Проводит ли графит электрический ток за счет перемещения электронов

Покрытия на нержавеющей стали

Нержавеющая сталь — сплав железа с углеродом, преимущественно легированный большим количеством хрома и никеля. Из названия этого конструкционного материала понятно, что он находит основное применение в средах, вызывающих активную коррозию обычной стали. Так, нержавейка устойчива в промышленной атмосфере и воде, хорошо сопротивляется воздействию серной кислоты. В тоже время нержавеющая сталь плохо паяется, обладает достаточно низким коэффициентом трения, слабо проводит электрический ток, боится щелочей в отличие от углеродистой стали из-за присутствия в ней хрома. Однако все эти недостатки эффективно устраняются гальваническими покрытиями.

Я не электрик, но есть вопрос: если дотронуться до гайки, то обожгусь или получу электрический удар?

Электролитическая диссоциация

Если вещество, молекулы которого образованы ионной связью расплавить, то сперва молекулы за счет температуры удаляются друг от друга все дальше, а потом наступает определенный момент, когда и ионы, образующие молекулы, тоже удаляются настолько далеко друг от друга, что им становится возможным образовывать ионные связи с другими ионами. Таким образом, в расплаве вещества за счет температуры появляются подвижные заряженные частицы, способные двигаться под действием внешнего электрического поля.

Воздействие температуры можно заменить воздействием растворителя. Если молекулы растворителя являются диполем (например, обычная вода), то эти молекулы могут взаимодействовать с ионами кристаллической решетки растворяемого вещества, унося их в раствор. В растворе появляются заряженные частицы, способные двигаться под действием электрического поля. Происходит это, как правило, при более низких температурах. Например, если расплав поваренной соли требует температуры более 800⁰C, то растворение соли происходит при комнатной температуре.

Распад вещества на ионы с образованием проводящего электролита под действием температуры или растворителя называется электролитической диссоциацией.

Рис. 3. Ионная электролитическая диссоциация.

Таким образом, жидкость может проводить электрический ток, если она, либо сама состоит из ионов, либо является раствором вещества с ионной связью.

Что мы узнали?

Электрический ток в жидкостях может существовать, если жидкость содержит свободные заряженные частицы – ионы. Такие частицы могут существовать, либо если молекулы жидкости состоят из ионов, либо если в жидкости растворено вещество с ионной связью (например, расплав или раствор поваренной соли). Жидкость, не содержащая ионов (например, химически чистая вода) электрический ток не проводит.

  1. /10

    Вопрос 1 из 10

Применение свойств электрического тока в металлах

Физические свойства электрического тока используются в различных областях жизнедеятельности:

  • Способность электрического тока нагревать проводники используется для изготовления нагревательных бытовых и промышленных приборов;
  • Вокруг провода с электрическим током возникает магнитное поле, что позволило создать электродвигатели, без которых сегодня невозможно обойтись;
  • Передача электроэнергии на различные расстояния осуществляется по проводам линий электропередачи (ЛЭП), по которым течет электрический ток.

Рис. 3. Применение электрического тока.

Что мы узнали?

Итак, мы узнали, что электрический ток в металлах создается упорядоченным движением свободных электронов. Экспериментальное доказательство того, что электрический ток в металлах создают электроны, впервые получили российские физики Мандельштам и Папалекси. Физические свойства электрического тока в металлах позволили создать большое количество бытовых и промышленных устройств.

  1. /5

    Вопрос 1 из 5

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой

Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление электромагнитной индукции, и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший правило правой руки для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

Электричество из воздуха своими руками

Электричество из земли

Электричество из магнита

Как получить электричество из картошки

Как снять статическое электричество

Электричество в доме

Виды и классификация диэлектрических материалов

Изоляторы подразделяются на группы по нескольким критериям.

Классификация по агрегатному состоянию вещества:

  • твёрдые — стекло, керамика, асбест;
  • жидкие — растительные и синтетические масла, парафин, сжиженный газ, синтетические диэлектрики (кремний- и фторорганические соединения хладон, фреон);
  • газообразные — воздух, азот, водород.

Диэлектрики могут иметь природное или искусственное происхождение, иметь органическую или синтетическую природу.

К органическим природным изоляционным материалам относят растительные масла, целлюлоза, каучук. Они отличаются низкой термо и влагостойкостью, быстрым старением. Синтетические органические материалы — различные виды пластика.

К неорганическим диэлектрикам естественного происхождения относятся: слюда, асбест, мусковит, флогопит. Вещества устойчивы к химическому воздействию, выдерживают высокие температуры. Искусственные неорганические диэлектрические материалы — стекло, фарфор, керамика.

Электрический ток в металлах — природа явления

Особенность металлических проводников состоит в том, что заряд электричества переносят свободные электроны. Они перемещаются в одном направлении под влиянием внешнего электрического поля, создавая электрический ток. 

Природа электрической проводимости у металлов обусловлена наличием кристаллической решётки, в узлах которой расположены положительные ионы, а в пространстве между ними движутся свободные электроны. Свободные электроны не связаны с ядрами своих атомов. Отрицательный заряд всех свободных электронов по модулю равен положительному заряду всех ионов решетки, таким образом проводник считается электрически нейтральным.  

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Ссылки

  1. Электрический провод (н.д.). Извлечен. Гавана Куба. Получено с: ecured.cu
  2. Электрические проводники (н.д.). Получено с: aprendeelectricidad.weebly.com
  3. Лонго, Дж. (2009) Электропроводники. Получено с: vivehogar.republica.com
  4. Мартин Т. и Серрано А. (н.э.). Проводники в электростатическом равновесии. Политехнический университет Мадрида. Испания. Получено с: montes.upm.es
  5. Перес, Дж., И Гардей, А. (2016). Определение электрического проводника. Получено с: deficion.de
  6. Свойства электрических проводников (н.ф.). Получено с: neetescuela.org
  7. Википедия, Бесплатная энциклопедия (2018). Электропроводность. Получено с: es.wikipedia.org
  8. Википедия, Бесплатная энциклопедия (2018). Электрический проводник. Получено с: es.wikipedia.org

Потенциальность электростатического поля

Электрическое поле с напряженностью ​\( \vec{E} \)​ при перемещении заряда ​\( q \)​ совершает работу. Работа ​\( A \)​ электростатического поля вычисляется по формуле:

где ​\( d \)​ – расстояние, на которое перемещается заряд,
​\( \alpha \)​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле. Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​\( W \)​, так как буквой ​\( E \)​ обозначают напряженность поля:

Потенциальная энергия заряда ​\( q \)​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Польза и вред электризации

ДОН

Статическое электричество
Материал из Википедии — свободной энциклопедии
(Перенаправлено с Электризация) Текущая версия (не проверялась) Перейти к: навигация, поиск
Статическое электричество — явление, при котором на поверхности и в объёме диэлектриков, проводников и полупроводников возникает и накапливается свободный электрический заряд.
Статическое электричество — совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках. (ГОСТ 12.1.018-93 «Пожаровзрывобезопасность статического электричества» )
Происхождение
Электризация диэлектриков трением может возникнуть при соприкосновении двух разнородных веществ из-за различия атомных и молекулярных сил (из-за различия работы выхода электрона из материалов) . При этом происходит перераспределение электронов (в жидкостях и газах ещё и ионов) с образованием на соприкасающихся поверхностях электрических слоёв с противоположными знаками электрических зарядов. Фактически атомы и молекулы одного вещества отрывают электроны от другого вещества.
Полученная разность потенциалов соприкасающихся поверхностей зависит от ряда факторов – диэлектрических свойств материалов, значения их взаимного давления при соприкосновении, влажности и температуры поверхностей этих тел, климатических условий. При последующем разделении этих тел каждое из них сохраняет свой электрический заряд, а с увеличением расстояния между ними за счет совершаемой работы по разделению зарядов, разность потенциалов возрастает и может достигнуть десятков и сотен киловольт.
Электрические разряды могут взаимно нейтрализовываться вследствие некоторой электропроводности влажного воздуха. При влажности воздуха более 85% статическое электричество практически не возникает.
Молнии
В результате движения воздушных потоков, насыщенных водяными парами, образуются грозовые облака, являющиеся носителями статического электричества. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и землей. При достижении определенной разности потенциалов происходит разряд молнии между облаками или на земле. Для защиты от молний устанавливаются молниеотводы, проводящие разряд напрямую в землю.
Помимо молний, грозовые облака могут вызывать на изолированных металлических предметах опасные электрические потенциалы из-за электростатической индукции.

Юрий Цыбанков

вред
в природе — молнии
в быту — испорченная причёска из-за наэлектризованной расчёски
в технике — опасность пожара
польза
в технике — например печать лазерных принтеров

Как найти потенциал и напряженность электрического поля

Взаимосвязь между электрическим потенциалом и полем аналогична взаимосвязи между гравитационным потенциалом и полем в том смысле, что потенциал является свойством поля, описывающим действие поля на объект.

Электрическое поле и потенциал в одном измерении: наличие электрического поля вокруг статического точечного заряда создает разность потенциалов, заставляя тестовый заряд испытывать силу и двигаться.

Электрическое поле похоже на любое другое векторное поле: оно оказывает силу, основанную на стимуле, и имеет единицы силы, умноженные на обратный стимул. В случае электрического поля стимулом является заряд, и, следовательно, единицы измерения равны NC-1. Другими словами, электрическое поле является мерой силы на единицу заряда.

В единицах измерения электрический потенциал и заряд тесно связаны. Они имеют общий коэффициент обратных кулонов (C-1), в то время как сила и энергия различаются только на коэффициент расстояния (энергия — это произведение силы на расстояние).

Таким образом, для однородного поля соотношение между электрическим полем (E), разностью потенциалов между точками A и B (Δ) и расстоянием между точками A и B (d) равно:

Коэффициент -1 возникает в результате отталкивания положительных зарядов: положительный заряд будет отталкиваться от положительно заряженной пластины в направлении места с более высоким напряжением.

Приведенное выше уравнение представляет собой алгебраическое соотношение для однородного поля. В изначальном смысле, не предполагая однородности поля, электрическое поле представляет собой градиент электрического потенциала в направлении x:

Это может быть выведено из основных принципов. Учитывая, что ∆P=W (изменение энергии заряда равно работе, проделанной над этим зарядом), применение закона сохранения энергии, мы можем заменить ∆P и W другими терминами. ∆P может быть заменено его определением как произведение заряда (q) и разности потенциалов (dV). Затем мы можем заменить W его определением как произведение q, электрического поля (E) и разности расстояний в направлении x (dx): 

Деление обеих частей уравнения на q дает предыдущее уравнение.

Напряженность электростатического поля

Величина напряженности электрического поля определяется с точки зрения того, как она измеряется. Если предположить, что электрический заряд может быть обозначен символом Q. Этот электрический заряд создает электрическое поле; поскольку Q является источником электрического поля, он будет называться его зарядом источника.

Напряженность электрического поля исходного заряда может быть измерена любым другим зарядом, размещенным где-то в его окружении. Заряд, используемый для измерения напряженности электрического поля, называется тестовым зарядом, поскольку он используется для проверки напряженности поля. Испытательный заряд имеет количество заряда, обозначенное символом q. При помещении в электрическое поле испытуемый заряд будет испытывать электрическую силу — либо притягивающую, либо отталкивающую. Как это обычно бывает, эта сила будет обозначаться символом F. Величина электрического поля просто определяется как сила, приходящаяся на заряд испытуемого заряда.

Если напряженность электрического поля обозначается символом E, то уравнение может быть переписано в символической форме как:

Стандартные метрические единицы измерения напряженности электрического поля вытекают из его определения. Поскольку электрическое поле определяется как сила на заряд, его единицами будут единицы силы, деленные на единицы заряда. В этом случае стандартными метрическими единицами являются Ньютон/Кулон или Н/С.

Для столкновения с силой всегда требовались два заряда. В электрическом мире для притяжения или отталкивания требуются двое. Уравнение для напряженности электрического поля (E) содержит одну из двух величин заряда, перечисленных в нем. Символ q в уравнении представляет собой количество заряда на тестовом заряде (не на исходном заряде). Напомним, что напряженность электрического поля определяется в терминах того, как она измеряется или проверяется; таким образом, тестовый заряд попадает в уравнение. Электрическое поле — это сила, приходящаяся на количество заряда на испытуемом заряде.

Электронный ток в жидкостях кратко

«Физика — 10 класс»

Каковы носители электрического тока в вакууме?Каков характер их движения? Жидкости, как и твёрдые тела, могут быть диэлектриками, проводниками и полупроводниками. К диэлектрикам относится дистиллированная вода, к проводникам — растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.

Электролитическая диссоциация.

При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы.

Распад молекул на ионы под влиянием электрического поля полярных молекул воды называется электролитической диссоциацией.

Степень диссоциации — доля в растворённом веществе молекул, распавшихся на ионы.

Степень диссоциации зависит от температуры, концентрации раствора и электрических свойств растворителя.

С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.

Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы.

При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.

Ионная проводимость.

Носителями заряда в водных растворах или расплавах электролитов являются положительно и отрицательно заряженные ионы.

Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду — аноду, а положительные — к отрицательному — катоду. В результате по цепи пойдёт электрический ток.

Проводимость водных растворов или расплавов электролитов, которая осуществляется ионами, называют ионной проводимостью.

Жидкости могут обладать и электронной проводимостью. Такой проводимостью обладают, например, жидкие металлы.

Электролиз. При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролитов. На аноде отрицательно заряженные ионы отдают свои лишние электроны (в химии это называется окислительной реакцией), а на катоде положительные ионы получают недостающие электроны (восстановительная реакция).

Жидкости могут обладать и электронной проводимостью. Такой проводимостью обладают, например, жидкие металлы.

Процесс выделения на электроде вещества, связанный с окислительновосстановительными реакциями, называют электролизом.

От чего зависит масса вещества, выделяющегося за определённое время? Очевидно, что масса m выделившегося вещества равна произведению массы m0i одного иона на число Ni ионов, достигших электрода за время Δt:

Масса иона m0i равна:

где М — молярная (или атомная) масса вещества, a NA — постоянная Авогадро, т. е. число ионов в одном моле.

Число ионов, достигших электрода, равно:

где Δq = IΔt — заряд, прошедший через электролит за время Δt; q0i — заряд иона, который определяется валентностью n атома: q0i = пе (е — элементарный заряд). При диссоциации молекул, например КВr, состоящих из одновалентных атомов (n = 1), возникают ионы К + и Вr — . Диссоциация молекул медного купороса ведёт к появлению двухзарядных ионов Си 2+ и SO 2- 4 (n = 2). Подставляя в формулу (16.3) выражения (16.4) и (16.5) и учитывая, что Δq = IΔt, a q0i = nе, получаем

Закон Фарадея.

Обозначим через k коэффициент пропорциональности между массой m вещества и зарядом Δq = IΔt, прошедшим через электролит:

где F = eNA = 9,65 • 10 4 Кл/моль — постоянная Фарадея

Коэффициент k зависит от природы вещества (значений М и n). Согласно формуле (16.6) имеем

Закон электролиза Фарадея:

Масса вещества, выделившегося на электроде за время Δt. при прохождении электрического тока, пропорциональна силе тока и времени.

Это утверждение, полученное теоретически, впервые было установлено экспериментально Фарадеем.

Величину k в формуле (16.8) называют электрохимическим эквивалентом данного вещества и выражают в килограммах на кулон

(кг/Кл).

Из формулы (16.8) видно, что коэффициент к численно равен массе вещества, выделившегося на электродах, при переносе ионами заряда, равного 1 Кл.

Электрохимический эквивалент имеет простой физический смысл. Так как M/NA = m0i и еn = q0i, то согласно формуле (16.7) k = rn0i/q0i, т. е. k — отношение массы иона к его заряду.

Электрические токи в природе

Молния

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Скорость распространения электрического тока

Скорость распространения электрического поля в металле близка к скорости света в вакууме, которая равна 300000 км/с. Но это не значит, что электроны внутри вещества двигаются с такой же скоростью. Для проводника с площадью поперечного сечения S = 1 мм2 при силе тока I = 1 A скорость упорядоченного движения электронов равна v = 6*10-5 м/с. То есть за одну секунду электроны в проводнике за счет упорядоченного движения проходят всего 0,06 мм.

Такие малые значения скоростей движения электронов в проводниках не приводят к запаздыванию включения электрических ламп, включения бытовых приборов и т.д., так как при подаче напряжения вдоль проводов со скоростью света распространяется электрическое поле. Эта скорость настолько велика, что позволяет приводить в движение свободные электроны практически мгновенно во всех проводниках электрической цепи.

Заключение

Мы познали суть электричества, выяснили как это работает, по крайней мере, в общих чертах. Для людей с творческим мышлением, далеким от физики, можно мысленно представить, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Основой любого вещества является ядро. Если есть разница потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Таким образом вырабатывается электрический ток.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий