Низкий коэффициент мощности и его последствия
Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?
во-первых, это повышенное потребление электроэнергии
Часть энергии будет просто “болтаться” в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.
Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.
Зато по проводам питания будет проходить вся нагрузка, разогревая их бесполезной работой.
величина тока в проводке увеличится
Вот известное наглядное видео, демонстрирующее последствия этого для проводки.
для эл.станций и трансформаторов оно вредно перегрузкой
Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.
В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.
Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.
Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.
Ноль означает, что полезная работа не совершается. Единица – вся энергия идет на совершение полезной работы.
Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:
Косинус фи или “темная сторона” эффективности индукционных нагревателей
Эффективность индукционных электрических котлов в системах теплоснабжения непосредственно связана с понятием «косинуса фи». Для специалистов-энергетиков вопрос «что такое «косинус фи», конечно, вопросом не является, однако для всех остальных этот термин может показаться непонятным
В этой статье мы разберемся с этим понятием и поймем, почему «косинус фи» индуктивно-кондуктивных нагревателей «Терманик», равный 0,985, – это так важно с точки зрения оценки эффективности индукционных нагревателей. Причем, как обычно, не будем сыпать сложными определениями и формулами, ведь мы хотим разобраться и понять, а не написать курсовую работу!
cosφ — именно так обозначается это понятие – это отношение активной мощности к полной. cosφ не измеряется ни в Ваттах, ни в Герцах – ни в чем, потому как это коэффициент и является относительной величиной. Он может варьироваться от 0 до 1. И чем ближе к 1, тем лучше. Также этот коэффициент называется «коэффициентом мощности».
Откуда же он берется? Введем некоторые понятия. Любой прибор, имеющий в своем составе электрические элементы, создает электромагнитное поле, а для трансформатора или индукционного нагревателя, электромагнитное поле – это то, ради чего и создается прибор, так как если он не будет генерировать магнитное поле, он не будет работать, то есть станет бесполезной железякой. Возьмем, к примеру, индукционный электронагреватель «Терманик 100» с заявленной заводом-изготовителем мощностью 100 кВт. С точки зрения владельца «Терманика» — это нагреватель, который потребляет электроэнергию и производит тепло. А с точки зрения поставщика электроэнергии, «Терманик» — это нагрузка, то есть потребитель мощностью… 102 кВА. Что за разница в показаниях? И почему одна мощность измеряется в кВт, а другая – в кВА?
Дело в том, что в сети переменного тока различают активную, реактивную и полную мощность. Собственно говоря, полная мощность и состоит из двух составляющих – активной и реактивной мощности. Активная мощность – это та самая мощность, потребляя которую, электронагреватель и вырабатывает тепловую энергию, она-то и измеряется в кВт (и для нагревателя «Терманик 100» составляет 100 кВт). Но какая-то часть мощности тратится не на нагрев, а на поддержание работы самого нагревателя. В случае с индукционным нагревателем – на создание и поддержание магнитного поля, без которого он бы не работал вообще. Эта мощность и является «реактивной мощностью». Несмотря на свое название, к работе реактивного двигателя она не имеет никакого отношения. В данном случае, «реактивный» — значит направленный в противоположном от движения электротока направлении. Реактивная мощность измеряется в вольт-амперах реактивных (Вар, кВАр), а общая мощность измеряется в кВА.
Коэффициент мощности, он же cosφ — это отношение активной мощности к полной. Физически он показывает, какая часть полной мощности идет на совершение полезной работы (в нашем случае – на преобразование в тепло), а какая – на поддержание работоспособности самого устройства. Если наш нагреватель обладает коэффициентом мощности 0,985, значит 98,5% мощности идет на нагрев и только 1,5% преобразуется в реактивную мощность.
Так и получается, что 102 кВА х 0,985 = 100 кВт
Реактивная мощность сама по себе не совершает полезную работу, хотя, как ни парадоксально, является необходимой составляющей для ее осуществления. Реактивная мощность возвращается обратно в электросеть.
Реактивная мощность и энергия снижают показатели эффективности энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива, растут потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях. Строго говоря, большая реактивная мощность – это скорее головная боль поставщика электроэнергии
Однако и для потребителя это важно, поскольку, чем меньше реактивной мощности выдает его оборудование, тем меньше нагрузка на понижающие силовые трансформаторы, меньше нагрузка на провода и возможность использования кабелей меньшего сечения, избежание штрафов за низкий cosφ (есть и такие!), ну и, в целом, снижение потребления электроэнергии
Значение коэффициента мощности выше 0,9 говорит о высокой эффективность индукционных нагревателей
Ни для кого не секрет, что индукционный нагреватель небольшой мощности можно собрать и «в гараже», возможно, его даже можно будет эксплуатировать, однако если говорить о промышленном предприятии, где совокупное значение вырабатываемой всеми приборами и устройствами реактивной мощности, чрезвычайно важно, там могут применяться только высокопроизводительные машины с максимальным коэффициентом мощности
Что такое коэффициент мощности
А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.
А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.
Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.
По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.
В качестве примера можно взять импульсные блоки питания.
Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.
Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.
На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.
Как измеряют cosφ на практике
Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.
Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.
- Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
- Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.
Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.
Как перевести амперы в ватты и обратно?
Как перевести амперы в киловаты?
Как рассчитать падение напряжения по длине кабеля в электрических сетях
Что такое коэффициент трансформации трансформатора?
Что такое диэлектрическая проницаемость
Сколько электроэнергии потребляют бытовые приборы, способы вычисления, таблица
Расчет мощности УКРМ
Коэффициент реактивной мощности на стороне ВН определяется следующим образом:
(2) |
Потребляемая активная мощность на шинах ВН складывается из активной мощности нагрузки и активных потерь мощности в трансформаторе:
(3) |
Потребляемая реактивная мощность на шинах ВН складывается из реактивной мощности нагрузки и реактивных потерь мощности в трансформаторе за вычетом расчетной мощности компенсирующего устройства:
(4) |
Выразим реактивную мощность нагрузки через известные величины (см. рис.1):
(5) |
(6) |
Потери активной и реактивной мощности в трансформаторе зависят от передаваемой мощности и рассчитываются по формулам (7) и (8):
(7) |
(8) |
где ΔPxx – потери активной мощности холостого хода трансформатора (паспортные данные), кВт;
ΔQμ – потери реактивной мощности холостого хода трансформатора, квар;
ΔPнагр. (ΔQнагр.) – нагрузочные активные (реактивные) потери в трансформаторе, кВт (квар);
ΔPк – потери активной мощности короткого замыкания трансформатора (паспортные данные), кВт;
SНН – потребляемая полная мощность на шинах НН, кВ*А:
(9) |
SТ – номинальная полная мощность трансформатора, кВ*А;
Iхх – ток холостого хода трансформатора, %;
Uк – напряжение короткого замыкания трансформатора, %.
Следует заметить, что расчеты по формулам (7) – (9) носят приближённый характер, так как на этом этапе нельзя определить значение QНН из-за того, что неизвестно расчетное значение реактивной мощности компенсирующего устройства QКУ.р, см. формулу (4). В этом случае можно:
- принять QКУ.р = 0 и выполнить расчет без компенсирующего устройства;
- принять QКУ.р = Qр.нагр. и выполнить расчет при полной компенсации реактивной мощности на шинах НН (этот вариант рекомендуется использовать из-за меньшей расчетной погрешности первой итерации расчёта потерь в трансформаторе).
Подставляя в (2) выражения (3), (4) и (5), получим выражение для расчета коэффициента реактивной мощности на шинах ВН, где вторым неизвестным является значение реактивной мощности компенсирующего устройства QКУ:
(10) |
Так как максимальное значение коэффициента реактивной мощности на шинах ВН нормировано, значит должно выполняться следующее условие:
(11) |
Выполнение условия (11) необходимо по нормативным требованиям, но недостаточно, так как коэффициент реактивной мощности может быть отрицательной величиной. Действительно, если в (10) QКУ.р будет достаточно большой величиной, чтобы числитель дроби стал отрицательным, то получим перекомпенсацию реактивной мощности QВН< 0 (генерацию в сеть высокого напряжения) и tgϕВН < 0. Перекомпенсация реактивной мощности также нежелательна, как и недокомпенсация, так как в сети опять появляются дополнительные потери мощности и энергии в электрической сети и возрастают капитальные затраты на её строительство. Таким образом, наряду с максимальным значением коэффициента реактивной мощности должно задаваться его минимальное значение tgϕmin. В отсутствие нормативных требований к величине tgϕmin его значение может быть определено из следующих соображений:
- если генерация реактивной мощности в сеть ВН недопустима, то tgϕmin = 0;
- если нельзя превышать заданный уровень потерь мощности и энергии в сети, а также обеспечить работу оборудования в номинальных режимах (перекомпенсация допустима), то tgϕmin = -tgϕmax.
Необходимое и достаточное условие для выбора УКРМ выглядит следующим образом:
(12) |
Подставив (10) в (12), получим:
(13) |
Рассмотрим отдельно левую и правую части выражения (13).
Очевидно, что tgϕmax будет при наименьшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.min. Заменим в (13) QКУ.р на QКУ.р.min и подставим знак равенства между правой и средней частью выражения:
(14) |
Выразив в (14) QКУ.р.min и выполнив необходимые преобразования (15), получим выражение для расчета минимально допустимой мощности компенсирующего устройства (16):
(15) |
(16) |
Аналогично для левой части (13), tgϕmin будет при наибольшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.max. Соответственно, выражение для расчета максимально допустимой мощности КУ:
(17) |
Номинальная мощность установки компенсации реактивной мощности выбирается из условия:
(18) |
где QКУ.р.max и QКУ.р.min – граничные значения реактивной мощности УКРМ, определенные для расчётных значений Pр.нагр. и cosϕр.нагр..
Подставив (16) и (17) в (18), получаем окончательные выражения для выбора номинальной реактивной мощности УКРМ:
(19) |
(20) |
Выбрав УКРМ, проводим вторую итерацию расчетов по формулам (7) – (9), подставляя в формулы вместо QКУ.р значение QКУ.ном, и уточняем величину QКУ.ном по выражениям (19) и (20).
Способы улучшения коэффициента мощности
Повышение коэффициента мощности на предприятиях возможно двумя путями: естественным и искусственным.
Естественный путь повышения cos ф предусматривает: упорядочение технологических процессов таким образом, чтобы приводные двигатели были постоянно загружены и не работали продолжительное время на холостом ходу; замену незагруженных двигателей менее мощными; замену асинхронных двигателей с фазным ротором на асинхронные двигатели с короткозамкнутым ротором; замену тихоходных двигателей на быстроходные; применение синхронных двигателей вместо асинхронных.
Для осуществления вышеперечисленных мероприятий не требуются капитальные затраты, поэтому естественный путь улучшения коэффициента мощности является наиболее доступным и выгодным.
Для искусственного повышения коэффициента мощности применяют компенсирующие устройства на напряжение до 1000 В и выше.
На шахтах чаще всего применяются централизованная компенсация путем установки конденсаторов на шинах 6 кВ. При этом повышается общий коэффициент мощности, ио от передачи реактивной мощности разгружаютея только трансформаторы районных подстанций и линии, питающие ГПП.
Для разгрузки сетей участков от реактивной мощности необходимо конденсаторы устанавливать непосредственно на участках. В угольных шахтах такие установки конденсаторов не применяют из-за отсутствия их в нужном исполнении.
В связи с тем, что для установки конденсаторов необходимы определенные капитальные затраты, вопрос о применении искусственного способа повышения cos ф решается технико-экономичсскими расчетами при проектировании предприятия, а в период эксплуатации — технико-экономическими расчетами, которые производит электроснабжающая организация.
Средневзвешенный cos фср нельзя использовать для оценки состояния сети предприятия по реактивной мощности, особенно в часы максимальных нагрузок электроснабжающей системы. Зачастую при высоком средневзвешенном cos фср предприятие в часы максимума энергосистемы потребляет значительную часть реактивной мощности в системе.
На основании технико-экономических расчетов предприятиям устанавливается экономически целесообразная величина реактивной мощности Q3l разрешенной к использованию с энергосистемы в часы максимальной нагрузки ее. Действительно потребляемую предприятием реактивную мощность QM определяют замерами в часы максимума нагрузок энергосистемы.
Сравнивая величину разрешенной к использованию реактивной мощности Q3 с величиной действительно потребляемой из сети реактивной мощности QM, можно определить эффективность мероприятий по компенсации реактивной мощности.
Так, например, при мощности
U — 220 В
Но уже при cos <��р = 0,6
Таким образом, при одних и тех же значениях мощности и напряжения уменьшение cos <��р сопровождается увеличением тока в проводах и, следовательно, возрастанием потерь на нагрев. Во избежание опасного нагрева при увеличении тока площадь поперечного сечения провода необходимо увеличить. Кроме того, увеличение тока в проводах при неизменной их площади поперечного сечения приводит к увеличению падения напряжения в них.
В сельскохозяйственном производстве встречаются следующие причины низких значений коэффициента мощности.
Недогрузка электродвигателей переменного тока. При недогрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает. Так, например, асинхронный электродвигатель мощностью 4 кВт при частоте вращения 980 мин-1 при полной нагрузке имеет cos ф = 0,8, а при нагрузке 50% — cos ф = 0,6 и т. д.
Коррекция коэффициента мощности
Коррекция коэффициента мощности (компенсация реактивной мощности) – это название технологии, которая используется с начала 20 века для восстановления значения коэффициента мощности до значения, как можно более близкого к единице. Это обычно достигается подключением к сети конденсаторов, которые компенсируют потребление реактивной мощности индуктивными нагрузками и таким образом снижают нагрузку на источник. При этом не должно быть никакого влияния на работу оборудования. Обычно для уменьшения потерь в системе распределения и снижения расходов на электроэнергию производится компенсация реактивной мощности с помощью конденсаторов, которые подключаются к сети для максимально возможной компенсации тока намагничивания. Через конденсаторы, содержащиеся в большинстве устройств компенсации реактивной мощности, проходит ток, который опережает по фазе напряжение, обеспечивая таким образом опережающий коэффициент мощности. Если конденсаторы подключаются к цепи, которая работает при отстающем коэффициенте мощности, это отставание соответственно уменьшается.
Обычно значение скорректированного коэффициента мощности находится в пределах от 0,92 до 0,95. Некоторые распределительные энергокомпании поощряют работу при коэффициенте мощности, к примеру, больше 0,9, а некоторые штрафуют потребителей за низкий коэффициент мощности. Имеется много методов достижения данной цели, суть которой сводится к тому, что для снижения потерь энергии в системе распределения потребителю рекомендуется применять коррекцию коэффициента мощности. В настоящее время большинство сетевых компаний штрафуют потребителей при коэффициенте мощности ниже 0,95 или 0,9.
Анализ полученных результатов обследования
На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности
Но перед её покупкой было решено обратить внимание на гармоники
В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.
Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.
Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).
Необходимость повышения коэффициента мощности
При должным образом выполненной коррекции коэффициента мощности достигаются следующие преимущества:
- экологические: снижение потребления электроэнергии за счёт повышения эффективности её использования. Снижение потребления приводит к уменьшению выбросов парниковых газов и замедлению истощения ресурсов ископаемого топлива для электростанций;
- уменьшение расходов на электроэнергию;
- возможность получения большей мощности от имеющегося источника;
- снижение тепловых потерь в трансформаторах и оборудовании распределения;
- уменьшение падения напряжения в длинных кабелях;
- увеличение срока службы оборудования в связи со снижением электрической нагрузки на кабели и другие электрические компоненты.
Рекомендации по выбору компенсирующих устройств реактивной мощности
Мощность компенсирующего устройства выбирается исходя из мощности нагрузки, а также существующего и желаемого коэффициентов мощности.
Для расчета параметров можно воспользоваться следующей методикой.
Определить из таблицы коэффициент К, который считается по формулам на основе углов фаз некомпенсированного и компенсированного питания:
Таблица для определения коэффициента выбора конденсаторов
Например, текущий cosϕ = 0,7, желаемый cosϕ = 0,96. Тогда К = 0,73.
Как я уже говорил, не рекомендуется компенсировать реактивную мощность полностью (до cosϕ = 1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов)
Далее, необходимую емкостную мощность конденсаторных батарей определяют по формуле: Qc = КP (ВАр).
Например, в нашем случае, при мощности 1000 кВт полная мощность конденсаторной батареи будет 730 кВАр.
При выборе конденсаторной батареи она должна обладать следующими параметрами (не хуже):
- Перегрузка по току – 1,3 I ном
- Перегрузка по напряжению – 1,1 U ном
- Мощность минимальной ступени – не более 15 кВАр
- Допустимое содержание гармоник напряжения – не менее 20 %
- Частота расстройки фильтра – не более 190 Гц (срез начиная с 4-й гармоники)
- Регулятор реактивной мощности – электронный, с измерением и выдачей всех необходимых параметров
- Коммутация – контакторы, поскольку изменение активной мощности не быстрое
(рекомендации даны поставщиком КУ)
На этом всё. Если есть желание что-то добавить, или поправить меня – как всегда, рад вашим комментариям!
Подробнее о коэффициенте мощности
Представим себе однофазный асинхронный двигатель. Если он является чисто резистивной нагрузкой для источника, ток будет в фазе с напряжением. Но так не бывает. Двигатель имеет магнитную систему, и ток намагничивания находится не в фазе с напряжением. Ток намагничивания – это ток, который определяет магнитный поток в сердечнике. Будучи не в фазе с напряжением, он заставляет поворачиваться вал двигателя. Ток намагничивания не зависит от нагрузки двигателя, его величина обычно находится в пределах от 20 до 60% от номинального тока двигателя при полной нагрузке, и он не вносит вклад в выполнение двигателем полезной работы.
Зачем повышать коэффициент мощности? — Руководство по устройству электроустановок
Снижение стоимости электроэнергии
Повышение коэффициента мощности обеспечивает несколько технических и экономических преимуществ, особенно снижение счетов за электроэнергию. |
Оптимальное регулирование потребления реактивной мощности дает следующие экономические преимущества.
Приводимая информация основана на фактической структуре тарифных ставок, общепринятой в Европе и направленной на стимулирование потребителей минимизировать потребление реактивной мощности.
Установка конденсаторов для повышения коэффициента мощности позволяет потребителям снижать затраты на электроэнергию за счет поддержания уровня потребления реактивной мощности ниже значения, согласованного (по договору) с поставщиком электроэнергии. В рамках рассматриваемой тарифной структуры счет за потребленную реактивную энергию выставляется по критерию tg φ.Как указано выше:
(квар·ч / кВт·ч)
Электроснабжающая организация поставляет реактивную энергию бесплатно:
До точки, в которой ее потребление составляет менее 40% от потребления активной энергии
(tg φ = 0,4) в течение максимального периода 16 часов в день (с 06-00 до 22-00 ч) в период наибольшей нагрузки (часто зимой).
Без ограничения в периоды низкой нагрузки зимой, весной и летом.
В течение периодов ограничения счет за реактивную энергию, потребленную свыше 40% активной энергии (tg φ > 0,4), выставляются ежемесячно по текущим ставкам. Таким образом, количество реактивной энергии Wреак, оплачиваемой потребителем в такие периоды, составляет: квар·ч (к оплате) = W кВт·ч (tg φ – 0,4), где W кВт·ч – активная энергия, потребленная в периоды ограничения, tg φ – общая реактивная энергия за период ограничения и 0,4W (кВт·ч) – количество реактивной энергии, поставленной бесплатно за период ограничения.
Tg φ = 0,4 соответствует коэффициенту мощности 0,93. Таким образом, если в периоды ограничения коэффициент мощности никогда не упадет ниже 0,93, потребитель ничего не будет платить за потребленную реактивную мощность.
Однако, получая такие преимущества пониженных затрат на электроэнергию, потребитель должен учитывать стоимость приобретения, установки и обслуживания конденсаторов для повышения коэффициента мощности, а также автоматических регуляторов (в случае ступенчатой компенсации) вместе с дополнительными кВт·ч, потребляемыми диэлектриками.
Учитывая такие затраты на конденсаторы, может оказаться более экономически выгодным обеспечивать только частичную компенсацию, т.е. оплата некоторой потребляемой реактивной энергии может обходиться дешевле, чем 100%-ная компенсация.
Вопрос повышения коэффициента мощности — это, прежде всего, вопрос оптимизации (за исключением очень простых случаев).
Техническая/экономическая оптимизация
Повышение коэффициента мощности позволяет уменьшить номинальные значения мощности трансформаторов, распределительных устройств, кабелей, а также сократить потери мощности и ограничить потери напряжения. |
Высокий коэффициент мощности позволяет оптимизировать все компоненты системы, то есть избежать завышения номиналов определенного оборудования. Для получения оптимальных результатов необходимо устанавливать компенсирующие устройства как можно ближе к потребителю реактивной (индуктивной) энергии.
Уменьшения сечения кабелей
Рис. L7: требуемое увеличение сечения кабелей при снижении коэффициента мощности с единицы до 0,4.
Множитель для площади поперечного сечения жил(ы)кабеля | 1 | 1,25 | 1,67 | 2,5 |
cos φ | 1 | 0,8 | 0,6 | 0,4 |
Рис. L7 : Множитель для сечения кабеля в зависимости от cos φ
Снижение потерь (P, кВт) в проводниках
Потери в кабелях пропорциональны квадрату тока и измеряются счетчиком киловатт-часов установки. Например, снижение общего тока в проводнике на 10% приводит к снижению потерь почти на 20%.
Снижение потерь напряжения
Конденсаторы для повышения коэффициента мощности снижают или даже полностью устраняют (индуктивный) реактивный ток в вышележащих проводниках, тем самым снижая или устраняя потери напряжения.
Примечание: избыточная компенсация приводит к повышению напряжения на конденсаторах.
Повышение пропускной способности
Повышение коэффициента мощности нагрузки, питаемой от трансформатора, приводит к снижению тока через трансформатор, что позволяет добавлять нагрузку. На практике может оказаться дешевле повысить коэффициент мощности , чем заменить трансформатор на больший номинал.
Этот вопрос рассматривается в разделе Компенсация на зажимах трансформатора.
ru.electrical-installation.org
Математически cos φ
Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).
Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.
Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.
Васильев Дмитрий Петрович Профессор электротехники СПбГПУ
В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.
Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.
Короткое видео о кратким объяснением, что такое коэффициент мощности: