Проверка одновременного включения масляного выключателя

Этапы ремонта ТО масляных выключателей (операции — фото операций)

Капитальный ремонт масляного выключателя ВМГ-10/630 1. Произведен осмотр ВМГ-10 -подтеки масла с прокладок нижних крышек -подтеки масла с масляного буфера -низкий уровень масла МВ -подтекание маслоуказателей ВМГ-10.

2. Измерение полного сопротивления токопроводов

3. Разбор масляного выключателя 6-10кв — удален контактный стержень от полюса выключателя

— снят проходной изолятор ВМГ — снята нижняя крышка масляного выключателя — вынуты изоляционные цилиндры и дугогасительная камера

— разобрана дугогасительная камера, сняты гибкие связи, ламели

— разбор проходного изолятора — разбор подвижного контакта

— разбор масляного буфера — частичная замена крепежных элементов (наличие трещин и изломов шайб, наличие повреждений граней и углов на головках болтов и гаек) — полная замена резиновых деталей

— частичная замена уплотнительных прокладок маслоуказателей — частичная замена деталей (уплотняющих прокладок) из гетинакса и бакелита

4. Ремонтные работы на высоковольтном выключателе. — промывка трансформаторным маслом дугогасительной камеры, зачистка мелкой шкуркой дутьевых каналов — зачистка и промывка контактного стержня — зачистка и промыка проходного изолятора — зачистка и промывка бензином ламелей — зачистка и промывка опорного изолятора 5. Сборка и регулировка — сборка дугогасительной камеры — смазка выступающей части картонной манжеты дугогасительной камеры — сбока розеточного контакта — установка бакелитового цилиндра в бак полюса — крепеж нижней крышки — осмотр заполненого маслом бака на предмет утечки масла — сборка проходного изолятора и установка на полюс — установка контактного стержня — проверка отсутствия заеданий и чрезмерного заедания контактного стержня путем опускания с высоты 300мм под действием собственной массы — регулировка контактного стержня — установка гибкой связи на контактной колодке — регулировка зазоров между верхними торцами болтов изолятора и нижней поверхностью колодки — измерение полного сопротивления токопроводов (должно быть не более 75мкОм) — установка полюсов в ячейку — регулировка зазора между роликом рычага и болт- упором (в пределах 0,5- 1,5мм) — измерение уровня масла — доливка масла — замер пробивного напряжения трансформаторного масла (64кВ) — сборка масляного буфера — проверка полного хода контактного стержня — проверка одновременности замыкания контактов и собственное время включения и отключения выключателя

Основные типы масляных выключателей

Конструкция масляных выключателей выполняется двух основных типов:

  1. Баковые. Обладают большим объёмом масла. Оснащены одним большим баком сразу для трёх контактов трёхфазного напряжения;
  2. Горшковые (маломасляные). С меньшим объёмом масла, но с дополнительной системой дугогашения и тремя раздельными баками. В них на каждой фазе присутствует отдельный металлический цилиндр, заполненный маслом, где происходит разрыв контактов и подавление электрической дуги.

Выключатели масляные баковые

Они рассчитаны на небольшие токи отключения.

Производятся однобаковыми конструкциями (три полюса находятся в одном баке) при рабочем напряжении до 20 кВ, а при на напряжение выше 35кВ — трехбаковыми (каждая из фаз расположена отдельном баке) с персональными или групповыми приводами включения.

Выключатели баковые снабжаются электромагнитными или воздушными пневмоприводами. 

Масляные баковые выключатели, выпускаемые на напряжение больше 35кВ, имеют встроенные вовнутрь трансформаторы тока.

Баковые выключатели на рабочее напряжение 110 кВ и выше оборудованы ёмкостными трансформаторами напряжения.

Маломасляные выключатели

В них масло служит как дугогасящая среда, а изолирование токоведущих деталей и дугогасительного аппарата касательно замыкания на землю осуществляется через твердый изоляционный материал (керамику, текстолит, и различные эпоксидные смолы).

Это масляный выключатель ВМП или ВМГ типа.

Он обладает меньшими габаритами, массой, меньшей взрывоопасностью и пожароопасностью. 

Масляные выключатели по своей конструкции бывают двух видов движения контактной группы:

  1. дугогасительные камеры снизу (движение подвижного контакта выполняется сверху вниз);
  2. дугогасительные камеры сверху (перемещение подвижного контакта происходит наоборот снизу вверх). Этот вид более перспективен в отношении улучшения отключающей возможности.

Выключатель может быть оборудован встроенным внутрь механизмом защиты и управления.

Это такие реле, как:

  1. максимального тока моментального действия;
  2. выдержки времени;
  3. реле минимального напряжения (для защиты электрооборудования от работы на не номинальном напряжении);
  4. электромагниты отключения;
  5. вспомогательные блок-контакты.

Выключатель маломасляный для наружной установки состоит из трех основных ключевых частей:

  • дугогасительное устройство, которое помещено в фарфоровую оболочку;
  • фарфоровые опорные колонки;
  • основания, то есть рамы.

Изоляционный цилиндр, охватывает дугогасительное устройство чем и выполняет защитную функцию. Главная его защитная цель — это фарфоровая оболочка, чтобы во время большого давления, которые возникают в момент отключения масляника, она попросту не разорвалась.

Устройство и принцип действия

Вакуумные выключатели предназначены для совершения коммутационных операций в электроснабжающих сетях высокого напряжения. Конструктивно вакуумный выключатель состоит из трех отдельных полюсов или колонок (по одной на каждую фазу). Все колонки устанавливаются на одном приводе посредством опорного изолятора из полимера, фарфора или текстолита. У каждой из них имеются два вывода для подключения ошиновки.

Общий вид вакуумного автоматического выключателя

Устройство вакуумного выключателя.

Из картинки ниже видно, что внутри устройство состоит из двух контактов, подведенных под соответствующие потенциалы полюсов. Один из них выполняется подвижным, второй стационарным, как и в других типах выключателей. Силовые контакты вакуумного выключателя располагаются внутри герметичной камеры, способной сохранять вакуум в течении длительного периода времени (несколько десятков лет). Для чего в состав камеры включаются специальные металлические сплавы и керамические добавки. Именно этот элемент стал камнем преткновения для реализации такого выключателя в 30-е годы прошлого века.

Современные технологии предоставляют возможность сохранения вакуума внутри емкости, в том числе, с учетом динамических нагрузок, которые ей приходится претерпевать во время коммутаций. Для постоянного поддержания состояния сильно разреженной газовой среды, внутри вакуумной камеры, устройство комплектуется сильфонным компонентом. Он исключает возможность проникновения воздуха или другого газа внутрь вакуумной камеры при перемещении подвижного контакта.

Конструкция вакуумного выключателя

Принцип гашения электрической дуги.

При разрыве контактов между поверхностями возникает ионизация пространства. Если в воздушных выключателях с методом электромагнитного дутья эту ионизацию искусственно растягивают на несколько метров, а в элегазовых и масляных выключателях стараются погасить диэлектрическим материалом, то в вакуумных применяется другая технология. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное к выделению заряженных частиц. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла.

Различные этапы образования плазмы

Начало разведения контактов

Развитие ионизации

Заключительные процессы

Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения, их место быстро занимает пустое пространство с высокой электрической прочностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Но чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

Управление и система приводов

Управлять МВ можно через кнопки схемы управления, либо вручную воздействуя на катушку соленоида.

Привод предназначен для включения устройства в ручном или автоматическом режимах, а также поддержания его во включенном состоянии.

Различают следующие типы приводов:

  1. Ручной (автоматический). Данный привод позволяет управлять масляным выключателем как вручную, так и автоматически при помощи встроенного электромагнита.
  2. Пружинный. Такой тип привода включает МВ за счет энергии заведенной пружины. Завод пружины осуществляется вручную, при помощи электромагнита, или электродвигателя.
  3. Пружинно-грузовой. Включение осуществляется путем энергии взведенных пружин и груза, поднятого в верхнее положение.
  4. Электромагнитный. Управление масляным выключателем осуществляется за счет создания тягового усилия в электромагнитной катушке с сердечником. Для включения сердечник взаимодействует с рычажным механизмом.

Достоинства системы

Система гашения дуги данного типа имеет ряд особенностей, из-за которых она используется во многих цепях электроснабжения. К достоинствам системы относится следующее:

Высокая эффективность прерывания цепи, что позволяет использовать подобное оборудование в сетях высокого напряжения.
Простота конструкции делает ее надежной и ремонтопригодной

Ремонт масляных выключателей должен проводиться исключительно профессионалами, так как подобное оборудование отвечает за выполнение важной команды от автоматической системы управления или оператора. Также это качество обуславливает относительно небольшую стоимость этого типа оборудования.

Ремонт приводов

Плановый капитальный ремонт приводов осуществляют одновременно с ремонтом остального оборудования. При выявлении какой-либо неисправности выполняют внеочередной ремонт. Нормальная работа привода во многом зависит от правильной регулировки аппарата, для которого он предназначен. При капитальном ремонте приводов внимательно осматривают все их части для выявления возможных неисправностей

Особое внимание обращают на детали, несущие самую большую нагрузку, и на трущиеся поверхности зацепления. Поврежденные и изношенные детали ремонтируют или заменяют новыми

Разбирают не весь привод, а только те части, которые мешают устранению неисправностей. Для удаления пыли и старой смазки механизм привода протирают чистой тряпкой, смоченной в бензине или керосине. Новую смазку наносят тонким слоем, удаляя излишки. Рекомендуется применять густые морозостойкие смазки (ЦИАТИМ-201, -203, -221,- ГОИ-54 и др.), которые не застывают при низких температурах. Разрешается использовать трансформаторное масло, однако смазывание в этом случае необходимо проводить чаще. Если имеется повышенный люфт в осях, их заменяют новыми. Особое внимание обращают на релейную планку приводов выключателей, которая должна быть без кривизны, свободно вращаться в подшипниках с осевыми зазорами не более 0,2 — 0,4 мм. Винты и гайки подтягивают. Корпус, кронштейны при необходимости подкрашивают. После ремонта и регулировки проводят испытание привода. В приводе к масляным выключателям и выключателям нагрузки проверяют механизм свободного расцепления (при выключенном приводе, в двух-трех промежуточных положениях и на границе зоны действия свободного расцепления). Для этого устанавливают привод в проверяемое положение и подают импульс на отключение. Надежность запирающего устройства контролируют осмотром и легким постукиванием молотка. При этом не должно быть самопроизвольного отключения механизма. При ремонте кроме общих положений, указанных выше, необходимо учитывать особенности конструкции и регулировки каждого типа привода.

  • Назад
  • Вперед

Испытание выключателя многократными включениями и отключениями.

Проводится при капитальном ремонте.

Включение и отключение выключателя при многократном опробовании должны производиться при напряжениях в момент включения на зажимах катушки привода 110, 100, 90 и 80 % номинального. Число операций для каждого режима опробываний 3-5.

Если по условиям работы источника питания оперативного тока не представляется возможным провести испытание при напряжении 1,1 13 то допускается проведение его при максимальном напряжении на зажимах катушки привода, которое может быть получено. Выключатели, предназначенные для работы в цикле АПВ, должны быть подвергнуты двух- трехкратному опробованию в цикле О-В-О при номинальном напряжении на зажимах катушки привода.

О порядке проверки следует руководствоваться также указаниями выше.

Что включают в себя проверки и испытания высоковольтных выключателей

Рассмотрим пункты, по которым проводится проверка выключателей:

  1. визуальный осмотр устройства на отсутствие дефектов и повреждений;
  2. проверка состояния изоляции на целостность и соответствие нормам;
  3. измерение сопротивления изоляции при постоянном токе;
  4. замер сопротивления обмоток и контактов выключателя и сравнение полученных данных с теми показателями, которые указаны в документации к устройству;
  5. испытание при повышенном напряжении на протяжении 1 минуты;
  6. контроль хода подвижных контактов выключателя;
  7. измерение соответствия всех фактических параметров заявленным производителем в документации к устройству;
  8. измерение минимального времени, которое требуется для срабатывания выключателя;
  9. измерение минимального напряжения, которое требуется для срабатывания электромагнита в выключателе;
  10. оценка нагрева рабочих контактов методом тепловизионного контроля.

Проверка функционирования.

Отказы функционирования в значительной мере являются следствием нарушений в механической системе. К отказам механической системы, число которых может достигать 70-80% всего количества отказов, ведут поломки или изменение характеристик пружин, увеличение трения в рабочем механизме, повреждения клапанов, уменьшение усилий приводов и т.п.
Контроль общего состояния механической системы возможен только путем проверки функционирования выключателя. Проверка производится на выведенном из работы аппарате. В объем проверки входят контроль регулировочных и установочных характеристик приводов, определение наименьшего напряжения или давления воздуха (масла), обеспечивающего нормальное выполнение рабочих циклов, а также измерение временных и скоростных характеристик работы выключателя.
Состояние механизмов можно оценить по усилиям, необходимым для их перемещения. Усилие на штанге привода, связанной с контактной системой, при медленном ее перемещении позволяет выявить появление недопустимых люфтов, разрегулировок, ухудшение смазки, износ контактов. Измерения при проведении операций позволяют определить время срабатывания и его разброс по фазам, перемещения, скорости и ускорения подвижных частей, расход воздуха на операцию, потребление привода, а также ряд других параметров, характеризующих состояние механизмов (в зависимости от конструкции выключателя).
Временные характеристики определяются осциллографированием работы контактов. Характеристики движения механических частей могут быть получены путем снятия виброграммы или преобразования их перемещения в последовательность импульсов, интервалы между которыми соответствуют скорости движения. Такое преобразование производится при помощи растра, связанного с контролируемым механизмом. Применяются также электромагнитные датчики скорости движения. Рис. 7.24. Схема осциллографирования работ контактов полюса выключателя ВВБ-220: SA1 — главные контакты; SA2 — вспомогательные контакты; Rш — шунтирующие резисторы; PG — гальванометры осциллографа GB и Rβ – источники питания и резисторы схемы осциллографирования
Проверка функционирования включает Также многократное опробование выключателя во всех режимах. Приведем примеры определения временных характеристик при контроле воздушных и масляных выключателей.
Для проверки воздушных выключателей производится опробование с одновременным осциллографированием работы контактов и тока в цепи электромагнитов управления (рис. 7.24). Осциллографирование производится со скорость») определяемой быстродействием выключателя (обычно отметка времени на осциллограмме – не реже 10 мс). По осциллограммам (рис. 7.25) определяются собственное время отключения (т0) и включение (Тв), разновременность размыкания главных и вспомогательных контактов (tp.r и (р.в). разновременность смыкания главных и вспомогательных контактов (tc. г. и tс.в). запаздывание размыкания и включения вспомогательных контактов (tз .р. и tз.в.), а также ток привода управления (длительность и характер изменения).
Эти параметры, а также выполнение сложных циклов работы (OB, ОВО, ВО) определяют работоспособность выключателя.

Рис. 7.25. Осциллограммы проверки выключателя ВВБ-220:
а — отключение; б — включение; 1, 2 — главные контакты; 3—6 — вспомогательные контакты; 7 — ток электромагнита; S — отметка времени. Номера осциллограмм соответствуют номерам гальванометров (рис. 7.24) Рис. 7.26. Виброграмма контроля масляного выключателя. Наибольшая скорость: L1/t1. Скорость при замыкании контактов:        L2/ t2

Измерение скоростей включения и отключения масляных выключателей позволяет проверить правильность регулировки всей механической системы. Измерение производится путем снятия виброграммы (рис. 7.26). Виброграмма записывается вибрографом – электромагнитом, питаемым током частотой 50 Гц, к якорю которого прикреплено пишущее устройство. Во время движения траверсы включателя записывается синусоидальная кривая, длина периода которой на виброграмме определяется скоростью подвижных частей. Одновременно эта синусоида дает отметку времени.
При расшифровке виброграммы определяются моменты замыкания или размыкания контактов и скорость движения подвижных частей (наибольшая, в моменты замыкания или размыкания). Скорость определяется путем деления длины участков виброграммы на время (каждый период виброграммы — 20 мс). Дефекты работы привода можно выявить путем осциллографирования тока его потребления. Контроль ведется по изменению осциллограммы и по значению тока в заданные моменты времени.

Наладка и испытания масляных выключателей после ремонта

Компания «МОСЭНЕРГОТЕСТ» предлагает услуги высоковольтного испытания передвижной высоковольтной лаборатории, для проведения различных видов операций, нацеленных на улучшение работоспособности электрического оборудования.

Компания «МОСЭНЕРГОТЕСТ» предлагает услуги высоковольтного испытания передвижной высоковольтной лаборатории, для проведения различных видов операций, нацеленных на улучшение работоспособности электрического оборудования.

Высококвалифицированные мастера обладают всеми необходимыми знаниями и умениями для точного и качественного выполнения работы.

Мы проводим высоковольтные испытания масляных выключателей после ремонта и по сроку периодичности. Такие процедуры необходимы для поддержания аппаратов в рабочем состоянии и бесперебойного их функционирования.

Сроки проведения проверок устанавливаются специальными документами, которые составляются на законодательном уровне и регулируются соответствующими государственными структурами.

НАИМЕНОВАНИЕ РАБОТЕДИНИЦА ИЗМЕРЕНИЯЦЕНА
Испытание автоматических выключателей1-полюсный автомат90,00 руб.
3-полюсный автомат: до 50 А до 200 А до 1000 А > 1000 А180,00 руб. 230,00 руб. 360,00 руб. 430,00 руб.

Испытание масляных выключателей после ремонта: методика выполнения, этапы

Аппарат представляет собой коммутационное устройство, предназначенное для активации и прекращения работы отдельных участков электрической цепи. Масляный выключатель – высоковольтное оборудование с малым объемом трансформаторного масла(жидкости для гашения дуги). Устройство рассчитано на работу в обычном и аварийном режимах. Допускается ручное и автоматическое управление.

Испытания и наладка масляных выключателей нагрузки осуществляется в соответствии с рекомендациями, инструкцией по выполнению таких видов работ. Методика проведения проверки предусматривает определенный план действий, состоящий из следующих пунктов:

  1. Внешнее обследование: обязательная процедура, предшествующая испытаниям. Предварительный осмотр дает возможность оценить состояние выключателя и изоляции, обнаружить повреждения, трещины, сколы, вмятины, которые каким-либо образом могут повлиять на работу аппарата.
  2. Измерение сопротивления изоляции подвижных компонентов: для проведения таких операций используют специальный прибор – мегомметр.
  3. Испытание изоляции путем повышения напряжения: показатели величины, применяемой при ревизии аппарата, устанавливаются в зависимости от номинального напряжения выключателя. Операция проводится при включенном состоянии устройства.
  4. Контроль показателей переходного сопротивления контактов. Результаты ревизии свидетельствуют о надежности оборудования. Повышенное переходное сопротивление может спровоцировать выход аппарата из строя.
  5. Определение скорости движения контактов. От показателей зависит мощность выключателя.
  6. Контроль работоспособности привода путем повышения и понижения напряжения: такая операция позволяет определить устойчивость оборудования к изменениям напряжения, что возможно в обычном режиме эксплуатации.

Электролаборатория «МОСЭНЕРГОТЕСТ»: точность и надежность проведения любых видов работ

Сотрудники компании выполняют испытания и наладку масляных выключателей качественно и оперативно. После того как ревизия масляных выключателей будет завершена, вы получите отчетную документацию, где будут указаны все проводимые испытания и полученные результаты.

3.1. Выключатели

Выключатели высокого напряжения служат для коммутации электриче­ских цепей во всех эксплуатационных режимах: включения и отключе­ния токов нагрузки, токов намагничивания трансформаторов, зарядных токов линий и шин, отключения токов к.з. Каждый из режимов работы имеет свои особенности, определяемые параметрами электрической це­пи, в которой установлен выключатель. Тяжелым режимом работы является отключение тока к.з., когда выключатель подвергается воз­действию значительных электродинамических усилий и высоких темпе­ратур. Отключение сравнительно малых токов намагничивания и за­рядных токов линий имеет свои особенности, связанные с возникнове­нием опасных перенапряжений, утяжеляющих работу выключателей.

Требования, предъявляемые к выключателям во всех режимах ра­боты:

1) надежное отключение любых токов в пределах номинальных значений;

Особенности капитального ремонта

Капитальный ремонт масляного выключателя может включать в себя следующие работы:

  1. Отключение выключателя, разборка, отключение шин.
  2. Слив масла из горшков.
  3. Разборка, чистка, смазка, ремонт, настройка привода.
  4. Чистка, ремонт, испытания, замена изоляторов.
  5. Зачистка контактных токопроводящих поверхностей.
  6. Испытание.
  7. Измерение сопротивления изоляции полюсов.
  8. Испытание изоляторов.
  9. Измерение переходных сопротивлений шин.
  10. Регулировка включения.
  11. Смазка губок для более мягкого подключения выключателя к шинам в ячейке.
  12. Сборка выключателя после ремонта, доливка масла.
  13. Удаление пыли, грязи, масла с шин и горшков.
  14. Затяжка ослабленных болтовых соединений шин.
  15. Уборка рабочего места после окончания всех работ.

Капитальный ремонт выполняется строго специально обученным персоналом, имеющим все необходимые допуски и разрешения для работы в установках и подстанциях с напряжением 6 и выше кВ.

Работы проводятся под наблюдением ответственного лица с группой электробезопасности не ниже 5. Посторонние люди не должны иметь доступа к месту проведения работ, а само рабочее место должно быть огорожено, должны быть вывешены предупреждающие и запрещающие плакаты.

Капитальный ремонт и испытания масляных выключателей проводится, как правило, раз в 6 лет, при интенсивной эксплуатации значительно чаще.

После каждого внештатного отключения устройства перед его последующим включением проводятся высоковольтные испытания.

Классификация оборудования

Для обеспечения стабильной работы электрооборудования могут использоваться следующие типы масляных выключателей:

  • Система с большой емкостью и маслом в ней – баковые.
  • Использующие диэлектрические элементы и небольшое количество масла – маломасляные.

Схема масляного выключателя имеет специальное устройство для гашения образованной дуги во время разрыва цепи. По принципу действия дугогасительных устройств подобное оборудование делится на следующие группы:

  • С использованием принудительного дутья рабочей среды. Подобное устройство имеет специальный гидравлический механизм для создания давления и подачи масла в месте разрыва цепи.
  • Магнитное гашение в масле проводится при использовании специальных электромагнитах элементов, которые создают поле, перемещающее дугу в узкие каналы для разрыва созданной цепи.
  • Масляный выключатель с автодутьем. Схема масляного выключателя данного типа предусматривает наличие специального элемента в системе, который осуществляет выделение энергии из образованной дуги для передвижения масла или газа в баке.

Изучение масленых выключателей, их конструкции и принцип работы

Требования, предъявляемые к выключателям:

1) надежное отключение любых токов в пределах номинальных значений;

2) быстродействие при отключении, т.е. гашение дуги в возможно меньший промежуток времени, что вызывается необходимостью сохранения устойчивости параллельной работы станций при КЗ;

3) пригодность для автоматического повторного включения после отключения электрической цепи защитой;

4) взрыво- и пожаробезопасность;

5) удобство обслуживания.

Для оперативного обслуживания надо, чтобы каждый выключатель или его привод имел хорошо видимый и безотказно работающий указатель положения (“Включено”, “Отключено”).

Если выключатель не имеет открытых контактов и его привод отделен стенкой от выключателя, то указатель должен быть и на выключателе, и на приводе.

Принцип работы однобаковых выключателей

При срабатывании системы сначала происходит разрыв контакта дугогасительной камеры. При разрыве контакта сети с высоким напряжением возникает дуга, которая разлагает масло из-за воздействия высокой температуры. При воздействии дуги на масло происходит образование газового пузыря, в котором и будет находиться сама дуга. Созданный пузырь на 70% состоит из водорода, а этот газ в данном состоянии будет подаваться под давлением. Воздействие водорода и созданного искусственно давления приведет к деионализации образованной дуги во время разрыва контакта. Подобным способом масляный выключатель проводит разрыв цепи.

Конструктивные особенности

Каждая модификация низковольтного и высоковольтного вакуумного выключателя различается по своей компоновочной схеме. Это связано с работой при разном номинале значения тока и напряжения. Производители тоже не остаются в стороне. Каждый реализует свои инновационные идеи в железе, что сказывается на комплектности аппарата дополнительными элементами и компоновке. Мы же не будем разбираться в , а посмотрим на конструкцию аппарата в целом и разберемся, как он устроен и работает.

Выключатель состоит из общего корпуса с приводом коммутации, на котором закреплены 3 полюса силовых цепей. Внутри каждого установлена герметичная вакуумная камера, состоящая из контактной группы и специальных экранов, защищающих внутренние изолирующие поверхности от металлического налета, вследствие эрозии контактов.

Контактная система включает 2 элемента: неподвижный контакт, жестко закрепленный к нижнему фланцу, и подвижный, соединенный с верхним фланцем так, что герметичность вакуумной дугогасительной камеры не нарушается.

Конструкция вакуумного выключателя включает два элемента: подвижный и неподвижный контакты. Устройство оснащается тремя полюсами, на каждом из которых имеются пофазно установленные электромагнитные приводы. Эти приводы монтируются на одном основании.

Читать далее: Грунтовка бетоноконтакт кнауф технические характеристики

Размещенные внутри прибора фазные приводы соединяются друг с другом за счет вала, который осуществляет синхронизацию фаз и защищает от неполных фаз. Кроме того, вал предназначен для механической блокировки расположенных поблизости распределительных систем и управления индикацией расположения контактов.

В качестве примера рассмотрим особенности вакуумного выключателя от (серия BB/TEL).

Условные обозначения:

  1. Вакуумная камера с функцией дугогашения.
  2. Основание.
  3. Крышка.
  4. Вал синхронизации.
  5. Дополнительные контакты.
  6. Блокировочная тяга.
  7. Привод.
  8. Узел блокировочный торцевой.

На рисунке видно, что вакуумный выключатель нагрузки включает в себя три полюса, которые имеют пофазно встроенные приводы электромагнитного типа. Приводы установлены на общем основании. Все приводы соединяются друг с другом при помощи вала.

Особенности одного из полюсов с номинальным током 2 тысячи ампер показаны на рисунке ниже.

  1. Вывод в верхней части.
  2. Дугогасящая камера, вмонтированная в полые изоляторы. Подвижные контакты за счет изоляционных тяг скреплены жестким соединением с приводами.
  3. Дополнительные контакты.
  4. Кулак.
  5. Блокировочная тяга.
  6. Вал синхронизации.
  7. Электромагнитный вал, оснащенный защелкой на магните.
  8. Пружина для прижатия контактов.
  9. Пружина отключения контактов.
  10. Приводной якорь.
  11. Кольцевой магнит.
  12. Приводная катушка.
  13. Плоский привод.
  14. Тяговый изолятор.
  15. Опорное изолирующее устройство.
  16. Нижний вывод.

Магнитный привод может располагаться в одном из двух положений: «включено» или «выключено». Закрепление якоря в указанных положениях осуществляется без использования механических щеколд. Фиксация возможна благодаря упругой пружине в положении «выключено» и кольцевому магниту в положении «включено». Подключение и отключение производится за счет передачи управляющих импульсов разнополярных напряжений на обмоточную катушку привода.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий