триггер Шмидта на транзисторах с подключенной нагрузкой

Принцип работы RS триггера

Система, представленная выше, при помощи электромагнитных реле иллюстрирует работу триггера на элементах ИЛИ-НЕ. Однако в современных схемах электромеханические приборы давным-давно не используются, сейчас они собираются из электронных логических элементов на транзисторах, заключенных внутри интегральных микросхем. К тому же для их реализации можно использовать различные базисы. Пример схемы RS триггера на элементах И-НЕ, охваченных положительной обратной связью.

Допустим, что на оба входа R и S подаются единицы. Если верхний элемент И-НЕ выдаст на прямой выход Q логический 0, благодаря положительной обратной связи он поступит на свободный вход нижнего элемента, вследствие чего тот выдаст на инверсном выходе единицу (1). В свою очередь, эта 1 по обратной связи поступает на вход верхнего элемента, тем самым подтверждая 0 на выходе Q. Если же на прямом выходе изначально находится 1, то инверсный, соответственно, выдаст 0, который подтвердит 1 на выходе Q.


Транзисторная схема RS триггера

При подаче на S-вход 0, согласно логической функции И-НЕ, на прямом выходе Q возникнет 1, а на инверсном – 0. Если при этом на вход S снова подать 1, состояние триггера не изменится, так как по таблице истинности И-НЕ при подаче на входы элемента комбинации 0 и 1 либо 0 и 0, на выходе всегда будет 1. Таким образом, триггерная схема сохраняет полученное значение неизменным. Сбросить значение Q обратно в 0 можно, только подав сигнал на сбрасывающий вход R. Практически работу RS триггера можно пронаблюдать, собрав такую схему на транзисторах.

RS-триггеры

Логические устройства вычислительной техники

Что же такое RS-триггеры? В моем понимании — это устройства, которые могут принимать одно из двух состояний. На основании этого можно сделать вывод, что этот логический элемент может хранить один бит информации (грубо говоря, ноль или единицу). Существуют некоторые типы данного вида RS-триггеров. Давайте рассмотрим один из них:

Асинхронный RS-триггер

Имеет два входа “R» и «S” и два выхода, как правило это “Q” и “не Q” (т.е. инверсный) . Лично я запомнил, какой элемент для чего, после того, когда узнал, что R – это “RESET” (что означает “сброс”) и “S” – это “SET” (что означает установка)

Принимая во внимание изложенную информацию можно указать, что при подаче сигнала (единица) на “S” на выходе “Q” устанавливается единица, а при подаче единицы на “R” приводит к сбросу единицы на выходе “Q” и установки на нем нуля. Рассмотрим работу на базе элементов “2ИЛИ-НЕ” и “2И-НЕ”

Для этого используем графическое изображение этих элементов.

Итак, разберем принцип работы RS-триггера на базе элементов “2ИЛИ-НЕ”. В начальном положении, когда на R и S отсутствуют сигналы (логический “0”), на выходе “Q” присутствует также “0” или “1” – это исходное состояние. Выглядит это так:

Далее подадим на “S” логическуюединицу и получим на выходе “Q” также единицу. Будет выглядеть это так.

Следующим шагом подадим логическую единицу на “R” и уже на “Q” получим “0”. Изобразим это на рисунке.

Более наглядную работу RS-триггера на элементах 2ИЛИ-НЕ можно продемонстрировать, изобразив таблицу истинности. Вот так она выглядит.

Сейчас рассмотрим работу на элементах 2И-НЕ. Выглядит она аналогично, как и на элементах 2ИЛИ-НЕ с той лишь разницей, что активным уровнем является не “1”как в предыдущем случае, а “0”. Убедимся в этом, используя рисунок и таблицу истинности.

Асинхронным триггерам свойственно такое явление как присутствие “гонок”, что это? Это не одновременное или даже не согласованное по времени поступление информации на входы. Это приводит к наложению одного сигнала на другой. Чем это вызвано? А вызвано это разным временем быстродействия элементов, через которые проходит сигнал, прежде чем попасть на входы триггера, в данном случае на “R” или “S”. Покажем это явление на диаграмме.

Чтобы избавиться от этого явления, был придуман вариант подачи синхросигнала и асинхронный триггер превратился в синхронный.

Синхронные RS–триггеры

Этот вид логического устройства отличается от рассмотренного выше тем, что у него помимо входов “R” и “S” присутствует и третий “C”, на который подаются синхроимпульсы. Без этих импульсов информация на “R” и ”S” восприниматься не будет. Схему синхронного RS–триггера и диаграмму работы изобразим графически.

Из диаграммы видно, что в данном случае срабатывание происходит по переднему фронту (но бывает и по спаду) синхроимпульса.

Передний фронт синхроимпульса – это участок прямоугольного импульса, где происходит его возрастание.

Спад синхроимпульса – это участок спада синхроимпульса.

Именно здесь сделаем небольшое отступление и укажем, что бывают триггеры динамические и статические и соответственно со статическим и динамическим управлением. Чем они отличаются? Объясним максимально просто.

Динамические триггеры – на выходах, которых присутствуют либо непрерывная последовательность импульсов определенной частоты, либо ее отсутствие. (Напоминает управляемый генератор).

Статические триггеры– на выходах которых присутствуют неизменный уровень напряжения, либо его отсутствие.

Со статическим управлением – восприятие сигналов на информационных входах происходит только при подаче на “С” логической единицы (логического нуля).

С динамическим управлением – восприятие сигналов на информационных входах происходят в моменты перепада сигнала на “С”(Передний фронт синхроимпульса или спад синхроимпульса).

Если логические функции входов зависят от его выходов, то целесообразно использовать более рациональную конструкцию элементов.

D-триггер

D-триггер (от англ. delay) запоминает входную информацию при поступлении синхроимпульса.

Хранение информации в D-триггерах обеспечивается за счет синхронизации, поэтому все реальные D-триггеры имеют два входа: информационный D и синхронизации С (рис. 12). Под действием синхросигнала С информация, поступающая на вход D, принимается в триггер, но на выходе Q появляется с задержкой на один такт. В D-триггере с динамическим входом прием в триггер информации со входа D происходит в момент смены на входе С уровня 0 на уровень 1.

Рис. 12 – Схема D-триггера

Таблица 3

Таблица состояний D-триггера
CDQt+1
1
111

Условное графическое обозначение D-триггера показано на рис. 13.

Рис. 13 – Условное графическое обозначение D-триггера

Так как информация на выходе остается неизменной до прихода очередного импульса синхронизации, D-триггер называют также триггером с запоминанием информации или триггером-защелкой. Легче всего объяснить появление этого названия по временной диаграмме, приведенной на рисунке 14.

Рис. 14 – Временная диаграмма D-триггера

По этой временной диаграмме видно, что триггер-защелка хранит данные на выходе только при нулевом уровне на входе синхронизации. Если же на вход синхронизации подать активный высокий уровень, то напряжение на выходе триггера будет повторять напряжение, подаваемое на вход этого триггера. Входное напряжение запоминается только в момент изменения уровня напряжения на входе синхронизации C с высокого уровня на низкий уровень. Входные данные как бы “защелкиваются” в этот момент. Отсюда и название – триггер-защелка.

Принципиально в этой схеме входной переходной процесс может беспрепятственно проходить на выход триггера

Поэтому там, где это важно, необходимо сокращать длительность импульса синхронизации до минимума. Чтобы преодолеть такое ограничение были разработаны триггеры, работающие по фронту

Схема такого триггера приведена на рисунке 15, а обозначение на принципиальных схемах на рисунке 16.

Рис. 15 – Схема универсального D-триггера

Рис. 16 – Обозначение универсального D-триггера на принципиальных
схемах

На рис. 17 представлено условное обозначение D-триггера микросхемы К155ТМ2, содержащей два D-триггера. Входы R и S выполняют те же функции, что и в RS-триггере.

Рис. 17 – D-триггер микросхемы К155ТМ2

D-триггер несложно преобразовать в счетный триггер, т. е. такой, состояние которого изменяется после поступления очередного импульса на счетный вход. Для обеспечения счетного режима необходимо вход D соединить с инверсным выходом триггера (рис. 18,а). Из логики работы
D-триггера следует, что после прихода импульса на вход С состояние
триггера будет изменяться на противоположное. Это иллюстрируется
временными диаграммами, или эпюрами напряжений (рис. 18,б). Подобно
таблице истинности, эпюры напряжений дают наглядное представление о работе
устройства.

Рис. 18 – Работа D-триггера в счетном режимеа) – соединение выводов, б) – временные диаграммы

Необходимо отметить, что изменение состояния D-триггера данного типа происходит при изменении напряжения на счетном входе с низкого уровня на высокий. Такое изменение
напряжения часто называют положительным перепадом напряжения или фронтом импульса. Реакцию триггера на положительный перепад напряжения отображают
косой чертой, пересекающей линию входа С (рис. 18,а). Аналогично
изменение напряжения с высокого уровня на низкий называют отрицательным
перепадом напряжения, спадом или срезом импульса. На схемах это отображают
также косой чертой, но повернутой на 90° относительно показанной на
рисунке 18,а. В зависимости от своей внутренней структуры триггер реагирует или
на положительный, или на отрицательный перепад напряжения.

Регистры на триггерах

RS-триггер способен сохранять 1 бит цифровой информации. Если необходимо хранить несколько бит, например, цифровое двоичное слово из нескольких двоичных разрядов (в микроконтроллерах обычно 8 или 16), то триггеры могут соединяться параллельно, образуя регистры. Это простейшие устройства для временного хранения набора двоичных цифровых разрядов, в которых каждый триггер сохраняет значение одного разряда (0 или 1. т. е. один бит). Так, показанный ниже 4-разрядный регистр на RS-триггерах содержит четыре отдельных триггера.

Любое двоичное число от (0000)2 до (1111)2 может быть сохранено в этом регистре просто путем установки или сброса соответствующего триггера. Давайте предположим, что первый триггер установлен (Q1 = 1), второй сброшен (Q2 = 0), третий также сброшен (Q3 = 0), а четвертый установлен (Q4 = 1). Тогда двоичное число, записанное в регистр, будет (1001)2.

Кроме параллельных регистров, предназначенных для хранения цифровых слов, на RS-триггерах делаются и так называемые регистры сдвига, в которых разряды цифрового слова последовательно с приходом каждого тактового импульса сдвигаются влево или вправо на один разряд. Схема такого устройства на синхронных триггерах показана ниже.

Подобные регистры находят применение в схемах последовательных интерфейсов, когда поступающие из управляющего контроллера цифровые слова побитно передаются в линию связи.

Классификация

Если стандартные логические элементы являются строительными блоками комбинационных схем, бистабильные схемы, включая и RS-триггер, являются основными компонентами построения последовательностных логических устройств, таких, как регистры хранения данных, регистры сдвига, устройства памяти или счетчики. В любом случае рассматриваемые триггеры (разумеется, как и все последовательностные схемы) могут быть выполнены в виде следующих основных типов:

1. Асинхронный RS-триггер – схема, которая изменяет состояние сразу при изменении входных сигналов. Для рассматриваемого типа устройств ими являются сигналы на информационных входах R (сброс) и S (установка). Согласно установившейся практике, соответствующие входы называют так же, как и сигналы на них.

2. Синхронный RS-триггер, управляемый статически, работа которого синхронизирована с уровнем определенного тактового сигнала.

3. Триггер по п.2 с динамическим управлением, работа которого синхронизирована с моментами появления фронтов (или спадов) тактового сигнала.

Таким образом, если изменения состояния выходов происходят только при наличии тактового сигнала, который подается на отдельный тактовый вход C, то триггер является синхронным. В противном случае схема считается асинхронной. Чтобы сохранить свое текущее состояние, последовательностные схемы используют обратную связь, т. е. передачу части выходного сигнала на ее вход.

Универсальный триггер

JK-триггер

JK-триггером называют автомат Мура с двумя устойчивыми состояниями и двумя входами J и K, который при условии J * K = 1 осуществляет инверсию предыдущего состояния (т.е. при J*K=1, Q(t+1) = Q(t)), а в остальных случаях функционируют в соответствии с таблицей истинности RS триггера, при этом вход J эквивалентен входу S, а вход K — входу R. Этот триггер уже не имеет запрещенной комбинации входных сигналов и его таблица истинности, то есть зависимость Q(t+1) = f имеет вид:

Таблица истинности JK-триггера:

JKQ(t)Q(t+1)

По этой таблице можно построить диаграмму Вейча для Q(t+1), которую можно использовать для минимизации, и матрицу переходов:

KQ(t)
J

Матрица переходов JK-триггера:

JKQ(t)Q(t+1)
b1
b2
b3
b4
_____
Q(t+1) = J*Q(t)vK*Q(t)

В интегральной схемотехнике применяются только тактируемые (синхронные) JK триггера, которые при C=0 сохраняют свое состояние, а при C=1 работают как асинхронные JK триггера.

Триггер JK относится к разряду универсальных триггеров, поскольку на его основе путем несложной внешней коммутации можно построить RS-, D— и T— триггера. RS-триггер получается из триггера JK простым наложением ограничения на комбинацию входных сигналов J=K=1, так как эта комбинация является запрещенной для RS триггера.

Счетный триггер на основе JK триггера получается путем объединения входов J и K.

Триггер задержки (D-триггер) строится путем подключения к входу K инвертора, на который подается тот же сигнал, что и на вход J. В этом случае вход J выполняет функцию входа D, а все устройство в целом реализует таблицу переходов D-триггера.

Лекция 6. Структурная схема конечного автомата

В структурной теории автомат представляют в виде композиции двух частей: запоминающей части, состоящей из элементов памяти, и комбинационной части, состоящей из логических элементов:

Комбинационная схема строится на логических элементах, образующих функционально полную систему, а память – на элементарных автоматах, обладающих полной системой переходов и выходов.

Каждое состояние абстрактного автомата ai, где i={0, n}, кодируется в структурных автоматах набором состояний элементов памяти Qi, r={1,R}. Поскольку в качестве элементов памяти используются обычные триггера, то каждое состояние можно закодировать двоичным числом ai = Q1a1Q2a2… Qrar. Здесь аi={0, 1}, a Q – состояние автомата . Отсюда:

__
Qa =Q,еслиa=0
Q,еслиa=1

Общее число необходимых элементов памяти можно определить из следующего неравенства . Здесь (n+1) – число состояний. Логарифмируя неравенство получим . Здесь ]C [ — означает, что необходимо взять ближайшее целое число, большее или равное C.

В отличии от абстрактного автомата, имеющего один входной и один выходной каналы, на которые поступают сигналы во входном X={x1,x2,…,xm} и выходном Y={y1,y2,…,yk} алфавитах, структурный автомат имеет L входных и Nвыходных каналов. Каждый входной xj и выходной yj сигналы абстрактного автомата могут быть закодированы двоичным набором состояний входных и выходных каналов структурного автомата.

xi = o1a1 o2a2… oLaL
yg = Z1a1Z2a2… ZNaN

Здесь ofи Zh– состояния входных и выходных каналов соответственно.

Очевидно число каналов L и N можно определить по формулам ; , аналогичным формуле для определения R.

Изменение состояния элементов памяти происходит под действием сигналов U=(U1,U2,…,Ur), поступающих на их входы. Эти сигналы формируются комбинационной схемой II и называются сигналами возбуждения элементарных автоматов. На вход комбинационной схемы II, кроме входного сигнала xj, по цепи обратной связи поступают сигналы Q=(Q1, Q2, …, QR), называемые функцией обратной связи от памяти автомата к комбинационной схеме. Комбинационная схема I служит для формирования выходного сигнала yg, причем в случае автомата Мили на вход этой схемы поступает входной сигнал xj, а в случае автомата Мура – сигнал xj не поступает, так как yg не зависит от xj.

Краткие теоретические сведения

Триггеры предназначены для запоминания двоичной информации. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений).

Однако триггеры могут использоваться и для построения некоторых цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный или цифровые линии задержки.

RS-триггер

Основным триггером, на котором базируются все остальные триггеры является RS-триггер. RS-триггер имеет два логических входа:

  • R – установка 0 (от слова reset);
  • S – установка 1 (от слова set).

RS-триггер имеет два выхода:

  • Q – прямой;
  • Q- обратный (инверсный).

Состояние триггера определяется состоянием прямого выхода. Простейший RS-триггер состоит из двух логических элементов, охваченных перекрёстной положительной обратной связью.

Рассмотрим работу триггера:

Пусть R=0, S=1. Нижний логический элемент выполняет логическую функцию ИЛИ-НЕ, т.е. 1 на любом его входе приводит к тому, что на его выходе будет логический ноль Q=0. На выходе Q будет 1 (Q=1), т.к. на оба входа верхнего элемента поданы нули (один ноль – со входа R, другой – с выхода ). Триггер находится в единичном состоянии. Если теперь убрать сигнал установки (R=0, S=0), на выходе ситуация не изменится, т.к. несмотря на то, что на нижний вход нижнего логического элемента будет поступать 0, на его верхний вход поступает 1 с выхода верхнего логического элемента.

Будет интересно Что такое индуктивность

Триггер будет находиться в единичном состоянии, пока на вход R не поступит сигнал сброса. Пусть теперь R=1, S=0. Тогда Q=0, а =1. Триггер переключился в “0”. Если после этого убрать сигнал сброса (R=0, S=0), то все равно триггер не изменит своего состояния. Для описания работы триггера используют таблицу состояний (переходов). Обозначим:

  • Q(t) – состояние триггера до поступления управляющих сигналов (изменения на входах R и S);
  • Q(t+1) – состояние триггера после изменения на входах R и S.

Таблица переходов RS триггера в базисе ИЛИ-НЕ

RSQ(t)Q(t+1)Пояснения
Режим хранения информации R=S=0
11
11Режим установки единицы S=1
111
1Режим установки нуля R=1
11
11*R=S=1 запрещённая комбинация
111*

RS-триггер можно построить и на элементах “И-НЕ” (рисунок 2.2).

Входы R и S инверсные (активный уровень “0”). Переход (переключение) этого триггера из одного состояния в другое происходит при установке на одном из входов “0”. Комбинация R=S=0 является запрещённой.

Таблица переходов RS триггера в базисе “2И-НЕ”

RSQ(t)Q(t+1)Пояснения
*R=S=0 запрещённая комбинация
1*
1Режим установки нуля R=0
11
11Режим установки единицы S=0
111
11Режим хранения информации R=S=1
1111

Синхронный RS-триггер

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как при изменении входных сигналов может возникать переходный процесс (в цифровых схемах этот процесс называется “опасные гонки”), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены, и сигнал на выходе комбинационной схемы соответствует выполняемой ею функции. Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала).

Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Принципиальная схема синхронного RS триггера приведена.

Таблица переходов синхронного RS-триггера

RSCQ(t)Q(t+1)Пояснения
1Режим хранения информации R = S = 0
111
111Режим установки единицы S =1
1111
11Режим установки нуля R=1
111
111*R = S = 1 запрещённая комбинация
1111*

В таблице 2.3. под сигналом С подразумевается синхроимпульс. Без синхроимпульса синхронный RS триггер сохраняет своё состояние.

Описание и принцип работы

В широком смысле триггером (от английского trigger — спусковой крючок, запускающий механизм) называют любой импульс или событие, ставшее причиной чего-либо. Термин применяют в электронике, психологии, медицине, программировании и других областях деятельности. В создании микросхем и других устройств так называют элемент, который способен принимать одно из двух стойких состояний (0 или 1) и сохранять их в течение долгого времени.

Положение триггера зависит от получаемых им сигналов на прямом и инверсном выходах. Отличительной чертой устройства является то, что его переход из одной позиции в другую обусловлен не только получением внешних инструкций, поступающих от выбранной системы управления, но и посредством обратной связи. То есть текущее положение элемента зависит от предыстории его работы.

Триггеры могут сохранять свою память только при постоянном поступлении напряжения. Если его отключить, а затем снова подключить, устройство перейдёт в случайное состояние

Поэтому при конструировании устройства важно предусмотреть способ, которым он изначально будет вводиться в правильное положение

В основе любого триггера лежит схема, которая состоит из двух логических элементов типа И-НЕ либо ИЛИ-НЕ, имеющих друг с другом обратную положительную связь. Такой тип подключения позволяет системе иметь всего два возможных устойчивых состояния, из которых выбирается одно

Важной деталью является то, что после того как триггер перешёл в положение, он может сохранять его сколько угодно времени, до тех пор, пока не будет подан очередной управляющий сигнал

Другой характерной особенностью устройств является возможность мгновенного осуществления перехода от одного состояния в другое после получения соответствующей команды. Задержка настолько мала, что её можно не учитывать при проведении расчётов.

Число входов может быть разным и зависит от требуемых функций. Если подать сигнал одновременно на два из них, то он примет произвольную позицию после прекращения их поступления. По своим функциям входы делятся на несколько типов, которые входят в две большие группы: информационные и управляющие. Первые из них получают сигналы и запоминают их в виде информации, в то время как вторые разрешают или запрещают её запись, а также выполняют функцию синхронизации. На схемах они имеют следующие обозначения:

  • S — устанавливает триггер в состояние «1» на прямом выходе;
  • R — противоположен S, сбрасывает состояние обратно на «0»;
  • С — вход синхронизации;
  • D — принимает информацию для последующего занесения на триггер;
  • T — счётный вход.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий