Пусковой ток электродвигателя с фазным ротором

Конструкция

Устройство трехфазного асинхронного двигателя с фазным ротором включает 2 главные детали — статор и ротор. Ротор представляет собой движущуюся часть, а статор — фиксированную. Между ними есть воздух.


Устройство асинхронного электромотора

Конструкция статора включает шихтованный магнитный провод, который запрессован в литую станину. Внутри провода есть пазы, предназначенные для вложения проводников намотки. Они представляют собой стороны мягких катушек с большим количеством витков.

К сведению! Эти катушки создают 3 фазы обмотки статора, поэтому АД называют 3-фазным. Оси катушек находятся под углом 120° относительно друг друга.

Контачат фазы обмотки разными схемами: «звездой» и «треугольником». Выбор схемы зависит от напряжения в электросети. При значении 220 В в спецификациях асинхронного электромотора используется схема «треугольник», при 220/380 В — «звезда».

Ротор является цилиндром, сложенным из круглых листов электротехнической стали. Стопка этих листов насаживается на вал. Есть 2 типа роторов, различающиеся по разновидности обмотки: фазные и короткозамкнутые. Именно фазные используются в мощных асинхронных электрических движках.

Вам это будет интересно Межповерочный срок электросчетчиков

Способы пуска асинхронных электродвигателей

Для запуска асинхронных двигателей используется разные методы. На практике наибольшее распространение получили следующие способы: Б.

  • Изменение конструкции электродвигателей (роторы с глубокими пазами, типа “двойная беличья клетка”).
  • Прямой пуск.
  • Запуск на пониженном напряжении.
  • Частотный пуск.

Двигатели специальной конструкции существенно дороже обычных электрических машин, что сильно ограничивает их применение.

Прямой запуск

Самая простая схема пуска асинхронных электрических машин с короткозамкнутым ротором – непосредственное подключение к сети. Подача напряжения на статорные обмотки осуществляется замыканием силовых контактов магнитного пускателя или контактора.

При прямом пуске электрической машины момент силы на валу значительно меньше номинального. Кроме того, запуск на полном напряжении вызывает броски тока и снижение напряжения. Прямой запуск применяется:

  • При низкой мощности электрической машины.
  • Для технологического оборудования, не нуждающегося в плавном разгоне.
  • Для механизмов с запуском без нагрузки.

Такой способ непригоден для приводов инерционного оборудования, устройств нетребовательных к величине пускового момента, при ограниченной мощности электросети.

Пуск на пониженном напряжении

Запуск асинхронных электрических машин на сниженном напряжении реализуется при помощи нескольких схем:

Переключением обмоток статора “звезда-треугольник”.
Подключением через трансформатор.
Включением в цепь обмоток статора пусковых резисторов или реакторов.

Принцип действия первой схемы основан на пуске электрической машины при подключении обмоток “звездой”. После разгона двигателя коммутационные аппараты переключают их на “треугольник”. Этим достигается 3-х кратное снижение пускового тока.

При этом пусковой момент на валу также снижается более чем на 30%. Кроме того, преждевременное переключение также вызывает скачки тока до величин, возникающих при прямом запуске. Такой способ также непригоден для инерционного оборудования и установок, запускаемых под нагрузкой.

Для устранения недостатков электродвигателей с короткозамкнутым ротором также применяют автотрансформаторные схемы пуска.

При этом устройство для преобразования напряжения включают последовательно в цепь обмоток электрической машины. Эта схема обеспечивает плавный разгон и уменьшение пускового тока. Через автотрансформаторы подключают приводы мощных установок и оборудования со значительным моментом сопротивления.

Высокая стоимость элементов схемы, скачок тока при переходе на полное напряжение ограничивают ее применение.

Широко применяются также реакторные и резистивные схемы пуска. Для снижения напряжения к обмоткам последовательно подключают резисторы или катушки, обладающие реактивным сопротивлением. Запуск осуществляется при включении в цепь последовательно включенных элементов с активным или индуктивным сопротивлением.

При разгоне двигателей реакторы и пусковые сопротивления постепенно шунтируются и выключаются из цепи. Недостатком этого метода является высокая стоимость оборудования, значительно сниженный пусковой момент.

Частотный пуск

Такой способ старта и разгона основан на зависимости момента и скорости вращения вала электродвигателя от частоты питающего напряжения на обмотках. Для изменения этой характеристики применяют частотные преобразователи. Запуск через ПЧ решает все проблемы старта и разгона асинхронного электродвигателя. Однако, эти устройства имеют высокую цену, большие габариты, а также являются источником высших гармоник.

Технические характеристики

Существуют установленные требования, гарантирующие качественную работу асинхронных двигателей с фазным ротором. От них зависят базовые параметры и характеристики системы, включая:

  1. Размеры и мощность установки, соответствующие техническому регламенту.
  2. Защиту от внешних воздействий. Ее степень определяется окружающими условиями, в которых будет расположена машина. Дело в том, что одни установки предназначаются для работы внутри помещения, в то время как другие способны функционировать и на улице. К тому же доступные на рынке агрегаты отличаются климатическими особенностями. Например, существуют двигатели, которые выдерживают экстремальный холод или, наоборот, сильную жару. В зависимости от условий использования они обладают характерным исполнением и защитой.
  3. Степень изоляции. Асинхронные двигатели с фазным ротором должны быть устойчивыми к высоким температурным показателям и возможным нагревам внутренних механизмов. Для предотвращения воспламенений их защищают специальными изоляционными слоями.
  4. Соответствие установленным стандартам и режимам функционирования.
  5. Наличие мощной охладительной системы, которая соответствует рабочему режиму двигателя.
  6. Уровень шума во время запуска на холостом ходу. Он соответствует второму классу или ниже.

Регулировка скорости крановых электродвигателей

Если при плавном запуске электродвигателя с фазным ротором управление переключением сопротивлений происходит автоматически, то на кране этим управляет оператор – крановщик. Для этого в его кабине размещаются органы управления – контроллеры (на старых кранах) или джойстики (на современных). Они имеют два направления движения: «вперед-назад», «влево-вправо» или «вверх-вниз», в зависимости от назначения контроллера (управление мостом, тележкой или подъемом груза соответственно). В каждом из направлений рукоятка управления проходит ряд фиксированных положений. Чем дальше положение от рукоятки от средней точки, в которой привод выключен, тем больше скорость вращения электромотора. И тем быстрее происходит перемещение механизма или подъем (опускание) груза.

При изменении направления перемещения рукоятки управления изменяется направление вращения электродвигателя. Это происходит за счет переключения чередования фаз питания обмотки статора. Для этого две фазы меняются местами. Происходит это путем подачи напряжения на обмотку реверсивными контакторами, состоящих из двух элементов: контактора «Вперед» и контактора «Назад».

При переключении скоростей другими контакторами из цепи обмотки ротора удаляется часть резисторов. Первое положение рукоятки управления всегда включает электродвигатель с полным набором сопротивлений в цепи ротора. Крайнее положение рукоятки шунтирует все сопротивления.

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение – разница потенциалов между началом и концом одной фазы

Другое определение для соединения “звезда”: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы “треугольник” отсутствует нейтраль)

Линейное напряжение – разность потенциалов между двумя линейными проводами (между фазами).

ЗвездаТреугольникОбозначение
Uл, Uф – линейное и фазовое напряжение, В,
Iл, Iф – линейный и фазовый ток, А,
S – полная мощность, Вт
P – активная мощность, Вт

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Пример: Допустим электродвигатель был подключен по схеме “звезда” к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А

Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на “треугольник”, линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы “треугольник” будет в три раза больше линейного тока схемы “звезда”. А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме “звезда”, подключение данного электродвигателя по схеме “треугольник” может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме “треугольник”, то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаU1U2
вторая фазаV1V2
третья фазаW1W2
Соединение в звезду (число выводов 3 или 4)
первая фазаU
вторая фазаV
третья фазаW
точка звезды (нулевая точка)N
Соединение в треугольник (число выводов 3)
первый выводU
второй выводV
третий выводW

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаC1C4
вторая фазаC2C5
третья фазаC3C6
Соединение звездой (число выводов 3 или 4)
первая фазаC1
вторая фазаC2
третья фазаC3
нулевая точка
Соединение треугольником (число выводов 3)
первый выводC1
второй выводC2
третий выводC3

Устройство и принцип действия асинхронного двигателя

Главными компонентами асинхронного электродвигателя являются статор и ротор, которые отделены друг от друга воздушным зазором. Активную работу в двигателе выполняют обмотки и сердечник ротора.

Под асинхронностью двигателя понимают отличие частоты вращения ротора от частоты вращения электромагнитного поля.

Статор – это неподвижная часть двигателя, сердечник которой выполняется из электротехнической стали и монтируется в станину. Станина выполняется литым способом из материала, который не магнитится (чугун, алюминий). Обмотки статора являются трехфазной системой, в которой провода уложены в пазы с углом отклонения 120 градусов. Фазы обмоток стандартно подключают к сети по схемам «звезда» или «треугольник».

Ротор – это подвижная часть двигателя. Роторы асинхронных электродвигателей бывают двух видов: с короткозамкнутым и фазным роторами. Данные виды отличаются между собой конструкциями обмотки ротора.

Асинхронный двигатель с короткозамкнутым ротором

Такой тип электрической машины был впервые запатентован М.О. Доливо-Добровольским и в народе называется «беличье колесо» из-за внешнего вида конструкции. Короткозамкнутая обмотка ротора состоит из накоротко замкнутых с помощью колец стержней из меди (алюминия, латуни) и вставленные в пазы обмотки сердечника ротора. Такой тип ротора не имеет подвижных контактов, поэтому такие двигатели очень надежны и долговечны при эксплуатации.

Пуск асинхронного двигателя с фазным ротором пусковой ток

Пуск асинхронных двигателей можно производить при полном напряжении (прямой пуск) и при пониженном напряжении.

Прямой пуск осуществляется при помощи рубильников, переключателей, магнитных пускателей и других пусковых аппаратов.

При прямом пуске к двигателю подается полное напряжение сети. Недостатком этого способа пуска являются большие пусковые токи, которые в 2-7 раз больше номинальных токов двигателей.

Наиболее простым является прямой пуск асинхронных двигателей с короткозамкнутым ротором. Пуск и остановка таких двигателей производятся включением или отключением рубильника (магнитного пускателя) и т. п. На рис. 261 показана схема прямого пуска асинхронного короткозамкнутого двигателя.


Рис. 261. Прямой пуск асинхронного двигателя с короткозамкнутым ротором

Для уменьшения пусковых токов асинхронных двигателей с короткозамкнутым ротором уменьшают напряжение, подводимое к обмоткам статора двигателя.

Рассмотрим подробнее способ пуска асинхронных двигателей при пониженном напряжении с помощью переключателя со звезды на треугольник.

На рис. 262 дана принципиальная схема включения обмотки статора с переключателем со звезды на треугольник. При пуске обмотка статора с помощью рубильника соединяется звездой и, как только двигатель разовьет максимальную возможную скорость вращения, переключатель откидывается влево, обмотка статора оказывается включенной треугольником. При этом способе пуска двигателя пусковой ток уменьшается в три раза. Поясним это на примере.

Рис. 262. Переключение обмотки статора со звезды на треугольник при пуске двигателя

На рис. 263, а схематически изображена обмотка статора, соединенная при пуске звездой. Пусть напряжение между линейными проводами двигателя равно 380 в, а следовательно, напряжение, приходящееся на фазу двигателя при пуске:

Рис. 263. Включение обмотки статора двигателя: а — звездой, б — треугольником

Подключение асинхронного двигателя

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Подключение звездой

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

Подключение треугольником

При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.

Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

Конденсаторный пуск асинхронного двигателя

Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового)

Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно

Для расчета рабочего конденсатора существует следующая формула:

Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

Как работает

Принцип функционирования электродвигателя с фазным ротором основан на магнитном поле, которое вращается с угловой скоростью, зависящей от частоты сети и пар полюсов обмотки статора. Поле образовывается при соединении с сетью трехфазной намотки. Как правило, асинхронный мотор имеет намотку во много фаз (обычно три фазы), но существуют и однофазные.

Вам это будет интересно Установка импульсного разрядника УЗИП


Статор и ротор асинхронного двигателя

При пересечении обмоток магнитное поле в соответствии с правилом электромагнитной индукции индуктирует электродвижущую силу в этих намотках. Если намотка ротора замкнута, ее электродвижущая сила вводит в электроцепи ротора энергию. Образуется электромагнитный момент.

Мотор назвали асинхронным из-за того, что угловая скорость ротора не равна угловой скорости вращения электромагнитного поля, то есть они двигаются несинхронно.

Процессы, проходящие в асинхронном электродвигателе, измеряют параметром под названием скольжение, который рассчитывается как разность угловых скоростей ротора и магнитного поля.

Обратите внимание! Скольжение бывает положительным и отрицательным в зависимости от режима функционирования электромотора. При идеальном холостом ходе оно равняется нулю, ротор и поле крутятся с равной быстротой

Никакой электродвижущей силы не образуется, ток и электромагнитный момент нулевые. При включении двигателя скольжение равняется 1 и при идеальном ходе постепенно достигает 0. Если вращать ротор в другую сторону относительно магнитного поля (разница угловых скоростей будет больше 1), появится тормозной момент, так как электродвигатель переходит в режим противовключения

При идеальном холостом ходе оно равняется нулю, ротор и поле крутятся с равной быстротой. Никакой электродвижущей силы не образуется, ток и электромагнитный момент нулевые. При включении двигателя скольжение равняется 1 и при идеальном ходе постепенно достигает 0. Если вращать ротор в другую сторону относительно магнитного поля (разница угловых скоростей будет больше 1), появится тормозной момент, так как электродвигатель переходит в режим противовключения.


Расчет скольжения

В соответствии со значением скольжения в ходе работы электродвигателя различают 3 режима его функционирования:

  • противовключение (скольжение стремится от 1 до бесконечности);
  • генераторный (скольжение от 0 до бесконечности);
  • двигательный (скольжение стремится от единицы до нуля).

Устройство фазного ротора

Разрез асинхронного двигателя с фазным ротором. Рисунок 4 1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца

Фазный ротор характерен наличием трех фазных обмоток. Они, зачастую, соединяются по схеме звезды (иногда по схеме треугольника). Каждый конец фазной обмотки присоединен к медному кольцу. Кольца же укрепляются на валу и изолируются. Это дало двигателю еще одно название: асинхронный электродвигатель с контактными кольцами. Всего кольца три. Их плотно насаживают на вал с помощью изоляционных прокладок. На кольца наложены щетки (они расположены в щеткодержателе, в свою очередь укрепленных на крышке подшипника).

Щетки всегда имеют исправный электроконтакт с кольцами. Это соединяет их с самой обмотками якоря. Между собой щетки соединяет трехфазный реостат.

Принцип работы асинхронной машины

Все асинхронные двигатели работают по принципу вращающегося магнитного поля. Но как создать такое поле? Самый простой способ – вращать постоянный магнит по оси. Можно взять медный диск и крутить магнит уже вокруг него. Если магнит достаточно силен, то медный диск тоже начнет вращаться, как бы пытаясь угнаться за магнитом. Будет создаваться ощущение, что между двумя предметами есть некая связь которая постоянно их удерживает. Движение магнита и диска будет не синхронным, ведь последний всегда будет отставать в «погоне».

Объяснение этому явлению можно дать такое: вращаясь вокруг диска, магнит способен возбудить в нем токи Фуко (индукционные). Их траектория – замкнутый круг. Индукционные токи не имеют начала и конца. Их можно назвать токами короткого замыкания, разогревающими металл. Как правило, от них нужно избавляться, но в этом случае именно они и являются причиной появления магнитного поля в диске. Далее это поле начинает взаимодействие уже с полем самого постоянного магнита. 

Асинхронные электромоторы работают по такому же принципу, но вращающееся поле создает не магнит, а обмотка статора. В ней, собственно, и создается подходящее для вращения поле. 

Подобные условия возможно создать только в системе с несколькими фазами, где ток сдвигается на несколько градусов. В бытовых электроприборах двигатели обычно с двумя фазами, причем вторую создают искусственно. Для этого используют сдвигающий конденсатор, катушку или сопротивление. Электродвигатели, используемые на промышленных предприятиях, выпускают с тремя фазами.

В самом первом трехфазном асинхронном электродвигателе было три обмотки. Они были удалены друг от друга на 120 градусов. Схема работы такого двигателя и синусоидальный ток трех его полюсов показан на рисунке 4. 

Рисунок 4

Итак, в тот момент, когда в одной из фаз ток нулевой, в остальных он принимает максимальные значения, при этом фазы отличаются по направлению тока. Таким образом и создается магнитное поле между двумя из трех обмоток. Далее все тут же меняется: один полюс отключается, а другой, тот что остался работать, начинает менять полярность. Это происходит из-за изменения направления тока в обмотке. А тот полюс, что только перешел в рабочее состояние, поддержит смещение поля. Благодаря этому в якоре машины формируются вихревые токи (так как линии магнитного поля пересекают часть ротора). Токи входят во взаимодействие с полем статора, которое уже вращается, пытаются его как бы догнать. Происходит поворот ротора.

Такой принцип работы асинхронной машины, который был выведен еще в XIX веке, актуален и для тех электромоторов, что производят сегодня. Однако, изменения в конструкции все же произошли. Дисковые и цилиндровые якори теперь заменили на «беличьи клетки», чаще используют роторы фазного типа. Форма обмотки статичной части двигателя тоже подверглась изменениям. Вместо катушки с полюсным наконечником используют радиальные обмотки: их укладывают в пазы.

Стоит также упомянуть о том, что такое схема замещения асинхронного двигателя. Ее часто используют в электротехнике во время проведения расчетов. Вместо самого электродвигателя подставляют эквивалентную схему, где электромагнитную связь замещает электрическая.

Как подключить электродвигатель к сети

Питающее напряжение у разных потребителей разное, из-за этого время от времени электрическое оборудование приходится переподключать. Предложенная ниже инструкция поможет безопасно подключить электродвигатель на 220 В. 

Задача достаточно проста. Главное в этом деле – не ошибиться при подключении обмоток. Классификация двигателей включает в себя два типа:

  • трехфазного с обмоткой (схема включения звезда или треугольник);
  • однофазного (у него пусковая обмотка). 

Их способы подключения мы и рассмотрим.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Принципы работы

Все электродвигатели имеют неподвижный статор и вращающийся ротор. Разница между асинхронным и синхронным двигателями состоит в принципах создания полюсов. В асинхронном электродвигателе они создаются явлением индукции. Во всех других электродвигателях используются постоянные магниты или катушки с током, создающие магнитное поле.

Особенности синхронных двигателей

Ведущие агрегаты синхронной машины — якорь и индуктор. Якорем является статор, а индуктор располагается на роторе. Под действием переменного тока в якоре образуется вращающееся магнитное поле. Оно сцепляется с магнитным полем индуктора, образованным полюсами постоянных магнитов или катушек с постоянным током. В результате этого взаимодействия энергия электричества преобразуется в кинетическую энергию вращения.

Советуем изучить — Подключение датчиков температуры

Ротор синхронной машины имеет частоту вращения такую же, как у поля статора. Достоинства синхронных электродвигателей:

  • Конструктивно используется и как двигатель, и как генератор.
  • Частота вращения, не зависящая от нагрузки.
  • Большой коэффициент полезного действия.
  • Малая трудоёмкость в ремонте и обслуживании.
  • Высокая степень надёжности.

Синхронные машины широко используются как электродвигатели большой мощности для небольшой скорости вращения и постоянной нагрузки. Генераторы применяются там, где требуется автономный источник питания.

Имеются у синхронной машины и недостатки:

  • Требуется источник постоянного тока для питания индуктора.
  • Отсутствует начальный пусковой момент, для запуска требуется применение внешнего момента или асинхронного пуска.
  • Щётки и коллекторы быстро выходят из строя.

Современные синхронные агрегаты содержат в индукторе дополнительно к обмотке, питаемой постоянным током, ещё и пусковую короткозамкнутую обмотку, которая предназначена для пуска в асинхронном режиме.

Отличительные черты асинхронных двигателей

Вращающееся магнитное поле статора асинхронного двигателя наводит индукционные токи в роторе, которые образуют собственное магнитное поле. Взаимодействие полей приводит ротор во вращение. Частота вращения ротора при этом отстаёт от частоты вращения магнитного поля. Именно это свойство отражено в названии двигателя.

Асинхронные электродвигатели бывают двух типов: с короткозамкнутым и с фазным ротором.

Бытовые приборы, такие как вентилятор или пылесос, обычно снабжены двигателями с короткозамкнутым ротором, который представляет собой «беличье колесо». Все стержни замыкаются приваренными с обеих сторон дисками. Взаимодействие магнитного поля статора с наведёнными токами в роторе образовывает электромагнитную силу, которая действует на ротор в направлении вращения поля статора. Крутящий момент на валу электродвигателя создаётся всеми электромагнитными силами от каждого проводника.

В электродвигателе с фазным ротором применяется тот же статор, что и для мотора с короткозамкнутым ротором. А в ротор добавляются обмотки трёх фаз, соединённые в «звезду». К ним можно при пуске двигателя подключать реостаты, регулирующие пусковые токи. С помощью реостатов можно регулировать и частоту вращения двигателя.

Достоинствами асинхронных двигателей можно назвать:

  • Питание непосредственно от сетей переменного тока.
  • Простоту устройства и сравнительно невысокую стоимость.
  • Возможность использования в бытовых приборах с применением однофазного подключения.
  • Низкое потребление энергии и экономичность.

Серьёзные недостатки — сложная регулировка частоты вращения и большие теплопотери. Для предотвращения перегрева корпус агрегата делается ребристым, и на вал электродвигателя устанавливается крыльчатка для охлаждения.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий