При замыкании ключа сила тока нарастает мгновенно

Самоиндукция. Индуктивность. Токи замыкания и размыкания.

Индуктивность, либо коэффициент самоиндукции (от лат. indactio — наведение, возбуждение) — является параметром электрической цепи, определяющий ЭДС самоиндукции, которая наводитсяв цепи при изменении протекающего по ней тока либо (и) ее деформации.

Термином «индуктивность» обозначают еще и катушку самоиндукции, определяющую индуктивные свойства цепи.

Самоиндукция — образование ЭДС индукции в проводящем контуре при изменении в нем силы тока. Самоиндукция была открыта в 1832 году американским ученым Дж. Генри. Независимо от него в 1835 году это явление открыл М. Фарадей.

ЭДС индукции образуется при изменении магнитного потока. Если это изменение вызывается собственным током, то говорят об ЭДС самоиндукции:

где L — индуктивность контура, либо его коэффициент самоиндукции.

Индуктивность — является физической величиной, численно равной ЭДС самоиндукции, которая возникает в контуре с изменением силы тока на 1 А за 1 секунду.

Индуктивность, как и электроемкость, зависима от геометрии проводника — его размеров и формы, но не зависима от силы тока в проводнике. Таким образом, индуктивность прямого провода намного меньше индуктивности того же провода, свернутого в спираль.

Расчеты показывают, что индуктивность описанного выше соленоида в воздухе вычисляют по формуле:

где μ— магнитная постоянная, N — количество витков соленоида, l — длина соленоида, S — площадь поперечного сечения.

Также, индуктивность зависит от магнитных свойств среды, в которой находится проводник, а именно от его магнитной проницаемости, определяющаяся при помощи формулы:

где L — индуктивность контура в вакууме, L — индуктивность контура в однородном веществе, которое заполняет магнитное поле.

Единица индуктивности в СИ — генри (Гн): 1 Гн = 1 В · с/А.

Линии магнитного поля и свойства

Полезно вспомнить общие сведения о магнитном поле. Оно образуется вокруг проводника, по которому двигаются электрические заряды или протекает электрический ток. В этом случае образуется сразу два вида поля — электрическое и магнитное поля. Таким образом, вокруг проводника/провода с током будет наблюдаться и электрическое и одновременно магнитное поле, т.к. они оба возникают при условии протекания электрического тока. Появившись, магнитное поле имеет свойство воздействовать на другие движущиеся электрические заряды, а точнее на сторонний электрический ток, например, протекающий в другом проводнике поблизости от первого. Такое воздействие магнитного поля материально и определяется степенью — оно может быть сильнее или слабее. В автомобиле, для примера, такое взаимодействие можно наблюдать на примере проводки, которая способна оказывать ощутимое влияние друг на друга и создавать наводки/помехи, отчётливо слышимые в динамиках.

Магнитное поле с его сферической формой образуется линиями, которые можно представить вокруг объекта под напряжением и даже увидеть при помощи мелкой металлической крошки. Таких магнитных линий вокруг объекта будет большое количество, вместе они образуют целый спектр. Направление магнитных линий определяется магнитной стрелкой. Магнитные линии всегда замкнуты, поэтому у них нет понятия «начало линии» или «конец линии». Эти линии никогда не пересекаются, не завиваются и не взаимодействуют друг с другом. Магнитные линии в совокупности формируют форму магнитного поля и по их «кучности» в какой-то точке пространства можно судить о силе магнитного воздействия в этом месте.
Если линии располагаются параллельно друг относительно друга и в целом упорядоченно, если их плотность более менее равномерна, то такие линии образуют однородное магнитное поле. Наоборот, если линии искривляются в пространстве и разрежены друг относительно друга, то они своей совокупностью образуют неоднородное магнитное поле. Эти два вида магнитного поля отличаются друг от друга во многом:

Магнитная сила воздействия неоднородного поля различна в той или иной точке пространства, тогда как эта сила одинакова по модулю и направлению у однородного поля.

По взаиморасположению линий в пространстве: у однородного поля линии параллельны друг другу и кучность их одинакова; у неоднородного поля линии искривляются и кучность их различна.

Неоднородное поле находится вне магнита или проводника с электрическим током, тогда как однородное поле образуется внутри магнита.

Однородные магнитные поля чаще всего наблюдаются внутри катушки с большим количеством витков (например в катушке динамика) или внутри обычного полосового магнита, тогда как неоднородное магнитное поле чаще всего располагается вне магнита, например вокруг силового кабеля питания.

Описание явления самоиндукции: суть явления, пояснение на примерах

Направление возникающего при самоиндукции тока определяется по правилу Ленца.

Кратко опишем процесс появления самоиндукции в проводнике. Возьмем простой замкнутый контур, состоящий из катушки, двух ламп накаливания и источника тока.

Если подключить схему к источнику, можно наблюдать, как при замыкании цепи лампа за катушкой будет загораться позже другой лампы. При размыкании цепи лампа за катушкой также потухнет позже.

После замыкания ключа по цепи начинает проходить ток, при этом сила тока будет постепенно нарастать в течение некоторого времени. В результате через витки катушки начинает проходить равномерный магнитный поток, также нарастающий со временем.

По закону электромагнитной индукции под действием меняющегося во времени магнитного поля образуется вихревое поле и, следовательно, индукционный ток. По правилу Ленца направление индукционного тока будет противоположным направлению тока источника, именно по этой причине лампа загорается не сразу после замыкания ключа.

Теперь отключим источник тока. Сила тока в цепи начнет убывать, как и магнитный поток, проходящий через обмотку катушки. Индукционный ток при этом будет сонаправлен с током источника. Лампа, находящаяся за катушкой, потухнет спустя некоторое время после размыкания ключа.

При резком размыкании цепи можно столкнуться с таким явлением, как скачок тока. Значение величины ЭДС самоиндукции в этот момент может значительно превышать ЭДС источника энергии.

Резкое возрастание тока в цепи при ее размыкании находит применение в системах зажигания двигателей внутреннего сгорания и сетевых фильтрах (с помощью явления самоиндукции сглаживаются скачки напряжения и заполняются «провалы»).

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.

Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В — магнитное поле, Вб

I — сила тока, А

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность — это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Об индуктивности простыми словами

Индуктивностью является физическая величина, которая была введена с целью оценки способности электрического проводника противодействовать току. Т.е. индуктивность, или как ее еще называют – коэффициент самоиндукции, показывает зависимость Ɛ от свойств проводника и от магнитной проницаемости среды, в которой он находится. Единицей измерения величины является генри (Гн).

Если рассмотреть величину на примере катушки индуктивности, то можно понять, что ее показатели будут изменяться в зависимости от числа витков катушки, а также ее размеров и формы. Чем больше количество витков, тем больше индуктивность. Данная величина также будет увеличена, если внутрь катушки будет помещен сердечник, так как изменится относительная магнитная проницаемость среды, в которой находится проводник. Данную зависимость можно увидеть на схеме.

Если посмотреть на формулу зависимости ЭДС от индуктивности, то можно понять, что чем больше будет величина, тем заметнее будет электродвижущая сила, что говорит о их прямой пропорциональности. Следуя из этого, можно сделать вывод, что индуктивность выступает неким «хранилищем» энергии, которое открывается в момент изменения тока.

Ɛ=- L(dI/dt), где:

  • Ɛ – ЭДС самоиндукции;
  • L-индуктивность;
  • I – сила тока;
  • t – время.

При этом L равно магнитному полю (Ф) деленному на силу тока (I).

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно! Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Магнитный поток

Прежде чем говорить об электромагнитной индукции и самоиндукции, нам нужно определить сущность магнитного потока.

Представьте, что вы взяли в руки обруч и вышли на улицу в ливень. Потоки воды будут проходить через обруч.

Если держать обруч горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Магнитный поток очень похож на поток воды, проходящей через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению:

  • модуля вектора магнитной индукции ​B​,
  • площади поверхности ​S​, которую пронизывает поток,
  • и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности).

Магнитный поток

Ф — магнитный поток

B — магнитная индукция

S — площадь пронизываемой поверхности

n — вектор нормали (перпендикуляр к поверхности)

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно, меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Изменение магнитного действия катушки

Так как катушки с током имеют два полюса, их часто применяют в технике как магниты. Почему же тогда просто не взять обычный магнит?

Дело в том, что магнитное действие катушки можно изменять (усиливать или ослаблять). Сейчас мы рассмотрим, какими способами это можно сделать.

Проведем простой опыт (рисунок 5). Насыпем мелкие железные опилки и включим ток. Катушка начнет притягивать их.

Рисунок 5. Притяжение железных опилок на катушку с током

А теперь, не изменяя силу тока, возьмем катушку с большим числом витков, чем прежняя. Вы увидите, что количество притянутых опилок заметно увеличилось.

Добавим к нашей электрической цепи реостат (рисунок 6). Он позволит изменять силу тока.

С помощью таких изменений силы тока, мы увидим, что при разных ее значениях катушка притягивает разное количество железных предметов.

Рисунок 6. Действие магнитного поля катушки при изменении силы тока

Можно ли усилить магнитное действие катушки с током, не изменяя количество витков и силу тока? Можно! Для этого нужно ввести внутрь катушки железный стержень (рисунок 7). Такие стержни называются сердечниками.

Рисунок 7. Действие магнитного поля катушки при добавлении сердечника

{"questions":,"explanations":,"answer":}}}]}

Понятие «короткое замыкание»

Короткое замыкание – это соединение двух точек электрической цепи с различными потенциалами, что не предусмотрено нормальным режимом работы цепи и приводит к критичному росту силы тока в месте соединения.

Таким образом, КЗ приводит к образованию разрушительных токов, превышающих допустимые величины. Что способствует выходу приборов из строя и повреждениям проводки. Для того, чтобы понять, что может спровоцировать этот процесс, нужно детально разобраться в процессах, происходящих при коротком замыкании.

По закону Ома сила тока (I) обратно пропорциональна сопротивлению (R)

Пример применения закона Ома к лампе накаливания мощностью в 100 Вт, подключенную к электросети в 220В. Здесь можно с помощью закона Ома рассчитать величину тока для нормального режима работы и короткого замыкания. Сопротивление источника и электропроводки проигнорируем.

Электрическая схема нормального режима работы (a) и короткого замыкания (b)

Вот пример нормальной цепи, по которой ток течет от источника к лампе накаливания. На схеме ниже изображен этот процесс.

Пример нормальной цепи, ток течет от источника к лампе

А теперь, представим, что произошла поломка, из-за которой в цепь попал дополнительный проводник.

Дополнительный проводник замыкает цепь

Сопротивление проводников стремится к нулю. Вот почему большая часть электрического тока после замыкания сразу потечет через дополнительный проводник, как бы избегая лампы накаливания с высоким сопротивлением. Результатом будет некорректная работа прибора, потому, что он не получит достаточно тока. И это еще не самый опасный вариант.

Как известно, по закону Ома сила тока обратно пропорциональна сопротивлению. Когда давление в цепи падает в результате короткого замыкания — на несколько порядков возрастет сила тока. По закону Джоуля – Ленца при росте силы тока увеличивается выделение тепла.

При многократном росте силы тока проводники мгновенно нагреваются. А теперь представим, что в сети нет предохранителей либо они не сработали достаточно быстро. В результате проводники плавятся, а изоляция начинает гореть. Зачастую, так возникают пожары в результате короткого замыкания.

Виды коротких замыканий

Схемы кз

Короткие замыкания в быту:

  • однофазные – происходит, когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего. Обозначен, как однофазное с землей К(1)
  • двухфазные – ( К2)происходит, когда одна фаза замыкается на другую, относится к несимметричным процессам. Есть еще 2-х фазное с землей К (1,1)в системах с заземленной нейтралью;
  • трехфазные – происходит, когда замыкаются сразу три фазы. Самый опасный вид КЗ. Это единственный вид короткого замыкания, при котором не происходит перекос фаз, процесс протекает симметрично;

Вот типичная картина последствий короткого замыкания: оплавленная или сгоревшая изоляция, запах гари, следы оплавления или горения внутри электрического прибора.

Последствия короткого замыкания в электрощите многоэтажного дома

В реальных условиях короткое замыкание происходит в таких ситуациях:

  • Повреждение изоляции проводников. Это может произойти из-за изношенности изоляции, а так же механического воздействия на неё. Жилы кабеля замыкаются напрямую или через корпус оборудования.
  • Некорректное подключение электроприборов к сети. Данный случай характеризуется допущением ошибки мастера или владельца квартиры из-за чего и происходит короткое замыкание.
  • Попадание в электрический прибор воды. Конечно же нельзя допускать попадание воды на электроприборы, ведь она является хорошим проводником электричества и замыкает контакты.

В обустройстве быта короткое замыкание происходит во время ремонта стен, если случайно повредить проводку. Также аварии случаются в квартирах и домах со старой проводкой. В результате чрезмерного нагревания она повреждается в следствие воздействия воды или грызунов.

Катушка индуктивности в цепи постоянного тока.

И, в первую очередь, разберемся, что происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? Однозначно нет. Ведь постоянный ток можно “включать/выключать”, и как раз в моменты переключения и происходят все ключевые процессы. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

\varepsilon_s = -\frac{d\Phi}{dt}

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна.

А далее произойдет следующее – поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот, будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, но при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции, в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является как раз индуктивность катушки:

\varepsilon_s = -L\medspace\frac{dI}{dt}

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Важный (!) нюанс заключается в том, что напряжение на катушке при описанных переходных процессах может достигнуть весьма значительных величин. Это, в свою очередь, легко может привести к выходу из строя тех или иных компонентов, входящих в состав цепи. Например, при управлении индуктивной нагрузкой при помощи ключа на транзисторе явление возникновения ЭДС самоиндукции с впечатляющей вероятностью приведет к выходу транзистора из строя. Для защиты от этого параллельно индуктивной нагрузке ставят защитный диод, но сегодня речь не об этом, поэтому для данного аспекта я опубликую отдельный материал с рассмотрением основных нюансов.

Обоснование правила Ленца

Для объяснения правила Ленца достаточно вспомнить закон сохранения энергии.

Возникающий в контуре ток, проходя по сопротивлению контура, совершает работу, которая тратится на нагревание провода катушки. Энергия для этого как раз и возникает при движении магнита. И, поскольку магнит должен при этом совершать положительную механическую работу – магнитное поле катушки должно быть направлено против поля самого магнита, в какую бы сторону он не двигался.

Только в этом случае магнит будет совершать положительную работу, энергия которой будет двигать заряды внутри контура, порождая индукционный ток, а индукционный ток, в свою очередь, будет совершать работу по нагреванию провода катушки (и отклонения стрелки гальванометра).

Рис. 3. Направление индукционного тока.

Электромагнитная индукция.

1831 г. — М. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает так называемый индукционный ток. (Индукция, в данном случае, — появление, возникновение).

Индукционный ток в катушке возникает при

перемещении постоянного магнита относительно катушки;

при перемещении электромагнита относительно катушки;

при перемещении сердечника относительно электромагнита, вставленного в катушку;

при регулировании тока в цепи электромагнита;

при замыкании и размыкании цепи

Появление тока в замкнутом контуре при изменении магнит­ного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникно­вении ЭДС индукции).

Явление возникновения ЭДС в замкнутом проводящем контуре при изменении магнитного поля (потока), пронизывающего контур, назы­вается электромагнитной индукцией.

Или: явление возникновения электрического поля при изменении магнитного поля (потока), называется электромагнитной индукцией.

Закон электромагнитной индукции

При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление): . e не зависит от свойств контура: .

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Основные применения электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамомашины), трансформаторы.

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания. Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.
  2. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  3. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  4. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  5. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗПроцентное соотношение к общему числу (%)
К(З)5,0
K(2)10,0
K(1)65,0
K(1,1) и K(1+1)20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух — это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Почему происходит короткое замыкание

Для того чтобы понять почему происходит короткое замыкание, нужно вспомнить закон Ома для участка цепи – «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке», формула при этом следующая:

I=U/R

 где I – сила тока, U – напряжение на участке цепи, R – сопротивление.

Любой электроприбор в квартире, включающийся в розетку, это активное сопротивление (R – в формуле), напряжение в бытовой электросети вам должно быть известно – 220В-230 В и оно практически не меняется. Соответственно, чем выше сопротивление электроприбора (или материала, проводника и т.д.) включаемого в сеть, тем меньше величина тока, так, как зависимость между этими величинами обратно пропорциональная.

Теперь представьте, что мы включаем в сеть электроприбор практически без сопротивления, допустим его величина R=0.05 Ом, считаем, что тогда будет с силой тока по закону Ома.

I=220В(U)/0,05(Ом)=4400А

В результате получается очень высокий ток, для сравнения стандартная электрическая розетка в нашей квартире, выдерживает лишь ток 10-16А, а у нас по расчетам 4,4 кА.

Современные медные провода, используемые в проводке, имеют настолько хорошие показатели электрической проводимости, что их сопротивление, при относительно небольшой длине, можно принять за ноль. Соответственно, прямое соединение фазного и нулевого провода, можно сравнить, с подключением к сети электроприбора, с очень низким сопротивлением. Чаще всего, в бытовых условиях, мы сталкиваемся именно с таким типом короткого замыкания.

Конечно, это очень грубый пример, в реальных условиях, при расчете силы тока при коротком замыкании, учитывать приходится гораздо больше показателей, таких как: сопротивление всей линии проводов, идущих к вам, соединений, дополнительного оборудования сети и даже дуги образующейся при коротком замыкании, а также некоторых других.Поэтому, чаще всего, сопротивление будет выше тех 0,05 Ом, что мы взяли в расчете, но общий принцип возникновения КЗ и его разрушительных эффектов понятен.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий