Промежуточное реле: как работает, маркировка и виды, нюансы регулировки и подключения

Нюансы подключения и регулировки

После установки промежуточного механизма его необходимо подключить к электросхеме. Для этого будут задействованы контакты катушки, а также дополнительные связующие элементы. Обычно, в устройстве насчитывается несколько контактных пар: NO – нормально-открытые и нормально-закрытые (NC).


Распределение групп в представленной электросхеме: 10-11 – нормально-замкнутые контакты; 11-12 – нормально-разомкнутые; контакты 1 (фаза) – 3 (ноль) – напряжение питания реле

В первой позиции предполагается полное лишение подачи сигнала на катушку. Поскольку в ней нет полярности, внутреннее соединение контактной группы может выполняться в хаотичном порядке.

Для подключения обзорного механизма рассмотрим схематические указания. Предполагаемое напряжение в катушке может составлять: 12, 24 или 220 В.


Электросхема прибора без подключения к сети. Его установка осуществляется в схемах управления и автоматики. Месторасположение – между главным исполнителем и источником задачи

Регулирование электронного пускателя разберем на примере самой распространенной модели РП-23.

Процесс состоит из следующих этапов:

  1. Проверяя напряжение пуска и возврата с подачей источника гальванического тока на катушку, осуществляем нерезкое регулирование.
  2. На момент притягивания якоря у подвижного узла системы должен быть совместный ход 0,1-1,5 мм. Методом подгиба хвостовика на Г-образную пластину осуществляем корректировочную процедуру.
  3. Между активным и неактивным контактом уровень зазора устанавливается в пределах значений 1,5-2,5 мм. Настройка прогиба выполняется поджиманием угольника неподвижных контактов и верхнего упора подвижной системы.
  4. При конечном расположении якоря (замыкание) провал неактивных контактов будет 0,3-0,4 мм.
  5. В середине плоскости подвижные и неподвижные контакты должны совпадать. Корректировка производится путем перемещения пластины и направляющей скобы.

Таким же методом воспроизводится и настройка параметров реле РП-25, однако исключается зазор между катушкой с сердечником и якорем в притянутом состоянии.

Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

Как подключить импульсное реле

Чтобы правильно подключить импульсное реле, нужно понимать какие у него есть контакты и за что они отвечают.

 Как правило, это:

На один из них, фаза либо ноль приходят постоянно, а на другой, как раз-таки и подается импульс после нажатия кнопки.

Проходя через них, ток поступает на светильник.

Вот простейшая схема подключения одного импульсного реле на группу кнопочных выключателей.

Схема №1

Обратите внимание, что в импульсном реле нагрузка вовсе не проходит через кнопку. Нажимая ее, вы всего лишь даете импульс на катушку, которая и замыкает силовой контакт

В некоторых моделях подавать управляющий импульс можно как через фазный проводник, так и через нулевой.

Представьте, что существенная и разветвленная часть эл.проводки у вас в доме даже не будет находится постоянно под напряжением, как это происходит с обычными выключателями света. Насколько это повысит пожаро и электробезопасность!

Некоторые разновидности имеют сразу несколько контактов. От них можно подключать две, три и более групп освещения.

Прохождение всей нагрузки через реле означает, что подгорание или выгорание контактов на кнопках практически исключено. Многие, радуясь такому обстоятельству, смело занижают сечение линий освещения до 0,5мм2 или 0,75мм2. Либо вообще “кидают” витую пару.

Однако не забывайте про правила, где четко говорится, что все групповые линии на светильники в жилых помещениях должны выполняться проводниками сечением минимум 1,5мм2.

При этом обратите внимание, все реле (группа или одиночное) должны обязательно подключаться после автомата

Он защищает:

Без него при коротком замыкании у вас просто сгорит эл.проводка.

Само реле не защищает ни от перегрузок, ни от КЗ.

Поэтому при сборке схемы в щитке, на каждый автомат освещения вы как бы “навешиваете” по одному или несколько импульсных реле.

Разновидности устройств

Все существующие магнитные реле подразделяются на несколько разновидностей в зависимости от своих конструктивных особенностей, сферы применения, мощности сигнала управления, вида электротока, скорости действия управления.

По особенностям устройства реле могут быть:

  1. Контактными. Они воздействуют на цепь несколькими контактами. Их замыкание или размыкание способствует обеспечению коммутации — силовая цепь либо соединяется, либо разрывается.
  2. Бесконтактными. Влияют на цепь иначе. Эти
  3. устройства резко изменяют ее характеристики.

Электромагнитное реле

По скорости действия устройства коммутации подразделяются на четыре типа:

  1. Регулируемые. При их использовании можно устанавливать любую скорость.
  2. Замедленные. Они срабатывают не ранее, чем через 0,05 с.
  3. Быстродействующие. Такие реле начинают действовать уже через миллисекунду.
  4. Безинерционные. Устройства этого типа действуют даже до того, как истечет одна миллисекунда.

В зависимости от того, какой мощностью обладает сигнал управления, реле может принадлежать к одной из трех основных разновидностей. Мощность может быть:

  • высокой, если ее значение превышает 10 Вт;
  • средней при значении до 10 Вт, но при этом не менее 1 В;
  • малой, значение которой измеряется в долях Ватта.

КАК РАБОТАЕТ РЕЛЕ

Ошибки при монтаже и эксплуатации

  • Одной из распространенных ошибок считается не правильный выбор технических параметров промежуточных реле. Внимательно смотрите в каких сетях используется реле, постоянного или переменного тока, какое напряжение или ток необходимо подать на управляющую катушку.
  • Обязательно учитывайте допустимые токовые нагрузки на коммутационные контакты, особенно когда реле включается напрямую для питания приборов большой мощности.
  • Старайтесь использовать реле с необходимым количеством контактов, модели с большим количеством потребляют больше электроэнергии на электромагнитной катушке.

Классификация и для чего нужно реле

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.

Разнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачи

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

  • управление электрическими и электронными системами;
  • защита систем;
  • автоматизация систем.

По принципу действия:

  • тепловые;
  • электромагнитные;
  • магнитолектические;
  • полупроводниковые;
  • индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

  • от тока;
  • от напряжения;
  • от мощности;
  • от частоты.

По принципу воздействия на управляющую часть устройства:

На фото (обведено красным) показано, где находится одно из реле в стиральной машине

Промежуточное реле — разновидности

Промежуточные приборы подразделяются по типу переключения на максимальные и минимальные. Максимальные устройства способны увеличивать установленный показатель до определенного рубежа. Минимальные приспособления работают для понижения определенного показателя.

Современное промежуточное реле

Промежуточное реле классифицируются по способу работы: прямые и косвенные. Работа прямых типов происходит, напрямую подключая и отключая различные цепи. Косвенные реле работают посредством цепей иных механизмов.

Реле также делятся по назначению: измерительные, логические и комбинированные. Измерительные приборы обладают настройкой в установленном интервале срабатывания. Логические приборы работают по одному уровню и используются в дискретных схемах. Комбинированные устройства содержат несколько групп реле, которые объединены в общую логическую цепь.

Приборы различаются по месту подсоединения: вторичные и первичные. Вторичные устройства подсоединяются посредством индуктивной, емкостной или другой связи. Первичные реле присоединяются напрямую в электрическую цепь.

Промежуточные устройства обладают собственными конструктивными особенностями и имеют следующие характерные черты:

  1. Полупроводниковое промежуточное реле. Эти устройства не обладают коммутационными контактами, при этом цепи смыкаются и размыкаются посредством подаваемого напряжения.
  2. Индукционные приспособления. В этих приборах напряжение, при помощи которого осуществляется управление, поступает от соседней катушки.
  3. Магнитоэлектрические устройства. Механизм этой модели основывается на магните, при помощи которого вращается катушка, размыкающая и смыкающая цепи.
  4. Поляризационное промежуточное реле. Принцип работы таких приборов основан на полярности, посредством которой осуществляется переключение.

5 Сетевой насос для котельной

Описание работы схемы управления электроприводом сетевого насоса.

Схема управления состоит из двух основных частей – Схемы включения двигателя дымососа и Схемы включения двигателя дутьевого вентилятора. В свою очередь, каждая схема содержит схему запуска (управления) и схему аварийной звуковой и световой сигнализации.

Управление сетевым насосом котла. Схема электрическая

Схема включения двигателя дымососа.

Дымосос должен включаться первым, чтобы очистить канал прохождения дыма и гарантированно обеспечить розжиг пламени и ровное горение пламени горелки.

В схему управления дымососом входят следующие элементы:

  • 1FU1 – предохранитель цепи управления,
  • 1SF1 – выключатель питания,
  • SA1 – переключатель режимов работы,
  • КА1 – промежуточное реле управления контактором,
  • КМ1 – контактор включения двигателя дымососа,
  • КК1 – контакты теплового реле перегрузки двигателя дымососа.

Схема работает следующим образом.

Однофазное питание 220В поступает на схему через предохранитель 1FU1 и выключатель 1SF1. Далее, в зависимости от положения переключателя SA1, возможны различные режимы работы – принудительное включение, рабочий режим, режим снятия сигнализации.

В рабочем режиме включается реле КА1, и через его контакты подается питание на катушку контактора КМ1. В цепь питания КМ1 также входят контакты теплового реле КК1, которые размыкаются при перегрузке двигателя дымососа.

Схема аварийной звуковой и световой сигнализации двигателя дымососа.

С общих цепей схемы по проводам 701 и 703 приходит питание схемы аварийной сигнализации. При аварийном выключении дымососа (например, при пропадании питания из-за перегорания предохранителя 1FU1) реле КА1 выключается, и через свои контакты подает питание на звуковой сигнализатор. Выключить сигнал можно переключателем SA1, что также обесточит катушку контактора КМ1 и гарантированно выключит схему.

Индикаторная лампа HL1, которая питается через контакты реле КА1, контакты контактора КМ1 и резистор R1,  служит для индикации рабочего режима или аварийной ситуации в зависимости от режима и положения переключателя SA1.

Работа схемы управления двигателем дутьевого вентилятора.

В состав схемы управления двигателем дутьевого вентилятора входят следующие элементы:

  • 1FU2 – предохранитель цепи управления,
  • 1SF2 – выключатель питания,
  • SA2 – переключатель режимов работы,
  • SA3 – байпас блокировки включения вентилятора без дымососа,
  • КА2 – промежуточное реле управления контактором дутьевого вентилятора,
  • КМ2 – контактор включения двигателя вентилятора,
  • КК2– контакты теплового реле перегрузки двигателя вентилятора.

Включение дутьевого вентилятора невозможно без включения дымососа. Это необходимо для безопасной и правильной работы всей установки.

Данная проверка обеспечивается включением в цепь питания контактора вентилятора КМ2 контакта реле КА1. Таким образом, запуск вентилятора возможен, только если включено реле КА1 включения дымососа.

Однако, для целей проверки возможно шунтирование данного контакта КА1 переключателем SA3.

Контактор КМ1 включения двигателя дутьевого вентилятора при подаче напряжения на его катушку через предохранитель 1FU2, выключатель 1SF2, реле КА1, КА2, и контакты теплового реле КК2. Управление – через переключатель SA2 и промежуточное реле КА2, как и в схеме управления дымососом.

Схема аварийной звуковой и световой сигнализации двигателя дутьевого вентилятора.

Работа схемы аналогична схеме сигнализации дымососа. Питание схемы – через те же общие цепи.

Для индикации используется звуковой сигнализатор и индикаторная лампа HL2, которая питается через контакты КА2, КМ2 и ограничительный резистор R2.

Силовая часть схемы.

В силовую часть схемы входят два двигателя – М1 (дымосос) и М2 (дутьевой вентилятор).

Двигатель М1 получает трехфазное питание 380В через автоматический выключатель QF1, который защищает его от короткого замыкания и от перегрузки, далее – через контактор КМ1 и тепловое реле КК1. Тепловое реле защищает двигатель от перегрузки и пропадания фазы. Ток уставки теплового реле должен быть выбран таким образом, чтобы он был на 10-20% больше рабочего тока двигателя.

Двигатель дутьевого вентилятора М2 питается через автоматический выключатель QF2, контактор KM2, тепловое реле КК2. Назначение этих элементов – то же, что и для двигателя М1.

История реле времени

Удивительно, уже в 1958 году вышла первая книга по электронным реле времени

Там говорилось, что крайне важно в ходе производственного процесса включать или выключать оборудование согласно графику. Предлагалось первое деление на классы:

  1. Пневматические. Часто снабжены приставкой (рабочая камера, катаракт, пневматический демпфер) с заборным отверстием. Регулировкой сечения изменяется время срабатывания. Контакт обычно удерживается электромагнитом с постоянной силой. Скорость изменения давления в камере становится определяющим фактором.
  2. Тепловые. Пример таких реле общеизвестен, это автоматы защиты электрических цепей. Присутствуют в распределительном щитке. В основе лежит использование биметаллических пластин. По мере протекания тока они нагреваются и изменяют изгиб, что вызывает срабатывание реле. Подобный шаг защищает технику от перегрева. Аналогичным образом указанные реле используются в составе бытовой техники, к примеру, холодильников.
  3. Электромеханические. Используется способность дросселей накапливать энергию. Затем в процессе затухания магнитное поле катушки ослабевает, вызывая срабатывание реле в нужный момент времени.
  4. Электронные. В основе обычно лежит время разряда RC-цепочки. Конденсатор заряжается до нужного номинала, потом потихоньку отдаёт энергию. В конкретный момент времени уровень напряжения сравнивается с пороговым, происходит срабатывание. Такой принцип сегодня используется повсеместно: от блоков питания электронной аппаратуры до микроволновых печей. Произведение R и С называется постоянной времени, и за три интервала происходит полный разряд системы по экспоненте.

В 1958 году не была развита полупроводниковая электроника, в книге по элементной базе выделяют реле времени на:

  • электронных лампах;
  • газоразрядных приборах.

Тематическая литература

Напоминаем, что электронными называются вакуумные лампы, где создаётся луч с катода к аноду за счёт подогрева и эмиссии носителей в свободное пространство: диоды, триоды, пентоды, гептоды и пр. В отличие от них в газоразрядных приборах среда ионизируется, создаются условия для протекания электрического тока. Как догадались читатели, к упомянутому тандему логично добавить полупроводниковые реле времени. Здесь уже RC-цепочка управляет режимом работы ключевого элемента, к примеру, транзистора или тиристора.

Неправы люди, считающие написанное в 1958 году каменным веком. Уже в то время на основе базисных знаний удавалось собрать зарядные устройства для аккумуляторов, сегодня газоразрядные приборы широко используются в составе реле запуска ламп дневного света. Это отличается от описанного авторами книг прошлого века, где за счёт возрастания напряжения в системе RC в некоторый момент происходит пробой разрядного промежутка, вызывающий переключение контактов. В цифровой технике в качестве анализаторов вполне используются и компараторы. Приведённые знания способствуют лучшему пониманию темы.

Добавим, что сегодня реле времени пополнились программируемыми вариантами. Каждый знает, что Windows через Планировщик заданий напоминает о событиях. Рассмотрите как программное реле времени. Хотя в широком смысле без этого не обходится любая электронная система. Даже потоки в процессоре персонального компьютера обрабатываются в собственном временном интервале. Системные часы обычно называют hardware (железо), а программные в противовес этому – software. Понятно, что последние работают на базе первых.

Единицей счета в последнем случае становятся тактовые импульсы. На указанном принципе активно строятся таймеры в схемотехники любой серии микросхем. Механические таймеры используются в стиральных машинах и микроволновых печах, представляя обычные часы. Благодаря специальным ухищрениям, тикают исключительно при включённом питании. Вариантом указанной разновидности считаются моторные реле, где частота оборотов счётного механизма регулируется при помощи редукторов.

Реле от Panasonic

Особенности работы и устройство реле

В настоящее время на рынке представлен достаточно широкий ассортимент промежуточных реле. Есть возможность подобрать промежуточное реле как по ценовой категории, так и по свойству решаемых задач. Самые распространённые производства фирм:

  • Finder;
  • Phoenix;
  • АВВ;
  • Schneider electric.

Из отечественных укажем реле типа РПЛ, РПУ-2М, РП, РЭП, к примеру. В упрощенном виде промежуточное реле представляет собой электромагнитную катушку с сердечником, подключаемую либо на постоянный либо на переменный ток (это основные виды промежуточных реле), при появлении напряжения на которой, возникает электромагнитная сила притягивающая якорь, который, в свою очередь, замыкает подвижные контакты (обычно закреплённые на нём) с неподвижными, закреплёнными на корпусе. Тем самым замыкая или размыкая группы контактов. А уже эти контакты играют свою роль в цепях управления, то есть включают цепи сигнализации или защиты, размыкают (замыкают) цепь питания катушки магнитного пускателя электродвигателя. Одно промежуточное реле может иметь несколько групп замыкающих контактов и несколько групп размыкающих контактов.

Материал по теме: https://electroinfo.net/radiodetali/chto-takoe-impulsnoe-rele.html

Необходимость в определенных технических характеристиках данного реле возникает из задач, стоящих перед проектировщиком. Основная функция промежуточных реле – размножение контактов в цепях управления. Например, в цепи управления электродвигателем водяного насоса это реле имеет следующие функции – после нажатия кнопки «Пуск», одна пара замыкающих контактов замкнёт цепь сигнализации, показывающей оператору работу насоса, другая пара замкнёт цепь питания катушки магнитного пускателя, контактор пускателя сработает и запустит двигатель насоса. При этом пара размыкающих контактов разомкнёт цепь реверсивной работы электродвигателя, что предостережёт силовую схему от замыкания.

Будет интересно Что такое твердотельное реле?

Кроме этого, промежуточные реле могут применяться в электрических схемах для усиления управляющих сигналов. Так, например, в схеме электрической нагревательной установки вход промежуточного реле подается сигнал с прибора теплового контроля, а уже своими контактами реле коммутирует катушку магнитного пускателя, который управляет подачей напряжения на нагревательные элементы печи. Слабый сигнал с прибора теплового контроля не смог бы включить катушку пускателя. Что бы схема работала сигнал усиливают через промежуточное реле, т.е. реле срабатывает от сравнительно слабого тока, но включает электрические цепи по которым проходит значительно больший ток.

Что такое электромагнитное реле

Это электромеханическое коммутационное устройство, основанное на принципе электромагнитной силы. При подаче электричества, внутри него образуется магнитное поле, благодаря которому, с помощью специального механизма происходит замыкание или размыкание коммутируемой электрической цепи.

Проще говоря, это устройство для управления другой электрической цепью, выполняющее управление через замыкание и размыкание контактов. Бывают реле постоянного и переменного тока, постоянного тока подразделяются на поляризованные и нейтральные, каждое из них предназначено для своих целей. Более подробно обо всем далее.

Конструкция и устройство

Конструкция состоит из трех главных частей, основным элементом которой является электромагнитная медная катушка с закрепленным внутри ферритовым сердечником (соленоидом), выполняющая роль электромагнита, закрепленная на неподвижной площадке – ярмо.

Вторая часть называется якорь, являющая металлической пластиной с контактной площадкой на конце, в разомкнутом положении удерживающейся пружиной. Контактная часть реле является исполнительным изолированным органом, при перемещении которого контакты замыкаются или размыкаются.

Бывают однопарные, двуполярные, многопарные, исходно замкнутые (NC) или разомкнутые (NO).

Три основные элемента:

  1. Первичный или воспринимающий элемент (катушка с сердечником) – воспринимает электричество и преобразует его в магнитное поле.
  2. Промежуточный, подвижный элемент (якорь) – в результате появления магнитного поля возникает ЭДС, изменяющая положение якоря или механического привода механизма, который служит для замыкания контактов.
  3. Исполнительный орган (нормально замкнутый контакт или разомкнутый) – воздействует на другую электрическую схему включая или отключая ее.

Принцип работы

При подаче напряжения на обмотку катушки создается ЭДС, сила магнитного поля притягивает якорь с исходного положения, преодолевая усилие пружины, удерживающей якорь, тем самым замыкая контакт управляющей цепи.

В зависимости от конструкции реле, якорь замыкает или размыкает эклектическую цепь. После прекращения подачи электричества магнитное поле исчезает и якорь возвращается в свое обратное положение обратным сжатием пружины.

Сама катушка соленоид, в зависимости от количества витков проволоки, может срабатывать на разную силу тока, маркировка обычно указана на корпусе.

Примечание. УЗО представляет из себя обычное размыкающееся реле.

Виды реле

Помимо электромагнитных устройств, сегодня существует большое количество видов реле различного назначения и отличного принципа действия, использующихся для управления системами защиты от перепадов напряжения в бесперебойных системах защиты, автоматических приборах, интегральных электросхемах. К таким типам относятся:

  1. Электронные, в качестве ключа используется резистор, не щелкает при переключении
  2. Электротепловые
  3. Герконовые
  4. Времени
  5. Приорита
  6. Твердотельные – отсутствует соленоид, роль якоря выполняет мощный симистор или тиристор
  7. Индукционные
  8. Световые (совместно с датчиком света)

Также их следует различать по виду входящего сигнала, в зависимости от конструкции включение и выключение может происходить под воздействием:

  1. Напряжения
  2. Частоты электрической цепи
  3. Изменения мощности
  4. Света
  5. Температуры
  6. Давления
  7. Звука
  8. Давления газа

Что такое программируемое логическое реле?

Программируемое логическое реле является оборудованием класса микро и нано ПЛК. Оно может использоваться для управления и мониторинга состояния контролируемого оборудования в соответствии с заданным алгоритмом функционирования. Логическое реле может быть предварительно запрограммировано на выполнение определенных задач управления: обработка сигналов аналоговых и дискретных датчиков, проведение арифметических и логических операций с данными, отсчет времени, обмен данными по промышленной сети, управление выходными каналами и т. д.

Забудьте про отдельные компоненты системы управления, такие как реле времени, счетчики, промежуточные реле, индикаторы, и т. д., или про дорогостоящие программируемые логические контроллеры. Программируемые логические реле могут решить Ваши задачи по управлению малыми системами автоматизации.

Монтаж и точки размещения

Реле-указатели устанавливаются как индикатор сработки в схемах релейной защиты и автоматики.

Реле подключаются как по параллельной схеме, так и последовательно.

При вставке обмотки последовательно устройства подключаются к цепи обмоток иных реле и приборов (к примеру, катушечных выключателей) и при сработке от проходящего в цепи тока, фиксируют момент замыкания.

При втором способе обмотки реле подключаются параллельно обмоткам иных приборов и реле. После подачи на обмотки напряжения устройство фиксирует момент его появления в цепи.

Монтаж блинкера может осуществляться:

  • с лицевой стороны на релейную панель;
  • внутри комплекта защитного оборудования.

Реле в обязательном порядке должно быть промаркировано в соответствии с принятыми обозначениями в схеме. При этом должно быть указано действие на сработку подлежащей контролю схемы.

Принцип работы


Схема управления асинхронным двигателем с применением промежуточного реле

Основа функционирования – слаженное взаимодействие магнитного потока катушки и подвижного якоря, который этим потоком намагничивается. Якорь удерживается пружиной и не касается сердечника, пока на обмотку не будет подано напряжение.

Когда начинает проходить ток, магнитное поле намагничивает сердечник. Он притягивает якорь, форсируя натяжение пружины. Подвижные контакты на якоре перемещаются, замыкаясь или размыкаясь с неподвижными контактами. После отключения напряжения ток исчезает, сердечник размагничивается, возвратная пружина возвращает якорь и контакты в исходное положение.

Применительно к назначению реле контакты могут быть нормально разомкнутые, нормально замкнутые и перекидные. Один прибор может иметь сразу несколько групп контактов. Такая конструкция позволяет одновременно управлять несколькими электрическими цепями.

К контактам предъявляются особые требования. Они должны обладать хорошей электропроводностью, низким переходным сопротивлением, без склонности к привариванию, а также иметь большую износоустойчивость и длительный срок работы.

Изготавливают контакты из сплава твердых и тугоплавких металлов, металлокерамических составов. Чаще их делают из серебра. Материал имеет низкое сопротивление, высокую электропроводность, неплохие технологические свойства, к тому же он сравнительно недорогой.

На схемах катушка реле обозначается в виде прямоугольника с буквой «К» и порядковым номером. Контакты прописываются такой же буквой, но с двумя цифрами. Из них первая означает порядковый номер реле, а вторая – номер контактной группы, к которой оно относится. Цифры прописываются через точку. Контакты соединяются прямой штриховой линией, если они расположены рядом.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий