Решенные задачи по трехфазному переменному току

Что такое обрыв нуля?

Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.

Схема 1. Штатная работа системы

Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.

Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.

Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.

Как узнать свою схему

Для правильного определения и расчета мощности требуется знание нескольких факторов:

  • Количества фаз питания;
  • Способа соединения потребителей.

При однофазном подключении используется два провода:

  • Фазный провод;
  • Нулевой провод.

Для трехфазной сети характерно наличие трех или четырех проводников (подключение с заземленной нейтралью). При этом используется две различных схемы включения:

  • «Треугольник». Каждая нагрузка подсоединяется с двумя соседними. Напряжение каждой фазы подводится к точкам соединения потребителей.
  • «Звезда». Все три потребителя соединяются в одной точке. Ко вторым концам подключаются фазы питания. Это схема с изолированной нейтралью. В схеме с заземленной нейтралью точка соединения потребителей подключается к нулевому проводнику.

Соединение источника и потребителей

Решение задач по электротехнике онлайн

  • Главная
  • Заказать
  • Обучение моделированию
  • Онлайн помощь
  • Уникализация

Примеры решений
Теория электротехники
Оплата и гарантии
Цены
Контакты
Сотрудничество

Нас довольно часто спрашивают, решаем ли мы задачи по электротехнике и электронике онлайн. Чтобы полностью ответить на этот вопрос, нужно понимать, что же подразумевается под выражением «решение он-лайн». Как показала практика, под онлайн решением задач разные люди понимают немного разные вещи. Основные из них:

1. Возможность онлайн заказа решения задачи

2. Другое направление деятельности — решение непосредственно онлайн

Чтобы мы могли оценить возможность онлайн решения и назвать точную стоимость, нужно сделать следующее:

Сообщите нам дату и время начала экзамена или зачета
Внимание!!! Время указывайте московское, чтобы не было путаницы при заказе из разных регионов;
Укажите время, которое отводится на решение;
Отправьте нам примеры задач, которые будут на экзамене

Если нет примеров — наиболее подбробное описание тем или лекции или ссылки на методические материалы
Очень важно, чтобы мы понимали, что же именно надо будет решать;
Определите способ связи во время экзамена. По опыту, самый удобный это через ВКонтакте — там можно сразу выложить фото задания

Однако, можно и через электронную почту и другие системы, как вам более удобно;

  • Решение проводится только после получения полной оплаты;
  • Решение неоплаченных задач сверх оговоренного заранее количества не проводится. Поэтому совет — если есть возможность появления дополнительных задач, вы можете оплатить с некоторым запасом, например, на одну дополнительную задачу. Если в итоге ее решать не надо будет — вы ничего не теряете, мы просто вернем деньги;
  • В случае обстоятельств, делающих невозможным решение с нашей стороны (отключение электричества или интернета, болезнь исполнителя и так далее), мы возвращаем уплаченную сумму полностью;
  • Если решение не состоялось по обстоятельствам со стороны заказчика (перенос или отмена экзамена, не выход на связь и так далее) и до начала экзамена остается меньше 24 часов, либо он уже начался, мы возвращаем уплаченную сумму за вычетом 200 рублей;

toe5.ru — Решение задач по электротехнике онлайн 2010-2020. Все права защищены.

Расчёт величины тока по мощности и напряжению

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Однофазная сеть напряжением 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

I = P / U,

где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);

U – напряжение электрической сети, В (вольт).

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

ЭлектроприборПотребляемая мощность, ВтСила тока, А
Стиральная машина2000 – 25009,0 – 11,4
Джакузи2000 – 25009,0 – 11,4
Электроподогрев пола800 – 14003,6 – 6,4
Стационарная электрическая плита4500 – 850020,5 – 38,6
СВЧ печь900 – 13004,1 – 5,9
Посудомоечная машина2000 — 25009,0 – 11,4
Морозильники, холодильники140 — 3000,6 – 1,4
Мясорубка с электроприводом1100 — 12005,0 — 5,5
Электрочайник1850 – 20008,4 – 9,0
Электрическая кофеварка6з0 — 12003,0 – 5,5
Соковыжималка240 — 3601,1 – 1,6
Тостер640 — 11002,9 — 5,0
Миксер250 — 4001,1 – 1,8
Фен400 — 16001,8 – 7,3
Утюг900 — 17004,1 – 7,7
Пылесос680 — 14003,1 – 6,4
Вентилятор250 — 4001,0 – 1,8
Телевизор125 — 1800,6 – 0,8
Радиоаппаратура70 — 1000,3 – 0,5
Приборы освещения20 — 1000,1 – 0,4

На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В.

Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Сечение жилы провода, мм2Диаметр жилы проводника, ммМедные жилыАлюминиевые жилы
Ток, АМощность, ВтТок, АМощность, кВт
0,500,8061300  
0,750,98102200  
1,001,13143100  
1,501,38153300102200
2,001,60194200143100
2,501,78214600163500
4,002,26275900214600
6,002,76347500265700
10,003,575011000388400
16,004,5180176005512100
25,005,64100220006514300

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Сечение жилы провода, мм2Диаметр жилы проводника, ммМедные жилыАлюминиевые жилы
Ток, АМощность, ВтТок, АМощность, кВт
0,500,8062250  
0,750,98103800  
1,001,13145300  
1,501,38155700103800
2,001,60197200145300
2,501,78217900166000
4,002,262710000217900
6,002,763412000269800
10,003,5750190003814000
16,004,5180300005520000
25,005,64100380006524000

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Это интересно: Санузел в деревянном доме – сделать туалет своими руками с канализацией — что важно знать

Решение задач по ТОЭ (электротехнике)

ТОЭ — теоретические основы электротехники

— базовый общетехнический курс для последующего изучения специальных электротехнических дисциплин, связанный с изучением теории электричества и электромагнетизма.

Курс ТОЭ занимает важное место среди общетехнических дисциплин, определяющих теоретический уровень профессиональной подготовки студентов. Он как базовый курс обеспечивает комплексную подготовку будущего дипломированного специалиста — профессиональную подготовку, развитие творческих способностей, умение формулировать и решать на высоком научном уровне проблемы изучаемой специальности, умение творчески применять и самостоятельно повышать свои знания

На практике курс ТОЭ оказывается сложным для многих студентов. Не секрет, что многие дисциплины, преподаваемые в вузе, связаны между собой. Не имея знаний по одной, сложно что-то понять в другой. Зачастую, не понимая основ высшей математики и ее разделов, а также физики, сложно разобраться и в электротехнике. Для многих же студентов, хорошо смыслящих в физике и математике, ТОЭ становится все же камнем преткновения, из-за обилия сложных непонятных схем

, огромного количестваметодов расчета цепей или недостаточного понимания применения математического аппарата в электротехнике (ряды Фурье ,операторный метод ,преобразования Лапласа и т.д.). Решение задач по ТОЭ становится тяжелым испытанием. Также, наТОЭ иногда просто не хватает времени из-за большого объема курса. Огромное количество расчетно-графических (РГЗ) и домашних работ сложно сделать просто чисто физически. А это бессонные ночи со всеми вытекающими последствиями.

и др. Сделать заказ на решение задач по ТОЭ можно тут.

Мы готовы решить для вас задания по ТОЭ

, выполнитькурсовые работы . Решение Ваших задач будет выполнено подробно, со схемами и комментариями, а если вдруг все-таки возникнут вопросы, наши решающие помогут Вам их оперативно решить. Разобравшись, как решается задача, Вы сможете решить ее сами, а также еще и большое количество похожих!

Оборудование для защиты сети от короткого замыкания

Вы уже знаете, как посчитать амперы, зная мощность и напряжение, или вычислить мощность, когда известны сила тока и напряжение. Но иногда даже точные и верные расчеты не спасают от короткого замыкания. ЧП может случиться на трехфазной линии по не зависящим от пользователя причинам: попадание постороннего объекта на провода, обрыв из-за падения дерева. В таком случае даже если вы максимально правильно рассчитали силу тока по мощности и в вашем доме самая идеальная проводка, возможен пожар или выход электроприборов из строя. Защитить свою сеть можно следующими способами:

  • поставить плавкий предохранитель. Если амперы в электроцепи превысят допустимые значения, то предохранитель расплавится, цепь будет нарушена. Цена плавкого предохранителя – 400-600 рублей. Выбирайте товар отечественного производства, рассчитанный на работу с нашими электросетями;
  • установить автоматический выключатель. Это современное оборудование, которое надежно защищает бытовые приборы от преждевременного выхода из строя вследствие проблемы с проводами. Стоит от 200 до 2 тысяч рублей. Сработает за секунды в отличие от плавкого предохранителя, которому на размыкание потребуется примерно полминуты. При подключении изучите подробную информацию о маркировках проводов.

Автоматический выключатель тока защитит бытовую технику от поломок из-за короткого замыкания сети

О защите от короткого замыкания — в видео:

ЗАДАЧА №1. Расчёт простых цепей постоянного тока со смешанным соединением

Задана электрическая цепь постоянного тока смешанного соединения,состоящая из 10 резисторов. Значения сопротивления резисторов и номер схемы для соответствующего варианта указаны в таблице №1.

Определить: эквивалентное сопротивление участка цепи Rэкв ; мощность P, напряжение U, силу тока I на входе цепи; токи Ii и напряжения Ui на всех элементах цепи. В ходе решения выполнить несколько проверок полученных результатов по законам Кирхгофа.

Таблица №1

варианта

схемы

PUIR1R2R3R4R5R6R7R8R9R10
ВтВАОмОмОмОмОмОмОмОмОмОм
11?150?638121512210155
22?300?104021020156071530
33?240?203060202052550836
44?360?253206030715606
55?200?2133010204836,560
66?300?102060451545623
77?500?31515871010103020
88?300?20548731530610
99?600?15301510401045295
1010?300?0,20,824563060215
1111?360?60121530153160530
1212?150?58102040232551535
131??401530203020121051060
142??4036810201560171060
153??20102060153043060260
164??18155401020301015304
175??10010102058820116
186??1006248402020107,5157,5
197??5051515785101563
208??2020451353015146,6
219??2063894,5107744
2210??30123453060324/3
2311??2068246345301060
2412??8012312120,55672
251??20101514121520471530
2621620??633253015142012
2732000??601020401012012510
284??30510151530151020123
2953200??201510121520302540
306?280?2045204020101246
31750000??22285151020301040
3281440??2060100,40,61153094
339??4015301510401045295
34102250??23101012152030108
3511??1660121530153160530
36121280??58102040101581012

ЗАДАЧА №2. Однофазные цепи переменного тока.

Неразветвлённая цепь переменного тока, показанная на соответствующем рисунке, содержит активные и реактивные сопротивления, величны которых заданы в таблице №2. Кроме того извесен один из дополнительных параметров. Определить следующие величины, если они не заданы в таблице параметов.

1. полное сопротивление цепи Z;

2. напряжение, приложенное к цепи U;

3. силу тока в цепи I;

4. сдвиг фаз φ;

5. активную P, реактивную Q и полную S мощности, потребляемые цепью;

6. начертить в масштабе векторную диаграмму и пояснить ее построение.

Таблица №2

варианта

схемы

R1R2 Дополнительный параметр
ОмОмОмОмОмОм
1184182I = 10 A
2216568Q= 135 ВАР
334933U = 20 B
441014182030UR2 = 28 B
55322020610I = 4 A
664563I = 5 A
778126P = 72 Вт
8826104U = 20 B
99314Q= 125 ВАР
1010842U = 80 B
1111284S = 1000 ВА
1223101226P1 = 48 Вт
1310122224P = 72 Вт
1434050128QL1 = 48 ВАР
1544020208020QC1 = — 320 ВАР
16532251588UL1 = 125 B
176810159QC1 = — 320 ВАР
187459P = 256 Вт
198106208I = 4 A
209842S = 50 ВА
211041034P = 64 Вт
22184622P1 = 32 Вт
23243612S = 500 ВА
2431216106UL2 = 160 В
254621013P = 200 Вт
2658010104040QL2 = 40 ВАР
276410159Q= 1600 ВАР
287458Q= -192 ВАР
29862410Q= -24 ВАР
3091684P = 64 Вт
3110124128U = 100 B
3212248Q1 = -96 ВАР
33282210QC1 = — 20 ВАР
34324283525S = 1000 ВА
3543034325030UC1 = 500 В
3654010102020QL2 = 20 ВАР

ЗАДАЧА №3. Трехфазные цепи переменного тока.

Три группы сопротивлений соединили «звездой» с нулевым проводом и включили в трехфазную сеть переменного тока с линейным напряжением Uл ном. Активные сопротивления в фазах А, В и С соответственно равны RA, RB, RC; реактивные – XA, XB, Xc. Характер реактивных сопротивлений указан на схеме цепи (индуктивное или ёмкостное). Линейные токи в нормальном режиме равны IA, IB, IC. Фазы нагрузки потребляют активные мощности PA, PB, PC и реактивные мощности QA, QB, QC. Начертить схему цепи для каждого варианта. Определить величины, отмеченные в таблице №3 прочерками. Начертить в масштабе векторную диаграмму цепи. Из векторной диаграммы определить ток в нулевом проводе.

Таблица №3

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Последовательное и параллельное соединение резисторов

Последовательное соединение – это соединение двух или более резисторов в форме цепи, в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Общее сопротивление Rобщ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Параллельное соединение резисторов

Параллельное соединение – это соединение, при котором резисторы соединяются между собой обоими контактами. В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.

Общее сопротивление Rобщ

При таком соединении, через каждый резистор потечет отдельный ток. Сила данного тока будет обратно пропорциональна сопротивлению резистора. В результате общая проводимость такого участка электрической цепи увеличивается, а общее сопротивление в свою очередь уменьшается.

Таким образом, при параллельном подсоединении резисторов с разным сопротивлением, общее сопротивление будет всегда меньше значения самого маленького отдельного резистора.

Формула общей проводимости при параллельном соединении резисторов:

Формула эквивалентного общего сопротивления при параллельном соединении резисторов:

Для двух одинаковых резисторов общее сопротивление будет равно половине одного отдельного резистора:

Соответственно, для n одинаковых резисторов общее сопротивление будет равно значению одного резистора, разделенного на n.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Смешанное соединение резисторов

Смешанным соединением называют участок цепи, где часть резисторов соединяются между собой последовательно, а часть параллельно. В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Общее сопротивление Rобщ

Для того чтобы посчитать общее сопротивление смешанного соединения:

  • Цепь разбивают на участки с только пареллельным или только последовательным соединением.
  • Вычисляют общее сопротивление для каждого отдельного участка.
  • Вычисляют общее сопротивление для всей цепи смешанного соединения.

Так это будет выглядеть для схемы 1:

Также существует более быстрый способ расчета общего сопротивления для смешанного соединения. Можно, в соответствии схеме, сразу записывать формулу следующим образом:

  • Если резисторы соединяются последоватеьно — складывать.
  • Если резисторы соединяются параллельно — использовать условное обозначение «||».
  • Подставлять формулу для параллельного соединения где стоит символ «||».

Так это будет выглядеть для схемы 1:

После подстановки формулы параллельного соединения вместо «||»:

Примеры решения задач

1.* В цепи (рис 3.46, а) фазное напряжение
источника: Uф = 220 В,
сопротивление нагрузки: r = 220 Ом;  xc= 220 Ом.

Требуется определить показания амперметра.

Решение:

Данную задачу
проще всего решить с помощью векторной диаграммы (рис 3.46, б).

По модулю токи всех фаз нагрузки равны  1 А (Iф
= Uф/Zф; Iф = 220/220 = 1A).

При этом токи фаз A и B
совпадают по фазе с соответствующими напряжениями, а ток фазы C
опережает напряжение U на /2.

Амперметр включен в нейтральный провод, ток которого
равен сумме фазных токов нагрузки:

= A+
B+
C.

Эту сумму несложно найти из векторной диаграммы.
Причем сумма A+ B равна по модулю 1 А, а угол между полученным вектором
и вектором Cоказывается
равным 90.
Вследствие этого = А. Таким образом, амперметр покажет 1,41 А.

Сборник задач по электротехнике с решениями. Учебное пособие

В первое время после включения показаний амперметра в цепи обмотки I1 = 1,2 А, а после нагрева обмотки до установившейся температуры I2 = 1 А. Учитывая, что температура воздуха в помещении 20 °С

и температурный коэффициент сопротивления меди
4 10–3 K–1, найти температуру обмотки.
1.1.15) Определить сопротивление проводов воздушной линии при температурах +40 и –40 °С. Дли-
на линии l = 28,5 км, диаметр медных проводов d = 5 мм.
1.1.16) Приемник за пять суток непрерывной работы израсходовал
24 кВт ч электроэнергии при напряжении 220 В. Определить ток и сопротивление приемника.
1.1.17) Определить плотность тока в проводах диаметром 4 мм, соединяющих приемник с генерато-
ром. Суточная выработка энергии генератора, составляет 48 кВт ч при напряжении U = 220 В.
U 1.1.18) Электрическая цепь мощностью P = 5 кВт при напряжении
= 220 В подключена к генератору с внутренним сопротивлением

Rвт = 0,22 Ом. Определить эдс и кпд генератора.

1.1.19) Механическая мощность электродвигателя постоянного тока 8,5 кВт при напряжении U = 220 В, кпд 85 %. Определить электрическую мощность и ток двигателя.

1.1.20) На изготовление катушки израсходовано 200 м медного провода диаметром 0,5 мм. На какое постоянное напряжение можно включать эту катушку, если допустимая плотность тока j = 2 А/мм2?

1.1.21) Составить схему электрической цепи, в которой к аккумуляторной батарее присоединены три резистора. Один – регулируемый, включен последовательно с группой из двух нерегулируемых, соединенных между собой параллельно. В схеме предусмотреть управление с помощью двухполюсного выключателя, защиту плавкими предохранителями, измерение общего тока в цепи и напряжения на зажимах батареи.

1.1.22) Составить схему электрической цепи, в которой четыре резистора (один из них регулируемый) образуют замкнутый контур в виде четырехугольника. В одной диагонали четырехугольника – гальванический элемент, присоединенный к цепи через однополюсный выключатель, в другой находится гальванометр, который можно включить и выключить кнопочным выключателем.

1.1.23) Составить схему электрической цепи, в которой последовательно включены два нерегулируемых резистора, аккумуляторная батарея и генератор, которые можно включить согласно или встречно. В схеме предусмотреть защиту цепи плавкими предохранителями, измерение тока, измерение напряжения на зажимах батареи и генератора одним вольтметром с помощью переключателя.

1.1.24) Составить схему электрической цепи, в которой генератор постоянного тока и аккумуляторная батарея, включенные параллельно, снабжают энергией внешнюю часть цепи, состоящей из трех нерегулируемых резисторов, включенных также параллельно. Каждый элемент цепи присоединяется к ней однополюсным выключателем. В схеме предусмотреть измерение общего напряжения, тока в каждом источнике и общего тока приемников энергии.

1.1.25) Два генератора постоянного тока, работая круглосуточно на общий приемник, выработали вместе за месяц 96 000 кВт ч энергии. В течение 10 суток этого месяца первый генератор находился в ремонте. За это время счетчик электрической энергии, установленный на линии к приемнику, показал 2 400 кВт ч. Определить мощность и эдс каждого генератора, если амперметр в цепи первого генератора во время работы показывал 500 А, а в цепи второго – 100 А.

1.1.26) Источник электрической энергии имеет в качестве нагрузки реостат с переменным сопротивлением R, эдс источника Е = 24 В, а его внутреннее сопротивление R = 1 Ом. Построить графики зависимости напряжения U на зажимах источника, мощности источника Pи, мощности приемника Pп, кпд источника, мощности потерь внутри источника Pвт от тока в цепи при изменении сопротивления нагрузки от R = ∞ (холостой ход) до R = 0 (короткое замыкание), считая эдс источника постоянной.

1.2ЗАКОН ОМА

1В электрической цепи за положительное направление эдс Е принимается направление, совпадающее с силой, действующей на положительный заряд, т.е. от «–» источника к «+» источника питания.

За положительное направление напряжения U принято направление, совпадающее с направлением действия электрического поля, т.е. от «+» к «–» источника.

Несимметричная нагрузка при соединении приемников звездой

Нагрузка трехфазной электрической сети будет считаться несимметричной, если хотя бы одно из фазных сопротивлений не равно другим. Проще говоря, сопротивления фаз не равны, например: ra = rb = rc, xa = xb ≠ xc. В общем случае  считают, что несимметричная нагрузка возникает при отключении одной из фаз.

Возникает не симметрия чаще всего при подключении к трехфазной сети однофазных электроприемников. Они могут иметь различные мощности, режимы работы, различное территориальное расположение, что тоже влияет на величину фазной нагрузки.

В случае, когда необходимо подключить однофазные потребители электрической энергии, для более равномерной загрузки их делят на три примерно одинаковые по мощности группы.

Один вывод однофазных потребителей подключают к одной из трех фаз, а второй вывод подключают к нейтральному проводу. Так как все электроприемники рассчитываются на одно напряжение, то в пределах каждой фазы они соединяются параллельно.

Главной особенностью электрической сети несимметричной нагрузкой является то, что она должна в обязательном порядке иметь нейтральный провод. Это объяснимо тем, что при его отсутствии величины фазных напряжений будут в значительной степени зависеть от величины не симметрии сети, то есть от величин и характера сопротивления каждой из фаз. Поскольку сопротивления фаз могут варьироваться довольно в широких пределах в зависимости от количества подключенных электроприемников, также широко будет варьироваться и напряжения на потребителях электрической энергии, а это недопустимо.

Для иллюстрации выше сказанного ниже приведена векторная диаграмма для трехфазной несимметричной цепи при наличии нейтрального провода:

Ниже приведена приведена векторная диаграмма для этой же цепи, но при отсутствии нулевого рабочего (нейтрального) провода:

Также можно посмотреть видео, где объясняется, что может произойти в электрической цепи при обрыве нулевого провода:

Обрыв нуля в цепи переменного тока.

Необходимость нулевого провода станет еще более очевидной, если представить, что вам необходимо подключить однофазного потребителя к одной из фаз, при этом остальные две подключать нельзя, так как приемник рассчитан на фазное напряжение 220 В, а не на линейное 380В, как в таком случае получить замкнутый контур для протекания электрического тока? Только использовать нулевой рабочий проводник.

Для повышения надежности соединения электроприемников в цепь нулевого рабочего проводника не устанавливают коммутационную аппаратуру (автоматические выключатели, предохранители или разъединители).

Фазные токи, углы сдвига, а также фазные мощности при несимметричной нагрузке будут различными. Для вычисления их фазных значений можно применить формулу (5), а вот для вычисления трехфазной мощности формула (6) уже не подходит. Для определения мощностей необходимо пользоваться выражением:

Если существует необходимость определения тока нейтрального провода, то необходимо решать задачу комплексным методом. Если существует векторная диаграмма, то определить ток можно по ней.

Пример

В осветительной электрической сети с напряжением в 220 В в фазе А включено 20 ламп, фазе В – 10 ламп, а в фазе С – 5 ламп. Параметры лампы Uном = 127 В, Рном = 100 Вт. Необходимо определить ток нейтрального провода и каждой лампы.

Решение

Если учесть, что лампы накаливания имеют только активное сопротивление (реактивное слишком мало и им пренебрегают), то по формуле мощности определим ток лампы, а по закону Ома ее сопротивление:

Зная число и сопротивление ламп нетрудно определить сопротивления фаз, а также фазные токи:

Для определения тока в нейтральном проводе IN решим задачу комплексным методом. Так как при сделанных ранее допущениях комплексные напряжения приемника равны комплексным ЭДС источника, получим:

Где комплексные значения фазных сопротивлений будут равны Za = 8,05 Ом, Zb = 16,1 Ом, Zс = 32,2 Ом.

Комплексные значения токов, а также действующее значение тока нейтрального провода будут иметь вид:

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий