Расчет токов короткого замыкания методические указания

10. Пример расчета токов КЗ в сети напряжением 0,4 кВ

Категория: И.Л. Небрат «Расчеты токов короткого замыкания в сетях 0,4 кВ»

Расчет токов КЗ – трехфазных, двухфазных, однофазных в сети 0,4 кВ схемы, приведенной на рис. 7

Рис.8 Расчетная схема к примеру

         Необходимо рассчитать токи КЗ в сети 0,4 кВ собственных нужд электростанции. Расчет выполняется для проверки отключающей способности автоматических выключателей, проверки кабельных линий на термическую стойкость, а также для выбора уставок токовых катушек автоматических выключателей и проверки их чувствительности.

       С этой целью выполняются расчеты металлических и дуговых КЗ трехфазных, двухфазных и однофазных.

   Расчетная схема представлена на рис.7

       Расчет выполняется в именованных единицах, сопротивления расчетной схемы приводятся к напряжению 0,4 кВ и выражаются в миллиомах. Параметры элементов расчетной схемы приводятся в таблицах Приложения 1

       Расчеты выполняются в соответствии с методикой рекомендованной ГОСТ 28249-93 на расчеты токов КЗ в сетях напряжением до 1 кВ.

       Короткие замыкания рассчитываются на шинах 0,4 кВ РУ (точка К1) и на вторичной силовой сборке за кабелем КЛ1 (точка К2).

       В данном примере расчеты дуговых КЗ выполняются с использованием снижающего коэффициента КС , поэтому переходные сопротивления контактов, контактных соединений кабелей и шинопроводов в расчетных выражениях для определения суммарного активного сопротивления R не учитываются, эти сопротивления учтены при построении характеристик зависимости коэффициента Кс от полного суммарного сопротивления до места К3, Кс = ∫(Z), полученных экспериментальным путем. Характеристики Кс = ∫(Z) приведены на рис. 6.

Какие бывают виды

Короткое замыкание. Каждый слышал это словосочетание. Многие видели надпись «Не закорачивать!» Часто, когда ломается какой-нибудь электроприбор, говорят: «Коротнуло!» И несмотря на негативный оттенок этих слов, профессионалы знают, что короткое замыкание – не печальный приговор. Иногда с коротким замыканием (КЗ) бороться бессмысленно, а порой и принципиально невозможно. В этой статье будут даны ответы на самые важные вопросы: что такое короткое замыкание и какие виды КЗ встречаются в технике.

Будет интересно Что такое статическое электричество и как от него избавиться

Начнем рассматривать эти вопросы под необычным углом – узнаем, в каких случаях короткие замыкания неизбежны и где они не играют роль повреждений. Возьмем за оба конца обыкновенный металлический провод. Соединим концы вместе. Провод замкнулся накоротко – произошло КЗ. Но так как в цепи отсутствуют источники электрической энергии и нагрузка, такое короткое замыкание никакого вреда не несет. В некоторых областях электротехники КЗ, которое мы рассмотрели, играет на руку, например, в электрических аппаратах и электрических машинах.

Взглянем на однофазное реле или пускатель, в конструкции которых есть магнитная система с подвижными частями – электромагнит, притягивающий якорь. Из-за постоянно меняющейся полярности тока, текущего в обмотках электромагнита, его магнитный поток периодически становится равен нулю, что вызывает дребезжание якоря, появляются вибрации и характерное, знакомое всем электрикам гудение. Чтобы избавиться от этого явления, на торец сердечника электромагнита или якоря прикрепляют короткозамкнутый виток – кольцо или прямоугольник из меди или алюминия.

Из-за явления электромагнитной индукции в витке создается ток, создающий свой магнитный поток, компенсирующий пропадание основного магнитного потока, создаваемого электромагнитом, что приводит к уменьшению или исчезновению вибраций, разрушающих конструкцию.

Так же на руку играет короткое замыкание и в роторе асинхронного электродвигателя. Благодаря взаимодействию магнитного поля, создаваемого обмотками статора, с короткозамкнутым ротором, в роторе по уже упомянутому закону появляются свои токи, создающие свое поле, что приводит ротор во вращение

Конечно, важно грамотное проектирование электродвигателя или электрического аппарата, чтобы токи, протекающие в короткозамкнутых элементах, не приводили к перегреву и порче изоляции основных обмоток

Возгорание розетки

Подобным образом понятие «короткое замыкание» используется применительно к трансформаторам. Люди, так или иначе связанные с энергетикой, знают, что одна из важнейших характеристик трансформатора – это напряжение короткого замыкания, UКЗ, измеряемое в процентах. Возьмем трансформатор. Одну из его обмоток, скажем, низшего напряжения (НН) закоротим амперметром, сопротивление которого, как известно, принимается равным нулю. Обмотку высшего напряжения (ВН) подключаем к источнику напряжения. Повышаем напряжение на обмотке ВН до тех пор, пока ток в обмотке НН не станет равным номинальному, фиксируем это напряжение.

Делим его на номинальное напряжение высшей стороны, умножаем на 100%, получаем UКЗ. Эта величина характеризует потери мощности в трансформаторе и его сопротивление, от которого зависит ток короткого замыкания, ведущий к повреждениям. Поговорим наконец о коротких замыканиях, несущих негативные последствия. Такие короткие замыкания появляются, когда ток от источника питания протекает не через нагрузку, а только через провода, обладающие ничтожно маленьким сопротивлением. Например, трехфазный кабель питается от трансформатора, и одним неосторожным движением ковша экскаватора происходит его повреждение – две фазы закорачиваются через ковш. Такое КЗ называют двухфазным. Аналогично по количеству замкнутых фаз называют другие КЗ.

Однофазное замыкание на землю в сетях с изолированной нейтралью не является коротким, но может представлять угрозу жизни живых существ. Металлическим называют КЗ, в котором переходное сопротивление равно нулю – например, при болтовом или сварочном соединении. Токи КЗ в зависимости от напряжения и вида повреждения могут достигать тысяч и сотен тысяч ампер, приводить к пожарам и колоссальным электродинамическим усилиям, «выворачивающим» шины и провода. Защита от КЗ может осуществляться автоматическими выключателями или предохранителями, а в высоковольтных сетях – средствами релейной защиты и автоматики.

Защита блока питания от короткого замыкания.

Двухфазное К3

Для расчета двухфазного К3 в точке К2 определяем следующие величины.

Полное суммарное сопротивление до точки К3 для двухфазного К3

мОм.

Ток двухфазного металлического К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =37,44 мОм соответственно равны 0,78 и 0,69.

Токи двухфазного дугового К3

=6,17•0,78=4,81 кА   tкз ≈0

=6,14•0,69=4,26кА  tкз>0,05 с

Однофазное К3

Для расчета однофазного К3 в точке К2 определяем следующие величины:

Суммарные активное и индуктивное сопротивления нулевой последовательности относительно точки К2 в соответствии со схемой замещения нулевой последовательности (рис. 10):

R0∑=1,9+0,555+0,25+0,65+98,9=102,25 мОм

X0∑=12,65+0,63+0,1+0,17+24,4=38 мОм.

Полное суммарное сопротивление до места К3 при однофазном К3

Ток однофазного металлического К3

кА.

Определяем токи дугового К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =57,2 мОм соответственно равны 0,82 и 0,72.

=4,04•0,82=3,31 кА   tкз ≈0

=4,04•0,72=2,91кА   tкз>0,05 с

Все результаты расчетов токов К3 приведены в таблице 4, что представляется удобным для дальнейшего анализа, выбора уставок защитных аппаратов и проверки кабелей.

Результаты расчетов токов К3

Виды К3

Точка К3

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

iУД

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

К1

15,27

10,23

8,86

34,6

13,2

8,98

7,92

15,66

10,33

9,1

К2

7,14

5,28

4,78

10,6

6,17

4,81

4,26

4,04

3,31

2,91

Этот пример наглядно показывает, что аналитические методы расчетов токов К3 очень трудоемкий, особенно для электроустановок с большим количеством элементов 0,4 кВ

Поэтому еще раз обращаем внимание на необходимости освоения и более широкого применения для практических расчетов компьютерных программ, в том числе, программа, которая разработана на кафедре РЗА ПЭИпк и успешно используется на многих энергообьектах (описание программы см. на стр

3).

Измерение тока КЗ

Расчёт КЗ необходим для правильного подбора устройств, способных защищать цепи от этого явления, поэтому крайне важно знать, до какой величины может подняться ток при замыкании в определённой точке. Выполнение работ предполагает определение сопротивления линии от места измерений до трансформаторной подстанции

Затем по результатам выполняется расчёт токов трёхфазного КЗ или однофазного, в зависимости от типа используемой электролинии.

При возникновении аварийной ситуации замыкания фазы на фазу или на корпус фактически появляется новая электрическая цепь — «петля» короткого замыкания. Есть несколько способов, с помощью которых можно определить величину сопротивления линии КЗ:

  • метод вычисления напряжения в обесточенной цепи;
  • способ определения падения разности потенциалов на нагрузочном импедансе;
  • измерение полного сопротивления цепи.

Посчитать импеданс петли можно, создав искусственное короткое замыкание. Для этого используют специальные приборы. Они позволяют сначала измерить напряжение без подключённой нагрузки, а затем при включении малоомного резистора (до 10 Ом) в течение короткого времени (порядка 10 миллисекунд).

Полное сопротивление линии состоит из активной и реактивной составляющей. Расчёт выполняют по формуле: Z = √ (R2 + (Xl + Xc)2). Чтобы рассчитать импеданс линии, состоящей из множества элементов, используют эквивалентную схему, состоящую из резисторов. Все данные трансформаторов, линий, различных электрических компонентов, необходимые для расчётов, приведены в справочных таблицах. Выполняя приведение, получают простую схему, состоящую из двух сопротивлений — активного и реактивного.

Выполнять можно расчёт токов КЗ в именованных единицах и относительных. Для нахождения номинальных параметров системы применяют стандартные формулы: Zn = U / P и I = P / √ (3 * U). Связь между единицами можно установить, выразив параметры через базисные значения. Z = Zn * (Un 2/Sn). При упрощённых вычислениях принято делать расчёт токов КЗ в относительных единицах.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector