Особенности параллельного и последовательного соединений светодиодов

Разница между параллельным и последовательным соединением ламп

Если любые лампочки включены параллельно друг к другу и соответственно последовательно с выключателем, то напряжение на каждой из них будет равным и таким способом можно соединять источники света разной мощности. Главное условие — это то что рабочее напряжение, при котором они нормально работают, должно быть равно напряжению источника питания. Если в этом случае применяется понижающее устройство с системой выпрямления, то размыкающий контакт должен рассоединять цепь перед преобразователем, как показано на рисунке.

В данном случае несущественно, будет включаться два или три источника света. Чаще всего это галогенные и светодиодные лампы, рассчитанные на пониженное напряжение 12 или же 24 Вольта.

При последовательном соединении ситуация кардинально меняется. Напряжение питания будет разделено на количество лампочек, то есть если сеть 220 Вольт, то на двух подключенных в последовательную цепь, источниках искусственного света, напряжение будет равно примерно 110 Вольт. Это нужно учесть при их выборе и покупке. Ещё один нюанс при таком соединении связан с мощностью каждого из них. Она должна быть одинакова или же максимально близка друг к другу, т.к. при таком соединении ток одинаковый на всех участках цепи. Если одна лампа будет мощностью 500 Вт, а другая 50 Вт, то в лампочке с меньшей мощностью, связанной одним проводом друг с другом, всё равно будет протекать больший ток, соответствующий самой мощной нагрузке. Лампочка с меньшей мощностью мгновенно перегорит. Это правило действуют на все виды источников ламп, от накаливания до светодиодных.

Если нужно подключить с сети или с розеток светодиодный источник света, то зачастую он состоит из так называемого драйвера, устанавливаемого внутри корпуса лампочки. Он выполняет сразу несколько функций: выпрямительную и понижающую. Для последовательного подключения данные осветительные приборы не предназначены, только для параллельного.

Для люминесцентных источников дневного света, как с электронным пусковым устройством, так и со стартером, последовательное подключение встречается чаще всего в растровых светильниках, так как позволяет с помощью одного дросселя и двух стартеров обеспечить стабильную работу. При этом сам стартер выбирается на 127 В с расчётом рабочего напряжения стандартной сети 220 Вольт. Выключатель в этой схеме используется обычный одноклавишный и разрывает своим контактом тоже фазный провод.

Что же касается параллельного подключения нескольких люминесцентных светильников или же компактных ламп, работа которых основана на свечении люминофора, нанесённого на стеклянной трубке, то в этой ситуации можно подключать какое-либо количество к одному выключателю как одноклавишному, так и двухклавишному. Главное, при этом учесть мощность всех источников света, от которой напрямую зависит ток в их цепи. У любого выключателя он ограничен и указан в техническом паспорте, на упаковке или же корпусе. Если, допустим, указан ток 5 А, то превышать его значение не стоит, так как это очень быстро приведёт в негодность сам размыкающий контакт.

Чтобы полностью разобраться с последовательным и параллельным подключением лампочек, рекомендуем просмотреть видео:

Вольтамперная характеристика светодиода (ВАХ)

Светодиод – нелинейный элемент электрической цепи, его ВАХ по форме практически идентична  обычному кремниевому диоду. На рисунке 1 приведена ВАХ мощного белого светодиода, одного из ведущих мировых производителей.

Рисунок 1

По графику видно, что при увеличении напряжения всего на 0,2 В (например, участок 2,9…3,1 В), сила тока увеличивается более чем в два раза (с 350 мА до 850 мА). Справедливо и обратное: при изменении тока в достаточно широких пределах, падение напряжения изменяется весьма незначительно

Это очень важно

Второй важный момент – падение напряжения от образца к образцу в одной партии может отличаться на несколько десятых долей вольта (технологический разброс). По этой причине источник питания светодиодов должен иметь стабилизацию  по току, а не по напряжению. Световой поток, кстати, нормируется также в зависимости от прямого тока. Теперь посмотрим, как эта информация пригодится при выборе схемы подключения.

Последовательное соединение (рисунок 2).

Рисунок 2

На схеме показано последовательное включение трех светодиодов HL1…HL3 к источнику постоянного тока J. Для простоты возьмем идеальный источник тока, т.е. источник, обеспечивающий  постоянный ток одинаковой величины, независимо от нагрузки. Поскольку сила тока в замкнутом контуре одинакова, через каждый элемент, последовательно включенный в этот контур, протекает ток одинаковой величины I1=I2=I3=J. Соответственно обеспечивается одинаковая яркость свечения. Разница в падениях напряжения на отдельных светодиодах не имеет в этом случае никакого значения и отражается только на величине разности потенциалов между точками 1 и 2.

Рассмотрим конкретный пример расчета подобной схемы. Пусть требуется обеспечить питание трех последовательно включенных светодиодов током 350 мА. Падение напряжения при этом токе по данным производителя может составлять значение от 2,8 В до 3,2 В.

Рассчитаем требуемый диапазон выходного напряжения источника тока:

Umin=2,8×3=8,4 В;

Umax=3,2×3=9,6 В.

Максимальная мощность потребляемая светодиодами составит P=9,6×0,35=3,4 Вт.

Таким образом источник должен иметь следующие параметры:

Выходной стабильный ток – 350 мА;

Выходное напряжение – 9 В ±0,6В (или ±7%);

Выходная мощность – не менее 3,5 Вт.

Все предельно просто.

Серийно выпускающиеся источники питания для светодиодов (драйверы) обычно имеют более широкий диапазон выходного напряжения, чтобы разработчик светотехнического устройства не был привязан к конкретному количеству излучающих диодов, а имел некоторую свободу действий. В таком случае можно к одному и тому же источнику подключать последовательно, например, от 1-го до  8-ми светодиодов.

Тем не менее, последовательная схема включения имеет свои недостатки.

  1. Во-первых, при выходе из строя одного из диодов в цепи – по понятным причинам гаснут и все остальные. Исключение – короткое замыкание светодиода – в этом случае цепь не обрывается.
  2. Во-вторых, при большом количестве светодиодов, сложнее реализовать низковольтное питание.

Например, в случае если стоит задача запитать 10 светодиодов последовательно (это падение напряжения порядка 30 В) от автомобильного аккумулятора, то без повышающего преобразователя не обойтись. А это уже дополнительные затраты, габариты и снижение КПД.

Параллельное соединение (рисунок 3).

Рисунок 3

Рассмотрим теперь параллельное соединение тех же светоизлучающих диодов.

Согласно первому закону  Кирхгофа:

J=I1+I2+I3,

Чтобы обеспечить каждому светодиоду одноваттный режим (I=350мА), источник тока должен выдавать 1050 мА при выходном напряжении порядка 3 В.

Как уже говорилось выше, светодиоды имеют некоторый технологический разброс параметров, поэтому на самом деле токи поделятся не поровну, а пропорционально своим дифференциальным сопротивлениям.

К примеру, если прямое падение напряжения, измеренное на этих светодиодах при токе 350 мА, составляло 2,9 В, 3 В, 3,1 В для HL1, HL2  и HL3 соответственно. То при включении по представленной схеме токи распределятся следующим образом:

I1≈360 мА;

I2≈350 мА;

I3≈340 мА.

Это значит, что и яркость свечения будет разная. Для выравнивания токов в такие цепи обычно последовательно светодиодам включают резисторы (рисунок 4).

Рисунок 4

Выравнивающие резисторы увеличивают потребляемую мощность общей схемы, а следовательно снижают эффективность.

Такой способ соединения чаще всего применяют с низковольтными источниками питания, например в портативных устройствах с электрохимическими источниками тока (аккумуляторами, батарейками). В других случаях рекомендуется соединить светодиоды последовательно.

Схема включения светодиода

Светодиод питают постоянным напряжением. Но особенности нелинейной зависимости его внутреннего сопротивления требуют держать рабочий ток в узких пределах. При токе меньше номинального уменьшается световой поток, а при большем – кристалл перегревается, яркость свечения растет, а «жизнь» сокращается. Простейший способ ее продлить– ограничить ток через кристалл включая токоограничивающий резистор. У мощных светодиодов это экономически невыгодно, потому их питают постоянным током от специсточника стабильного тока – драйвера.

Последовательное соединение

Светодиод – это довольно сложный светотехнический прибор. Работает он от вторичного источника постоянного напряжения. При мощности более 0,2-0,5 Вт в большинстве светодиодных устройств используют источники тока. Их не совсем корректно, на американский манер, называют драйверами. При последовательном включении диодов часто используют источники питания с напряжением 9, 12, 24 и даже 48 В. В этом случае выстраивают последовательную цепочку, в которой может быть от 3-6 до нескольких десятков элементов.

При последовательном соединении в цепочке анод первого светодиода включают через токоограничивающий резистор к «+» источника питания, а катод – к аноду второго. И так соединяется вся цепочка.


Схема последовательно- параллельного соединения трех последовательных групп светодиодов в цепочки из трех ЛЕД-элементов. В каждой цепочке слева стоит токоограничивающий резистор. Он «гасит» избыток суммы прямых напряжений диодов.

Например, красные светодиоды имеют прямое рабочее напряжение от 1,6 до 3,03 В. При Uпр. = 2,1 В одного светодиода на резисторе при напряжении источника 12 В будет напряжение 5,7 В:

12 В — 3×2,1 В = 12 — 6,3 = 5,7 В.

А уже 3 последовательные цепочки соединяют параллельно.

Таблица прямого напряжения на светодиоде от цвета его свечения.

Цвет свеченияНапряжение рабочее, прямое, ВДлина волны, нм
Белый3,5Широкий спектр
Красный1,63–2,03610-760
Оранжевый2,03–2,1590-610
Желтый2,1–2,18570-590
Зеленый1,9–4,0500-570
Синий2,48–3,7450-500
Фиолетовый2,76–4400-450
Инфракрасныйдо 1,9от 760
Ультрафиолетовый3,1–4,4до 400

Свойства последовательного соединения:

  • обрыв одного элемента приводит к выключению всех;
  • закорачивание – перераспределяет его напряжение на все оставшиеся, на них увеличивается яркость свечения и ускоряется деградация.

Параллельное и последовательное соединение

Параллельное соединение проводников

Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу (L) и ноль (N). Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода (рис. а ниже). Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис. б) изображает соединения нагляднее.


Схема параллельного соединения лампочек

Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети. К лампам на рис. выше можно добавить еще несколько, но ток при этом увеличится, а напряжение останется прежним.

Сила тока (I) в питающих проводах равна сумме сил токов всех участков (I1, I2, I3), подключенных параллельно (рис. б выше):

I = I1 + I2 + I3.

Мощность цепи (Р) находится как сумма мощностей всех участков (Р1, Р2, Р3):

Р = Р1 +Р2 + Р3.

Сопротивление (R) для трех нагрузок определяется из выражения:

1/R = 1/R1 + 1/R2 + 1/R3,

где R1, R2, R3 – сопротивления лампочек.

Особенности монтажа

Чтобы правильно подключить точечные светильники надо не только грамотно выбрать схему. Надо соблюсти определенную последовательность действий, которая зависит от типа потолка.

Надо всего лишь подключить несколько точечных светильников — и вы имеете красивый интерьер

В натяжные потолки

Точечные светильники обычно устанавливают с подвесными или натяжными потолками. Если потолки натяжные, все провода укладывают заранее. Их крепят к потолку, не подключая к питанию, размещают и закрепляют на подвесах светильники, затем подключают к ним провода и проверяют работу.

Подготовлено к установке натяжных потолков

Перед монтажом натяжных потолков питание отключают, вынимают лампы и снимают части, которые могут пострадать от температуры. После установки натяжных потолков в материале прорезают отверстия (светильники видны или их можно нащупать), устанавливают уплотнительные кольца, после чего собирают светильники.

В потолки из гипсокартона

Если потолок сделан из гипсокатрона, можно действовать по той же схеме, но монтировать светильники надо после того, как потолок будет зашпаклеван. То есть, развести проводку, оставить свободно свисающие концы проводки. Чтобы не возникли проблемы с определением мест расположения осветительных приборов, необходимо нарисовать подробный план с указанием точных расстояний от стен и друг от друга. По этому плану делают разметку и дрелью с коронкой соответствующего размера вырезают отверстия. Так как небольшие подвижки — в несколько сантиметров — могут быть, нарезая кабель оставляйте запас в 15-20 см. Этого будет вполне достаточно (но не забудьте, что провода крепятся к основному потолку и они должны на 7-10 см выходить за уровень гипсокартона. Если концы окажутся слишком длинными, их всегда можно укоротить, а вот нарастить — большая проблема.

Если необходима установка преобразователя

Есть второй способ подключить точечные светильники на гипсокартонный потолок. Он используется если источников света немного — четыре-шесть штук. Весь монтаж точечных светильников вместе с проводкой делают после того как завершили работу с потолком. До начала монтажа за уровень потолка заводят кабель/кабели от распределительной коробки. После окончания работ по шпаклевке и шлифовке делают разметку, сверлят отверстия. Через них прокидывают кабель, выводя концы наружу. После монтируют сами светильники.

Все несложно, но этот способ нельзя назвать правильным: кабели просто лежат на гипсокартоне, что точно не соответствует противопожарным нормам. На это еще можно закрыть глаза, если перекрытие бетонное, кабель взят негорючий, сечение провода не маленькое, соединение проводов сделано правильно.

Последовательность работ в фото формате

Если же перекрытия деревянные, по ПУЭ требуется прокладка в негорючих цельнометаллических лотках (кабель каналах) или металлических трубах. Смонтировать такую проводку можно только до начала работ с потолком. Нарушать правила монтажа очень нежелательно — дерево, электричество, выделение тепла при работе… не самое безопасное сочетание.

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.

Все источники света люминесцентные (экономки), лампы накаливания, светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости

А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее

Как правильно подключать?

При параллельном соединении светодиодов нужно пользоваться ограничительным резистором для каждого из диодов, как изображено на рисунке ниже. Это даёт возможность установить ток для каждого из элементов электрический схемы.

Схема параллельного соединения светодиодов

Ниже схема НЕ правильного подключения резистора в цепь.

Так подключать не правильно

При параллельном подключении светодиодов и любых других потребителей, напряжение на их выводах будет равным. С одной стороны это хорошо, но не для диодов. Каждый светодиод, даже набор взятый из одной партии, имеет небольшой технологический разброс параметров. Напряжение, необходимое для достижения номинального тока, может незначительно отличаться в пределах десятых долей вольта.

Выше вы видели вольт-амперную характеристику прибора и легко сделаете вывод, что незначительное превышение номинального напряжения ведет к лавинообразному росту тока и перегреву. Некоторые предлагают исключить и резистор из этой схемы, такое соединение светодиодов самое неудачное!

Общий ток в цепи равен сумме токов в каждой из ветвей параллельной цепи. Если выбирать, как соединять светодиоды для работы в цепи с повышенным напряжением (6 и более вольт), лучше использовать последовательное соединение.

Коннекторы для светодиодной ленты

Коннектор для светодиодной ленты представляет собой изделие специальной конструкции, в котором имеются контакты для соединения с токоведущими контактами светодиодной ленты. Соединение светодиодных лент с помощью коннекторов сделать гораздо проще и намного быстрее, так как для этого необходимо просто взять коннектор, и разместить внутри него светодиодную ленту. Но этот способ финансово более затратный.

При этом нужно учитывать, что таким способом можно будет соединить только одинаковые по габаритным параметрам ленты. Коннекторы подбираются под определенную ширину ленты и тип ленты, например, для одноцветной ленты с двумя контактами и шириной 8 мм, или для RGB ленты с четырьмя контактами и шириной 10 мм.

Виды коннекторов для светодиодных лент по типу фиксации ленты:

Со сдвижными зажимами. Это самый компактный вариант коннекторов для светодиодных лент. Для соединения LED ленты с коннектором необходимо выдвинуть фиксатор, как правило имеющий черный цвет, и установить в щель светодиодную ленту, после чего задвинуть фиксатор обратно, зафиксировав таким обрезом светодиодную ленту. По такому принципу подключаются шлейфы в ноутбуке к материнской плате. Недостатком коннектора со сдвижными зажимами считается невозможность визуального контроля качества соединения LED ленты и контактов коннектора.

С боковыми прижимными защелками. Самый распространенный вид коннекторов, применяемый для быстрого соединения светодиодных лент. Чтобы соединить с его помощью отдельные куски LED лент, необходимо отщелкнуть защитную крышку и установить в пазы светодиодную ленту. При этом медные контактные площадки светодиодной ленты должны оказаться под прижимными клеммами коннектора. LED лента дополнительно фиксируется при закрытии крышки на защелку, за счет наличия в ней специальных штырей. Есть у этого вида коннектора один существенный недостаток. Он не может пропускать большие токи и сильно подвержен коррозии. Окисленные контакты значительно ухудшают проводимость и при больших нагрузках могут стать причиной неприятностей в виде очага возгорания.

Прокалывающие коннекторы. Такие коннекторы считаются самыми надежными из всех, но при этом они самые дорогостоящие. Их контакты выполнены в виде заостренных зубцов, и прокалывают насквозь светодиодную ленту в области контактных площадок. Для монтажа прокалывающих коннекторов необходимо прилагать немало усилий, поэтому для закрытия крышки лучше пользоваться плоскогубцами. В момент закрытия зубцы прокалывают ленту в местах размещения медных токопроводящих дорожек и образуется электрическое соединение.

Коннекторы для светодиодной ленты со сдвижными зажимами и с прижимными боковыми защелками требуют предварительной подготовки самих светодиодных лент. Контакты предварительно необходимо зачистить, если они имеют защитное покрытие, и очистить от окислов для более качественного соединения. Со временем такие контакты окисляются. Прокалывающие коннекторы не требуют предварительной подготовки, так как благодаря своей конструкции их зубцы прорезают все защитные покрытия и окислы, контактируя в итоге с медными дорожками.

Угловые вставки для соединения светодиодных лент под углом

Светодиодные ленты по своей конструкции гибкие, но произвольно их гнуть, к сожалению, нельзя, радиус их изгиба ограничен. Для соединения светодиодных лент под углом, применяют угловые вставки, которые в сочетании с коннекторами для LED лент позволяют соединять светодиодные ленты под необходимым углом. Такие вставки могут быть Г-образными, Т-образными, крестообразными и с проводами, для соединения под любым произвольным углом. С их помощью можно воплотить в реальность самые разнообразные светящиеся конструкции, практически любую фантазию дизайнера.

Можно ли разрезать светодиодную ленту в любом месте?

Для сохранения работоспособности всех сегментов светодиодной ленты разрезать ее нужно только в предусмотренных для этого местах ленты. Если разрезать в любом месте ленты между светодиодами, то светодиоды из разрезанного сегмента LED ленты работать не будут.

Можно ли соединить светодиодные ленты?

Соединять отрезки светодиодных лент в одну длинную ленту можно только с одинаковым напряжением питания, причем монохромные только с монохромные, RGB с RGB.

Есть ли возможность соединить светодиодные ленты без пайки?

Самое надежное соединение LED лент осуществляется с помощью пайки, но для быстрого соединения светодиодных лент можно использовать специальные коннекторы.

Параллельное соединение

Необходимость в параллельном включении возникает в случае, когда напряжения источника питания недостаточно для запитки нескольких последовательно соединённых светодиодов. Теоретически, в самом простом варианте можно было бы отдельно объединить все аноды и все катоды излучающих диодов. После чего подключить их к источнику напряжения с соблюдением полярности. Но такая схема не работоспособна, так как дифференциальное сопротивление открытого светодиода чрезмерно мало, что провоцирует режим короткого замыкания. В результате все светодиоды в цепи единожды вспыхнут и навсегда погаснут.

Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.

Ограничить резкое нарастание тока в нагрузке можно с помощью резистора. О том, как это грамотно сделать с одним светодиодом, подробно написано в данной статье. Для цепи из нескольких параллельно подключенных LED с одним резистором схема примет следующий вид. Но и этот вариант не пригоден для конструирования осветительных устройств с высокой надёжностью. Почему? Ответ на этот вопрос кроется в особенностях строения полупроводников. В процессе производства полупроводниковых элементов невозможно получить два абсолютно одинаковых прибора. Даже у светодиодов из одной партии будет разное дифференциальное (внутреннее) сопротивление, от которого зависит величина прямого напряжения. Это касается не только светодиодов, но и других полупроводников. Среди  диодов, транзисторов и тиристоров тоже не найти двух приборов с равными электрическими параметрами.

Из второй схемы видно, что резистор R1 ограничивает только суммарный ток цепи, который затем распределяется по ветвям со светодиодами в зависимости от их сопротивления. По закону Ома светодиод с наименьшим сопротивлением p-n-перехода получит наибольшую порцию тока. И скорее всего он будет больше номинального значения, что ускорит деградацию кристалла. Работа светодиода в режиме перегрузки по току рано или поздно приведёт к выходу из строя на обрыв. Оставшиеся в работе светодиоды распределят между собой ток сгоревшего элемента, что также приведёт к резкой потере яркости.

Ниже приведен единственно верный вариант параллельного включения светодиодов. Здесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.

Пример расчета

Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере. В схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.

Дано:

  • источник напряжения U = +5 В;
  • LED1 – красного свечения с ULED1 = 1,8 В и ILED1 = 0,02 А;
  • LED2 – белого свечения с ULED2 = 3,2 В и ILED2 = 0,35 А.

Требуется рассчитать параметры и выбрать резисторы R1 и R2.

При параллельном включении к обеим ветвям (R1-LED1 и R2- LED2) прикладывается одинаковое напряжение, равное 5 В. Сопротивление каждого резистора определим по формуле: Округляем полученное значение R2 до ближайшего большего значения из стандартного ряда E24 – 5,1 Ом. Подставив его обратно в формулу, находим реальный ток во второй ветви: С учетом возможного отклонения сопротивления выбранного резистора, которое для ряда Е24 может достигать 5%, ток 0,33 А является оптимальным. Снижение рабочего тока примерно на 4% сильно не повлияет на яркость, но позволит светодиоду работать без перегрузок.

Мощность, которую должны рассеивать резисторы, определим с учетом пересчёта тока LED2 по формуле: Резистор R1 подойдёт любой как планарный, так и с выводами сопротивлением 160 Ом и мощностью 0,125 Вт. Корпус резистора R2 должен эффективно отводить тепло в течение длительной работы светильника. Поэтому его выбираем с двойным запасом по мощности, а именно: 5,1 Ом – 1 Вт.

Что значит подключить осветительные устройства параллельно

Что кроется в понятии «параллельного соединения»? При такой схеме лампа соединяется с фазой и нулём. Если требуется подключить сразу два источника света, то подающие на них ток провода скручиваются. Тут главное проверить, чтобы сечение проводов совпадало с идущей на них нагрузкой. Не все светильники имеют сходное напряжение, яркость их изначально закладывается производителем. Если одна из лампочек перегорает, все остальные продолжают функционировать по-прежнему.

Существует несколько разновидностей параллельного подключения:

Важно! Если требуется подсоединить галогенные светильники, обладающие трансформатором, то нужно помнить, что их подключают на вторичную обмотку преобразователя посредством клеммных колодок. Параллельное подключение зачастую используют и для исправления некоторых недостатков аппаратуры

Так, главное больное место всех люминесцентных ламп — их раздражающее мерцание. Поправить это дело может устройство, регулирующее пуск, но стоит оно дорого. Можно подключить две лампы по параллельной схеме и к одной из них подсоединить конденсатор, который будет сдвигать фазу

Параллельное подключение зачастую используют и для исправления некоторых недостатков аппаратуры. Так, главное больное место всех люминесцентных ламп — их раздражающее мерцание. Поправить это дело может устройство, регулирующее пуск, но стоит оно дорого. Можно подключить две лампы по параллельной схеме и к одной из них подсоединить конденсатор, который будет сдвигать фазу.

Последовательное подключение

Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.

Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.

Преимущества и недостатки

Преимущества:

  • одинаковый уровень тока;
  • простота.

Недостатки:

  • количество светодиодов ограничено падением напряжения;
  • если сломается один элемент, непригодной становится вся цепочка.

Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.

Подключение светоизлучающего диода к сети 220 В

Если запитать светодиод прямо от 220 В с ограничением его тока, то светить он будет при положительной полуволне и гаснуть при отрицательной. Но это только в том случае, когда обратное напряжение p-n перехода будет много больше 220 В. Обычно это в районе 380-400 В.

Второй способ включения– через гасящий конденсатор.

Сетевое напряжение подают на «мост» на диодах VD1-VD4. Конденсатор С1 «погасит» около 215-217 В. Остаток выпрямится. После фильтрации конденсатором С2 постоянное напряжение подают на светодиод. Не забудьте об ограничении тока через диод резистором.

Еще одна схема подключения – с однополупериодным выпрямителем на диоде и с ограничивающим резистором, величиной 30 кОм.

Подробная информация о подключении светодиода к сети 220 В .

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий