Правила расчета электрических цепей переменного тока

Расчет — неразветвленная цепь

Расчет неразветвленной цепи сравнительно прост, если задан магнитный поток Ф и требуется определить н с. F; это так называемая прямая задача расчета магнитной цепи, которая заключается в определении ЯА.  

Участок цепи постоянного тока.| Схемы генератора напряжения ( о и генератора тока ( б.  

Расчет неразветвленной цепи осуществляется с помощью закона Ома.  

Один из графических методов расчета неразветвленной цепи заключается в построении результирующей вольт-амперной характеристики и решении при помощи нее различных задач.  

Целесообразно ли пользоваться комплексными числами для расчета неразветвленных цепей с одним источником питания.  

Векторы напряжений и тока, построенные по аргументам и модулям их комплексных величин.  

Целесообразно ли пользоваться комплексными числами для расчета неразветвленных цепей. Хотя комплексные числа и позволяют упростить методику-расчета электрических цепей, но арифметические действия при их применении усложняются.  

За исходный вектор принят, как обычно при расчете неразветвленных цепей, вектор тока, а затем проведены векторы падения напряжения на каждом участке схемы, причем направления их относительно вектора тока выбраны в соответствии с характером сопротивления участков.  

По лабораторной работе сделать заключение относительно: а) целесообразности расчета неразветвленной цепи по методу круговой диаграммы; б) причин неполного соответствия расчетных и опытных результатов.  

На практике часто встречаются разветвленные симметричные магнитные цепи, расчет которых сводится к расчету неразветвленной цепи.  

Разветвленная несимметричная магнитная цепь.| К расчету разветвленной магнитной цепи графическим методом.  

Расчет разветвленной симметричной цепи из-за равенств потоков симметричных контуров сводится к расчету одного контура, который выполняют в том же порядке, что и расчет неразветвленной цепи.  

Как известно, неразветвленные цепи рассчитываются сравнительно просто и без применения комплексных чисел. Поэтому при расчетах неразветвленных цепей, обычно их не применяют.  

На рис. 14.7, б построена векторная диаграмма, соответствующая этому уравнению. За исходный, как обычно при расчете неразветвленных цепей, принят вектор тока, а затем проведены векторы падения напряжения на каждом участке схемы, причем направления их относительно ветора тока выбраны в соответствии с характером сопротивления участков.  

Магнитная цепь четырех полюсной машины.| Магнитная цепь многополюсной машины. Потоки рассеяния.  

Мощность при переменном токе

Предположим, что имеется потребитель электрической энергии (рис. 1.9.), напряжение и ток которого известны

u= Um sin(ωt+ψu), i= Im sin ωt

Рис. 1.9. Схема и векторная диаграмма потребителя

На рис. 1.9,б

приведена векторная диаграмма потребителя. В зависимости от характера нагрузки, т.е. характера сопротивлений потребителя, угол сдвига фаз между напряжением и током

φ = ψu – ψi

может лежать в пределах от π/2 до –π/2. В рассматриваемом случае φ=ψu так как ψi=0.

При переменном токе различают следующие мощности: мгновенную, активную, реактивную и полную (кажущуюся).

Под мгновенной понимается мощность, равная произведению мгновенных значений напряжения и тока:

P=u·i

С течением времени мгновенная мощность изменяется как по величине, так и по знаку.

При активной нагрузке (рис. 1.10,а, φ=0) в течение всего периода изменения тока мгновенная мощность положительна. В этом случае электрическая энергия забирается из сети и обратно в сеть не возвращается. Она преобразуется в тепло, в механическую энергию и т.д.

При индуктивной нагрузке (рис. 1.10,а, φ=π/2) в одну четверть периода изменения тока мгновенная мощность положительна, в другую – отрицательна. Соответственно, в одну четверть периода электрическая энергия забирается из сети и преобразуется в энергию магнитного поля, в другую – такое же количество энергии преобразуется из энергии магнитного поля, в электрическую энергию и возвращается в сеть.

В случае емкостной нагрузки (рис. 1.10,в, φ= — π/2) в одну четверть периода электрическая энергия забирается из сети и преобразуется в энергию электрического поля, в другую – энергия электрического поля преобразуется в электрическую энергию и возвращается в сеть.

В случае смешанной активно-индуктивной (0<�φ<�π/2) или активно-емкостной нагрузки (0<�φ< — π/2) забираемая из сети электрическая энергия больше энергии, возвращаемой в сеть. В сеть возвращается только та часть энергии, которая была преобразована в энергию магнитного или электрического поля.

Рис. 1.10. Графики тока, напряжения и мощности при различных нагрузках

Под активной понимается мощность, равная среднему значению мгновенной мощности за период

Если разложить ток потребителя на составляющие (рис. 1.9, б), то получим

где — активная составляющая тока

где — реактивная составляющая тока

Активную мощность можно выразить следующим образом

Активная мощность обусловлена совпадающими по фазе напряжением и током. Входящий в выражение мощности cosφ получил название коэффициент мощности. Чем больше cosφ потребителя, тем больше будет при неизменных токе и напряжении активная составляющая тока и активная мощность. Когда φ = π/2 или φ = — π/2 (рис. 1.10,б,в) cosφ и активная мощность равна нулю.

Реактивная мощность (индуктивная или емкостная) выражается следующим образом

Q=U·I·sin φ

Реактивная мощность обусловлена током и напряжением, сдвинутым по фазе на угол φ=±π/2.

Реактивная мощность соответствует энергии, которая в одну четверть периода забирается из сети и преобразуется потребителем в энергию магнитного или электрического поля, а в другую – вновь преобразуется в электрическую энергию и возвращается в сеть.

Полная (кажущаяся) мощность включает в себя активную и реактивную мощности и равна

S=U·I

Между активной, реактивной и полной мощностями существуют соотношения

Все перечисленные мощности имеют одну и ту же размерность:

вольт х ампер (В·А). Однако, для того, чтобы различать эти мощности, единицы их измерения называют по-разному:

ед. P = 1 Вт – ватт;

ед. Q = 1 ВАр – вольтампер реактивный;

ед. S = 1 ВА – вольтампер.

Электрические цепи и их разновидности

Электрическая цепь представляет собой комплекс устройств и отдельных объектов, которые связываются заданным способом. Они обеспечивают путь для прохождения электротока. Для характеристики отношения заряда, протекающего в рамках каждого отдельного проводника за некоторое время, к продолжительности этого времени используется определенная физическая величина. И это сила тока в электрической цепи.

В состав такой цепи включены источник энергии, энергопотребители, т.е. нагрузка и провода. Они делятся на две разновидности:

  • Неразветвленные – ток, движущийся от генератора к энергопотребителю, не меняется по своему значению. Например, это освещение, включающее в свой состав только одну лампочку.
  • Разветвленные – цепи, имеющие некоторые ответвления. Ток, двигаясь от источника, разделяется и идет на нагрузку по нескольким ветвям. При этом его значение меняется.

Примером может служить освещение, включающее многорожковую люстру.

Ветвь являет собой один или несколько компонентов, соединенных последовательно. Движение тока идет от узла с высоким напряжением к узлу с минимальным его значением. При этом входящий ток на узле совпадает с выходящим.

Цепи могут быть нелинейными и линейными. Если в первых существует один и более элементов, где есть зависимость значений от тока и напряжения, то у вторых характеристики элементов не имеют такой зависимости. Кроме того, в цепях, характеризующихся постоянным током, его направление не меняется, а при условии переменного тока происходит его изменение с учетом параметра времени .

Основные компоненты

Инвентор электрического тока

Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.

  • Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
  • Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
  • Потребители активной энергии преобразовывают электрический ток в освещение или тепло. Это электротермические устройства, лампы, резисторы, электродвигатели.
  • К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.

Основой электрической сети является схема. Это графический рисунок, который содержит условные изображения и обозначения элементов и их соединение. Они выполняются согласно ГОСТу 2.721-74 – 2.758-81

Схема простейшей линии включает в себя гальванический элемент. С помощью проводов к нему через выключатель подсоединена лампа накаливания. Для измерения силы тока и напряжения в нее включен вольтметр и амперметр.

Как производится расчет электрических цепей

Путь вычисления делится на множество способов, которые используются на практике:

  • метод, основанный на законе Ома и правилах Кирхгофа;
  • способ определения контурных токов;
  • прием эквивалентных преобразований;
  • методика измерений сопротивлений защитных проводников;
  • расчет узловых потенциалов;
  • метод идентичного генератора, и другие.

По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.

На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:

R = R1 + R’ + R”, где

R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.

R” – общее сопротивление резисторов R5 и R6.

Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.

1/R’ = 1/R2 + 1/R3 + 1/R4

1/R” = 1/R5 + 1/R6

Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:

I = U/R, тогда I = I1

Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:

U1 = IR1; U2 = IR’; U3 = IR”;

Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.

Расчет цепи

Основная цель расчета — определение на отдельных участках цепи:

  • напряжения;
  • силы тока;
  • мощности и угла сдвига фаз.

В простых случаях, когда в цепи присутствует только резистивная нагрузка, неудобный для расчетов переменный ток заменяют так называемым действующим значением. Это постоянный ток, эквивалентный данному переменному, то есть выделяющий то же количество тепла.

Для синусоидальных переменных тока и напряжения, справедливы выражения:

  • I = Imax / корень из 2 = Imax / 1.41;
  • U = Umax / корень из 2 = Umax / 1.41;
  • где I и U — действующие значения, соответственно, тока и напряжения;
  • Imax и Umax — амплитуды тока и напряжения, то есть их максимальные отклонения от нуля.

Стандартное напряжение в бытовой электросети 210-230 В — это действующее значение. Реальное значение колеблется в пределах от -296 до 296 В (210 В) или от -324 до 324 В (230 В).

Аналогично, когда говорят, что прибор мощностью 2,2 кВт потребляет ток в 10 А, подразумевают действующее значение, тогда как реальная его величина колеблется в пределах от -14 до 14 А.

График синусоидального переменного тока

Задача усложняется при наличии в комплексе таких элементов:

  • катушки индуктивности: возникают ЭДС само- и взаимоиндукции;
  • конденсаторы: появляются токи – зарядные и разрядные.

Под влиянием этих процессов напряжение и ток сдвигаются по фазе друг относительно друга, разница составляет 90 градусов, при этом в системах:

  • с индуктивностью – U опережает I;
  • с конденсаторами – напряжение отстает от тока.

В подобных цепях действуют те же законы, что и в цепях постоянного тока, но заменить переменные напряжения и ток на действующие значения нельзя, существует два пути:

  1. оперирование мгновенными значениями переменных величин;
  2. запись их в векторной (комплексной) форме.

В первом варианте приходится иметь дело с тригонометрическими уравнениями, поскольку мгновенные значения тока и других параметров выражаются через функцию «sin(ωt)», где ω — угловая частота вращения ротора генератора, t — время. Решение таких уравнений отличается сложностью, потому этот путь непопулярен. Векторными величинами оперировать проще.

Этот метод называют символическим. При составлении уравнений, векторы записывают в виде комплексных чисел, задаваясь условным положительным направлением для тока, напряжения и ЭДС.

В алгебраической форме комплексное число выглядит так A = a + jb, где:

  • А — действительная (вещественная) часть;
  • j — мнимая единица;
  • b — мнимая часть.

Букву, выражающую электрический параметр, в комплексной записи подчеркивают. Для проверки правильности расчета цепи составляют баланс активной и реактивной мощностей.

Вычисление по символическому методу подобно расчету цепи постоянного тока, только все реальные электрические параметры выражаются комплексными числами. Результат расчета — токи и напряжения на участках цепи, также записываются в комплексной форме.

Определение силы тока приборами

Измерение рассматриваемых характеристик цепи может быть осуществлено при помощи разнообразных приборов, которые активно применяются в практической деятельности:

Магнитоэлектрический способ замеров – применяется при расчете показателя для постоянного тока. Этот метод обеспечивает высокую точность измерений за счет высокого уровня чувствительности. При этом расход электроэнергии будет незначительным.

Электромагнитный – позволяет определить силу как переменного, так и постоянного тока посредством трансформационных преобразований из поля электромагнитного типа в сигнал, который излучает магнитомодульный датчик.

Косвенный подход к замерам предполагает необходимость использования вольтметра. Этот прибор идентифицирует параметры напряжения при конкретных значениях сопротивления.

В наибольшей степени применение в практической деятельности нашло такое устройство, как амперметр. В процессе применения необходимо подключить прибор в разрыв электроцепи в месте, где необходимо произвести замеры электрозаряда, проходящего за указанный период времени по сечению провода. Если возникает задача замерить параметр силы электричества малой величины, то необходимо задействовать миллиамперметр, микроамперметр или гальванометр. Эти аппараты подключаются к цепи в том месте, где возникает необходимость вычисления силы тока. Причем подключать можно и последовательно, и параллельно.

Измерение силы тока позволяет произвести точное вычисление параметра мощности. А этот показатель, в свою очередь, имеет значение, когда вы хотите гарантировать работоспособность проводки и обезопасить свою бытовую технику.

Воспользуйтесь другими онлайн калькуляторами:

  • Расчет веса электрического кабеля
  • Перевод Ватт в Амперы
  • Расчет катушки индуктивности
  • Расчет потерь напряжения
  • Онлайн расчет сечения кабеля

Основные методы расчета электрических цепей постоянного тока

Электрические цепи постоянного тока можно рассчитать с применением одного из следующих способов:

  • с использованием законов Ома и Кирхгофа;
  • методом контурных токов;
  • с использованием эквивалентных преобразований;
  • методом наложения.

Рассмотрим каждый из способов.

Законы Ома и Кирхгофа находят широкое применение в физике, в частности при расчете электрических цепей. При этом в цепи выделяют отдельные контуры и выбирают направление их обхода. Далее записывают уравнения законов Кирхгофа.

По первому закону сумма токов, входящих и выходящих из узла, равна нулю.

Всего составляют (n-1) уравнений, где n — количество узлов в цепи.

Знаки токов выбирают из следующего условия: токи, входящие в узел, имеют знак «+», токи, выходящие из узла, — знак «–».

Затем записывают уравнения по второму закону Кирхгофа. Напряжения выражают через силу тока и сопротивление согласно закону Ома для участка цепи. При этом ЭДС и ток считают положительными, если их направления совпадают с направлением обхода контура.

После составления системы уравнений выполняют подсчет токов, протекающих в цепи. Для самостоятельной проверки выполненной работы составляют баланс мощностей цепи.

Метод контурных токов может значительно упростить расчет токов в цепи. В этом случае принимают, что в каждом контуре протекает свой ток. На основании этого предположения записывают токи в ветвях через контурные токи, как это показано на следующем примере. Токи в смежных ветвях находят как сумму соседних контурных токов с учетом их направлений.

Затем записывают уравнения по второму закону Кирхгофа. В уравнения токи в ветвях записывают в виде суммы контурных токов. Таким образом, неизвестными параметрами становятся контурные токи, вычислив которые, определяют ток в каждой ветви цепи.

Эквивалентное преобразование используют в цепях с одним источником и несколькими приемниками. Преобразование заключается в том, что параллельно или последовательно соединенные резисторы можно заменить одним. Происходит «свертывание» цепи к более простой.

При замене сопротивлений на эквивалентное необходимо учитывать, что сила тока и напряжение должны оставаться неизменными, то есть I=Iэкв и U=Uэкв. Для этого используют следующие свойства последовательного соединения:

и параллельного соединения:

Метод наложения применяют только для линейных электрических цепей. При использовании этого метода цепь делится на несколько составных схем, в каждой из которых оставляют только один источник энергии.

Количество таких схем определяют как сумму числа источников тока и напряжения. Источники напряжения заменяют короткозамкнутой перемычкой, а источник тока — разрывом цепи.

Токи в составных цепях вычисляют любым возможным способом, затем находят токи в ветвях исходной цепи как сумму найденных составных токов. При суммировании составных токов необходимо учитывать их знаки.

Цепи RLC

Цепи, которые содержат R, L и C, могут иметь разные варианты соединений. Цепи могут быть последовательными, разветвленными, и имеющие последовательные соединения в ветвях. Рассмотрим простые варианты. RLC последовательно.

В некоторых случаях цепи RL (моторы, трансформаторы и т. п.) имеют слишком маленький Cos φ. То есть в них слишком сильно влияние индуктивной составляющей. В такие цепи специально включают компенсационные конденсаторы, которые уменьшают фазовый сдвиг, Это разгружает источники электроэнергии от избыточной реактивной нагрузки, и обеспечивает значительную экономию электроэнергии.

Метод узловых (потенциалов) напряжений

ТОЭ › Методы расчета цепей постоянного тока

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие. В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов)

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4 φ4 = 0.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

Аналогично

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Электрические цепи переменного тока

Переменный ток, в отличие от постоянного, с определенной периодичностью меняет направление и величину. Генерируется он путем вращения проволочного витка в магнитном поле или, наоборот, магнитного поля при неподвижном витке.

Наводимая ЭДС зависит от синуса угла, на который повернут ротор генератора. Потому все переменные электрические величины являются синусоидальными. Существует два вида цепей переменного тока – одно- и трехфазные.

Параметры переменного тока:

  1. амплитуда: максимальное отклонение от нуля. Оно достигается при положении плоскости витка перпендикулярно силовым линиям поля. В момент времени, когда плоскость витка и силовые линии становятся параллельными, ЭДС падает до нуля, затем меняет знак;
  2. частота: число полных циклов за секунду (в основном используется ток частотой в 50 Гц);
  3. мгновенное значение: величина параметра в данный момент времени;
  4. действующее значение (см. ниже).

Недостаток переменного тока: при малых частотах опаснее для живых организмов, чем постоянный.

Однофазные

В однофазной цепи генератор имеет одну обмотка для индукции ЭДС и к ней подключен один проводник. Источников тока может быть и несколько, но они должны работать в одной фазе и на одной частоте.

Трехфазные

В статоре генератора 3-фазной цепи имеется 3 обмотки для индукции, сдвинутые друг относительно друга на угол в 120 n градусов, где n — число пар полюсов. Соответственно, наводимые в каждой обмотке ЭДС отличаются по фазе на угол в 120 градусов (электрический угол).

При отдельном подключении каждой обмотки для передачи энергии требуется 6 проводов. Систему называют несвязной и сегодня она не применяется ввиду повышенных затрат материалов.

Экономически более целесообразна связанная система, когда обмотки соединены одним из двух способов:

  1. «звездой». Обмотки одной стороной замкнуты в одной точке. Это дает возможность применить один нулевой провод, общий для всех фаз, то есть система получается 4-проводной. А если токи в фазах равны (симметричная нагрузка), необходимость в использовании нулевого провода отпадает: токи гасят друг друга (их векторная сумма равна нулю). В этом случае применяется 3-проводная система;
  2. «треугольником». Обмотки образуют замкнутый контур: каждая своим концом подключается к началу следующей. В каждой фазе формируется линейное напряжение, равное фазному. Но величина фазного тока окажется в 1,72 раза ниже линейного.

Трехфазная система электроснабжения превосходит однофазную в следующем:

  1. требуется меньше материалов для изготовления силовых кабелей;
  2. для одной установки доступно два напряжения: фазное (фаза – нейтраль) и линейное (фаза – фаза). То есть при изменении схемы подключения нагрузки со «звезды» на «треугольник», получают два уровня мощности;
  3. есть возможность получать вращающееся магнитное поле, чем удешевляется конструкция электродвигателей и других устройств. Для этого в статоре двигателя размещают равноудаленно три обмотки, подключенные к разным фазам;
  4. система уравновешена. К примеру, 3-фазные люминесцентные светильники почти не мерцают, в отличие от 1-фазных. В таком светильнике имеется три лампы или группы ламп, подключенных к разным фазам. Когда светимость одной лампы уменьшается, соседняя разгорается. Происходит взаимокомпенсация.

Благодаря уравновешенности одинаково распределяется нагрузка на генератор и тот служит дольше.

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
Лампочка

Подойдёт накаливания
Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
Ключ
Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
Провода

В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет

Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра

К примеру, действующее значение ЭДС.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий