Расшифровка векторных диаграмм электросчетчиков

Режим короткого замыкания

Режимом короткого замыкания называют режим при замкнутой накоротко вторичной обмотке . Схема замещения трансформатора в этом режиме имеет вид, представленный на рис. 11. Для режима короткого замыкания справедливы следующие уравнения:

Векторная диаграмма (рис. 12) в этом режиме строится аналогично векторной диаграмме для режима холостого хода. Угол  определяется параметрами вторичной обмотки:. Особенность этого режима состоит в том, что ЭДС  значительно отличается от напряжения  из-за больших токов короткого замыкания. Учитывая, что , током  можно пренебречь. Тогда схема замещения может быть упрощена (рис. 13).
Из схемы замещения получаем. Если принять, что , то действующее значение ЭДС  будет равно половине действующего значения напряжения :

. Поэтому в режиме короткого замыкания магнитопровод трансформатора оказывается ненасыщенным.
Действующее значение тока короткого замыкания в соответствии с рис. 13, где  — модуль комплексного сопротивления короткого замыкания трансформатора. При  ток короткого замыкания может превосходить номинальное значение в 10-50 раз. Поэтому в условиях эксплуатации режим короткого замыкания является аварийным

Однако этот режим часто проводится при пониженном напряжении для определения параметров трансформатора.
Напряжение , при котором ток короткого замыкания равен номинальному, называется напряжением короткого замыкания и обозначается

Отсюда следует, что напряжение короткого замыкания  представляет собой падение напряжения на внутреннем сопротивлении трансформатора при номинальном токе и поэтому является важной характеристикой трансформатора. Если совместить вещественную ось с вектором тока , то комплексное значение  можно представить как , где ,  — активная и реактивная составляющие напряжения короткого замыкания

Обычно модуль  выражают в относительных единицах,, либо в процентах,. Величина  оказывает существенное влияние на свойства трансформатора в рабочих и аварийных режимах. Поэтому  является паспортной величиной наряду с номинальными данными

Если совместить вещественную ось с вектором тока , то комплексное значение  можно представить как , где ,  — активная и реактивная составляющие напряжения короткого замыкания. Обычно модуль  выражают в относительных единицах,, либо в процентах,. Величина  оказывает существенное влияние на свойства трансформатора в рабочих и аварийных режимах. Поэтому  является паспортной величиной наряду с номинальными данными.

Порядок построения диаграмм

Таким образом, с помощью векторных диаграмм, возможно очень четко представить себе опережение или отставание, затрагивающее различные электрические величины. В качестве примера можно рассмотреть ток, у которого величина изменяется по определенному закону: i = Im sin (ω t + φ).

Для построения диаграммы необходимо от начальной точки координат «0» под определенным углом φ провести вектор Im. Его величина будет соответствовать такому же току. Направление вектора следует выбирать таким образом, чтобы он составлял угол с осью ОХ, равный фазе φ. Проекция вектора на вертикальной оси даст значение мгновенного тока в первоначальный период времени.

В большинстве случаев на векторных диаграммах отображаются не амплитудные, а действующие значения. Отличие действующих и амплитудных значений представляет собой пропорцию в определенном масштабе: I = Im /√2. Таким образом, векторная диаграмма напряжений и токов дает возможность быстро и просто выполнять все необходимые действия с двумя основными параметрами при расчетах электрических цепей и получать точные результаты.

Умножитель напряжения

Расчет делителя напряжения

В чем измеряется напряжение

Как проверить напряжение мультиметром в сети: измерение вольтажа в розетке 220 вольт

Индикатор напряжения на светодиодах: схема, как сделать своими руками самодельный указатель напряжения в сети

Расчет тока по мощности и напряжению

Примеры применения

Допустимый ток для медных проводов – плотность тока в медном проводнике

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Как сделать лучевую векторную диаграмму связей в Excel

Сначала взглянем на то, что мы пытаемся построить и визуально оценим объем работы. Выглядит интересно? Тогда читайте дальше, чтобы узнать, как это создать.

Чтобы создать лучевую диаграмму в Excel для визуального анализа взаимоотношений в сети, нам нужно сначала понять ее различные составляющие.

Как видите, диаграмма содержит следующие части:

  1. Набор точек, каждая из которых представляет одну заинтересованную сторону – участники сети.
  2. Набор сероватых толстых сплошных и тонких пунктирных линий, представляющих все отношения между людьми. Сплошные – сильные связи (например, друзья), пунктирные – слабые связи (знакомые).
  3. Набор зеленых толстых и синих пунктирных линий, представляющих отношения для выбранного конкретного участника сетевой группы.
  4. Срез для выбора анализа участника – как панель управления лучевой диаграммой.
  5. Табличка со сводной статистикой выбранного человека.

Векторные диаграммы и комплексное представление

Векторные диаграммы можно считать вариантом (и иллюстрацией) представления колебаний в виде комплексных чисел. При таком сопоставлении ось Ox соответствует оси действительных чисел, а ось Oy – оси чисто мнимых чисел (положительный единичный вектор вдоль которой есть мнимая единица).

Тогда вектор длиной A

, вращающийся в комплексной плоскости с постоянной угловой скоростьюω с начальным угломφ0 запишется как комплексное число

а его действительная часть

-есть гармоническое колебание с циклической частотой ω

и начальной фазойφ0 .

Хотя, как видно уже из вышесказанного, векторные диаграммы и комплексное представление колебаний теснейшим образом связаны и по сути представляют собой варианты или разные стороны одного и того же метода, они, тем не менее, обладают своими особенностями и могут применяться и по отдельности.

Метод векторных диаграмм может излагаться отдельно в курсах электротехники или элементарной физики, если по тем или иным причинам (обычно связанным с умеренным уровнем математической подготовки учащихся и недостатком времени) надо избежать использования комплексных чисел (в явном виде) вообще.

Метод комплексного представления (который при необходимости или желании может включать и графическое представление, что, правда, совершенно не обязательно и иногда излишне) вообще говоря более мощен, т.к. естественно включает в себя, например, составление и решение систем уравнений любой сложности, в то время как метод векторных диаграмм в чистом виде всё же ограничен задачами, подразумевающим суммирование, которое можно изобразить на одном чертеже.

Однако метод векторных диаграмм (в чистом виде или в качестве графической составляющей метода комплексного представления) – более нагляден, а значит в некоторых случаях потенциально более надежен (позволяет до некоторой степени избежать грубых случайных ошибок, которые могут встречаться при абстрактных алгебраических вычислениях) и позволяет в некоторых случаях достичь в каком-то смысле более глубокого понимания задачи.

Что такое векторная диаграмма токов и напряжений? Как построить график

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.

Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Различают 2-х вида векторных диаграмм:

  • точные;
  • качественные.

Интересное видео о векторных диаграммах смотрите ниже:

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.

Для удобства при построении диаграмм анализируют неподвижные векторы для определенного момента времени, который выбирается таким образом, чтобы диаграмма имела удобный для понимания вид. Ось OХ соответствует величинам действительных чисел, ось OY — оси мнимых чисел (мнимая единица). Синусоида отображает движение конца проекции на ось OY. Каждому напряжению и току соответствует собственный вектор на плоскости в полярных координатах. Его длина отображает амплитудное значение величины тока, при этом угол равен фазе.

Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой частотой ω. В виду чего при вращении их взаимное расположение не изменяется.

Ещё одно полезное видео о векторных диаграммах:

А остальные — изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин. Допустим у нас есть ток, величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол — соответствующий фазе φ.

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений — масштабом, поскольку:

Обоснование векторной диаграммы

Предположим, что ток задан уравнением

i = Imsin(ωt +Ψ)

Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:

Im = Im/Mi

Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе Ψ (рис. 12.10).

Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени: i = ImsinΨ.

Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом ωt +Ψ ,

Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.

Следующая статья сложение и вычитания векторов векторной диаграммы.

Например, для t = t1

i1 = Imsin(ωt1 +Ψ)

в общем случае

i = Imsin(ωt +Ψ)

Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж в начальном положении.

Диаграмма Парето — что это такое, и как ее построить в Экселе

Итальянский инженер, экономист и социолог Вильфредо Парето выдвинул очень интересную теорию, согласно которой 20% наиболее эффективных предпринятых действий обеспечивают 80% полученного конечного результата. Из этого следует, что остальные 80% действий обеспечивают всего 20% достигнутого результата.

Этот вид диаграммы позволяет высчитать те самые наиболее эффективные действия, обеспечивающие наибольшую отдачу. Давайте попробуем построить эту диаграмму, используя инструменты, доступные в программе Microsoft Excel. Самым подходящим типом диаграмм для достижения этой цели будет гистограмма.

Обработка данных для построения лучевой диаграммы

На следующем листе с именем «Обработка» создаем сначала 2 таблицы: одна обычная, вторая умная. Обычная таблица заполнена формулами и значениями так как показано на рисунке:

Обратит внимание!!!:

  1. В ячейках B9 и B10 используются формулы массива поэтому при их вводе следует использовать комбинацию клавиш CTRL+SHIFT+Enter.
  2. Умная таблица должна быть расположена не выше 45-ой строки текущего листа Excel. Для данной таблице будет регулярно применятся фильтр, который будет скрывать часть строк листа. Нельзя допустить чтобы в эти строки попадали другие значения.

Рядом создаем еще одну таблицу для вычисления координат на основе данных первой таблицы. Для этого используется 2 формулы для значений X и Y:

Следующая таблица создана для построения координат линий – отношений на уровне знакомых. Таблица содержит 40 строк и 40 столбцов. Каждая пара столбов – это входящие данные для радов диаграммы. Все ячейки заполнены одной сложной формулой:

Рядом же сразу создаем аналогичным образом таблиц с координатами построения линий – отношений на уровне друзей. Все ее ячейки заполнены формулой:

Эти две таблицы будут использованы для построения серых линий. А теперь создадим еще одну таблицу для построения синих и зеленых линий для выделенного участника:

В каждом столбце этой таблицы используются разные формулы:

Столбец листа CM (X-синяя):

CN (Y- синяя):

CO (X- зеленая):

CP (X- зеленая):

Все с обработкой закончили! У нас есть все координаты для точек и линий. Осталось только построить лучевую диаграмму визуализировав таким образом входящие значения на листе «Данные».

Визуализация данных связей участников на лучевой диаграмме

Начнем сначала с построения серых пунктирных линий для отображения всех слабых связей между участниками. А потом сделаем те же самые действия для серых сплошных линий сильных связей. Выделите диапазон ячеек I3:J43 и выберите инструмент: «ВСТАВКА»-«Диаграммы»-«Точечная с прямыми отрезками».

Из диаграммы следует удалить: сетку, оси координат, название и легенду.

Затем из дополнительного меню: «РАБОТА С ДИАГРАММАМИ»-«КОНСТРУКТОР»-«Выбрать данные» в окне «Выбор источника данных» используйте кнопку «Добавить» для добавления остальных 20-ти рядов:

Для каждой линии нужно присвоить один и тот же формат. Удобно выбирать ряды линий из дополнительного меню: «РАБОТА С ДИАГРАММАМИ»-«ФОРМАТ»-«Текущий фрагмент». Из выпадающего списка выбираем необходимый нам ряд, а ниже жмем кнопку «Формат выделенного» чтобы приступить к форматированию:

Далее добавляем еще 2 ряда для выделения цветом выбранных участников. Для этого используем значения последней таблицы:

Не забудем изменить цвета линий на зеленый и синий – соответственно.

Осталось еще добавить подписи данных. Для этого используем вторую таблицу с базовыми координатами точек участников при создании еще одного ряда:

Выделяем последний ряд, щелкаем по полюсу возле диаграммы и отмечаем галочкой опцию «Подписи данных». Сам ряд лучше скрыть, убрав завивку для его линий.

Интерактивная панель управления лучевой диаграммой связей

Для создания панели управления будем использовать обычный срез для уже созданной умной таблицы. Перейдите на любую ячейку умной таблице на листе «Обработка» и выберите инструмент: «ВСТАВКА»-«Фильтры»-«Срез». В паявшемся окне укажите галочкой только на опцию «Имя».

Копируем срез и лучевую диаграмму на отельный лист «ГРАФИК» и наслаждаемся готовым результатом:

Как видно выше на рисунке было создано всего 43 ряда для лучевой диаграммы связей взаимоотношений участников рынка. Для добавления большого количества рядов на график можно создать макросы, в данном случае можно все седлать вручную.

Что такое векторная диаграмма токов и напряжений? Как построить график

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты. Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Различают 2-х вида векторных диаграмм:

  • точные;
  • качественные.

Интересное видео о векторных диаграммах смотрите ниже:

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Качественные диаграммы изображаются с учетом взаимных соотношений между электрическими величинами, без указания численных характеристик.

Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.


Для удобства при построении диаграмм анализируют неподвижные векторы для определенного момента времени, который выбирается таким образом, чтобы диаграмма имела удобный для понимания вид. Ось OХ соответствует величинам действительных чисел, ось OY — оси мнимых чисел (мнимая единица). Синусоида отображает движение конца проекции на ось OY. Каждому напряжению и току соответствует собственный вектор на плоскости в полярных координатах. Его длина отображает амплитудное значение величины тока, при этом угол равен фазе.

Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой частотой ω. В виду чего при вращении их взаимное расположение не изменяется.

Ещё одно полезное видео о векторных диаграммах:

А остальные — изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин.

Допустим у нас есть ток, величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол — соответствующий фазе φ.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Проекция вектора на вертикальную ось и определяет значение мгновенного тока в начальный момент времени.

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений — масштабом, поскольку:

I = Im /√2.


Основным преимуществом векторных диаграмм называют возможность простого и быстрого сложения и вычитания 2-х параметров при расчете электроцепей.

Сложение и вычитание векторов

Главным достоинством векторных — это возможность простого сложения и вычитания двух величин. Например: требуется сложить, два тока, заданных уравнениями

Сложим два заданных тока i1 и i2 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Im = Im1 + Im2

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллель но самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.

Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора (уменьшаемого) и обратного (вычитаемого) (рис. 12.13):

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Правильно ли подключен счетчик? Определяем при помощи сервиса «яЭнергетик».

Мониторинг уже подключенных на наш сервис счетчиков показал, что большое количество пользователей даже не подозревает, правильно ли подключены их приборы учета, и правильно ли осуществляется учет потребления. При этом вскрывались проблемы даже у ранее опломбированных приборов при их подключению к нашей системе. Как выявлять ошибки в подключении и работе приборов учета?

Мгновенные значения

На яЭнергетик можно увидеть, что счетчик подключен не правильно, если перейти во вкладку «Мгновенные значения» счетчика.

Подключив электросчетчик к системе, нажмите кнопку «Опросить». Операция опроса занимает некоторое время. На экране появится таблица данных, в которой отображены параметры электросети.

Фазное напряжение

На него стоит обращать внимание, особенно когда прибор учета подключен через трансформаторы напряжения. При этом данные отображаются уже с учетом указанного при добавлении счетчика коэффициента трансформации

Отклонения в фазных напряжениях могут свидетельствовать о:

  • неисправности или некорректном подключении трансформаторов напряжения;
  • неправильной схеме подключения счетчика (перепутаны клеммы на счетчике, не обжаты провода);
  • неисправности самого прибора учета – об этом можно говорить, если все другие возможные причины исключены.

Токи нагрузки

Если вы знаете, что у вас симметричная нагрузка, а счетчик регистрирует искажения – повод проверить схему присоединения приборов и их состояние:

  • бракованные счетчики могут не регистрировать токи по какой-либо фазе;
  • в трансформаторах тока и напряжения могут произойти межвитковые замыкания, их функциональность нарушается;
  • состояние соединительных кабелей: на рисунке ниже видно, что ток по фазе С отсутствовал. После осмотра и прозвона кабеля была установлена причина – не прожата клемма трансформатора тока. После устранения проблемы картинка выровнялась.

Активная мощность

Знак активной мощности показывает корректность подключения трансформаторов тока и их фазировку.

На котельной, график активной мощности которой изображен ниже, была перепутана схема подключения трансформаторов тока: контакты и фазировка. Как видно, после корректировки схемы графики приняли положительные значения, и общая регистрируемая мощность возросла на 30%.

Наиболее часто встречаются случаи, когда вторичные обмотки ТТ подключены «наоборот», бывали выявления заводского брака – все контакты подключены по схеме, но счетчик регистрирует обратное направление мощности.

Коэффициенты мощности.

В нормальном режиме работы с преобладающей активной нагрузкой значения коэффициентов мощности принимают значения 0,7 – 1,0, чаще 0,85-0,95. Если регистрируемые прибором учета коэффициенты сильно отличаются от данных значений — нужно проверять схему подключения.

На рисунке ниже показан график коэффициентов мощности объекта, где была нарушена схема подключения трансформатора тока на фазе С: как видим, значение коэффициента находилось в пределах 0,05 – 0,2.

Векторная диаграмма

Для удобства проверки правильности подключения счетчика на сервисе яЭнергетик можно увидеть векторную диаграмму. Она строится на основе последних полученных данных и отображается в таблице при опросе мгновенных значений, а так же во вкладке внизу страницы.

Здесь цветами обозначены векторы разных фаз. Чередование рассматривается по часовой стрелке, по цветам ЖЕЛТЫЙ (фаза А) — ЗЕЛЕНЫЙ (фаза В) — КРАСНЫЙ (фаза С). Фаза А всегда отображается сверху. Если векторы фаз В и С перепутаны местами, то необходимо в схеме поменять местами подключение по 2м фазам (на счетчике прямого включения — как подходящие, так и отходящие, чтобы не сбилось направление вращения подключенных после счетчика двигателей).

Для этого необходимо заказать обратный звонок (кнопка вверху экрана) или написать на

Мы ответим на все интересующие вопросы и поможем настроить опрос ваших счетчиков.

Источник

Как работать с диаграммами

Когда диаграмма построена, можно приступать к работе с ней, а также настройке ее внешнего вида. Для этого перейдите во вкладку «Конструктор». Здесь есть возможность настроить различные параметры созданной диаграммы, например, поменять стиль оформления, изменить тип, подтип и т.д.

Например, чтобы поменять типа диаграммы и ее подтип, щелкаем по кнопке “Изменить тип диаграммы” и в открывшемся списке выбираем то, что нам нужно.

Нажав на кнопку “Добавить элемент диаграммы” можно раскрыть список действий, который поможет детально настроить вашу диаграмму.

Для быстрой настройки можно также воспользоваться инструментом “Экспресс-макет”. Здесь предложены различные варианты оформления диаграммы, и можно выбрать тот, который больше всего подходит для ваших целей.

Довольно полезно, наряду со столбиками, иметь также конкретное значение данных для каждого из них. В этом нам поможет функция подписи данных. Открываем список, нажав кнопку “Добавить элемент диаграммы”, здесь выбираем пункт “Подписи данных” и далее – вариант, который нам нравится (в нашем случае – “У края, снаружи”).

Готово, теперь наша диаграмма не только наглядна, но и информативна.

Правила построения векторных диаграмм в электротехнике

В электротехнике векторная диаграмма используется для расчета электрических цепей, она представляет собой совокупность векторов электродвижущей силы и токов, имеющих одну частоту. Она дает наглядное представление о начальных фазах и углах сдвига фаз, а также о действующих значениях. В случае вращения векторов с одинаковой угловой скоростью (w=2pf) их взаимное положение зависит исключительно только от углов сдвига фаз, поэтому их положение не меняется. Это позволяет строить векторные диаграммы для сложных электрических цепей, основываясь на простых векторных диаграммах для отдельных элементов.

Готовые работы на аналогичную тему

  • Курсовая работа Векторные диаграммы в электротехнике 460 руб.
  • Реферат Векторные диаграммы в электротехнике 230 руб.
  • Контрольная работа Векторные диаграммы в электротехнике 220 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Определение 2

Синусоидальный ток – это переменный ток, изменяющийся в течении времени по направлению и величине, или, в частном случае, только по величине с сохранением направления.

Правила построения векторных диаграмм для электрических цепей с трехфазным и однофазным синусоидальным током следующие:

  1. До начала построения векторной диаграммы необходимо вычертить и проанализировать схему замещения, являющуюся эквивалентной принципиальной схеме исследуемой электрической цепи. На схеме замещения обязательно изображают каждый элемент или его параметры (емкостное, активное и индуктивное сопротивление) и указывают их направление для отдельных участков электрической цепи.
  2. Векторные диаграммы напряжения чертят в укрупненном масштабе, выбирая их для токов и напряжений:

$mu = Uk / Iuk$

$mi = Ij / Iij$

где, mu и mi — выбранные напряжения и токи; Iuk и Iij — длина k-вектора напряжения и j-вектора тока.

Ищешь идеи для учебной работы по данному предмету? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

Выбор масштаба осуществляется по самой большой вычисленной или измеренной величине тока и напряжения.

Пример векторной диаграммы изображен на рисунке ниже.

Рисунок 1. Векторная диаграмма. Автор24 — интернет-биржа студенческих работ

Электроиспытание

Вы должны будете тщательно измерить все линейные напряжения, более того, это касается и напряжения каждой фазы отдельно, относительно «земли». Вообще значения таких проверок могут быть самыми разными, так как здесь все будет зависеть от схемы подключения.

Вот поэтому к их изучению необходимо подходить грамотно и ответственно. И тогда вся работа будет качественной. Кроме того, вы должны уметь проверять вторичные цепи трансформаторного тока.

При их проверке нужно знать, что если на коробке зажимов местами поменять провода двух крайних цепей напряжения, то счетчик должен остановиться. Но это будет только тогда, если вам удастся правильно включить устройство.

Если счетчик будет включен правильно, то будет обеспечено сопряжение одноименных фаз тока. Вообще, как вы сами смогли догадаться, существует большое количество способов решения данного вопроса. Нерешаемых проблем не бывает, если работает опытный специалист.

Вы должны помнить, что если счетчик будет включен правильно, то каждый его элемент в обязательном порядке будет вращать диск вправо. Если нужно исправить ошибку, нужно будет поменять местами провода, которые подключены к этому элементу. Если прибор не работает, его сдают в электролабораторию.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий