Поправочный коэффициент у электросчетчика

Как посчитать электроэнергию по счетчику

Чтобы исключить ошибки, необходимо проводить расчет грамотно.

Где найти информацию о тарифе

Для самостоятельного определения суммы оплаты электроэнергии за текущий период нужно точно знать стоимость услуги. В зависимости от региона РФ, а также дополнительных параметров (вид населенного пункта, наличие определенных электрических приборов и ставок в разное время суток), тариф для населения может существенно отличаться.

Узнать стоимость для конкретной территории можно следующим образом:

  1. Уточнить на сайте или в офисе исполнителя коммунальных услуг. Данные обязательно указываются на стендах в специализированных центрах оплаты.
  2. При повышении тарифов сведения публикуются в официальной прессе и на сайте региональной комиссии, которая занимается этим вопросом. Также на ресурсе ведомства есть онлайн-калькулятор, который условно рассчитывает плату за указанный временной промежуток.
  3. Посмотреть в квитанции. В период, когда происходит повышение тарифов, возможны некоторые разночтения.

Расчет

Посчитать плату за потребленную электроэнергию несложно, для этого необходимо действовать по определенной схеме, в зависимости от разновидности устройства.

Однотарифный прибор учета электроэнергии

Условно текущие показания составляют 000354, за прошлый месяц – 000296.

Тариф для жителей Москвы, которые проживают в газифицированных домах, не подпадающих под территорию, приравненную к сельской местности, на второе полугодие 2018 года составляет 5,38 р. за кВт/ч.

Исходя из имеющихся значений, подсчет расхода и суммы платежа за текущий месяц будет следующий:

354–296=58 кВт/ч х 5,38 р. = 312,04 р.

Двухтарифный ИПУ

Показания электросчетчика за новый расчетный период: Т1 – 000898, Т2 – 000576. Предыдущие значения: Т1 – 000840, Т2 – 000539.

Тариф для зоны пика в Москве (в домах с газовыми плитами) составляет 6,19 р., для ночного периода – 1,92 р.

Определять расход и оплату нужно поэтапно, сначала необходимо вычислить текущее потребление:

Т1. 898–840=58 кВт/ч х 6,19=359,02 р.

Т2. 576–539=37 кВт/ч х 1,92=71,04 р.

Итого за месяц: 359,02+71,04=430,06 р.

Трехтарифный электросчетчик

Необходимо снять показания трех зон: Т1 – 000587, Т2 – 000456, Т3 – 000832. Данные за прошедший месяц: Т1 – 000545, Т2 – 000415, Т3 – 000780.

Тарифы по времени: зона пика – 6,46 р.; ночь – 1,92 р.; полупик – 5,38 р.

Чтобы узнать, сколько требуется заплатить за месяц, нужно считать расход последовательно.

Т1: 587–545=32 кВт/ч х 6,46=206,72 р.

Т2: 456–415=41 кВт/ч х 1,92 = 78,72 р.

Т3: 832–780=53 кВт/ч х 5,38 = 285,14 р.

Далее необходимо сложить все данные:

206,72+78,72+285,14=570,58 р.

Именно эту сумму нужно оплачивать за свет.

Учитывается, что итоговые цифры в квитанции могут несколько отличаться: необходимо обращать внимание на строку «ОДН», которая отражает общие показания по дому и входит в оплату

Антимагнитные пломбы на электросчетчиках и их особенности

Некоторые потребители пытаются сэкономить денежные средства на оплате коммунальных счетов за счет «обмана» магнитной пломбы на электросчетчике. Чаще всего для этого применяют неодимовые магниты. С их помощью электромеханический счетчик останавливается.

По этой причине контролирующие органы устанавливают антимагнитные пломбы на электросчетчики потребителей. Внешне они напоминают наклейку, однако ее устройство гораздо сложнее, чем может показаться на первый взгляд. Внутри пломбы содержится датчик, фиксирующий магнитные изменения. При пересечении определенного порога устройство срабатывает. В результате, когда подойдет срок поверки счетчика электроэнергии, сотрудник контролирующих органов сможет определить по внешнему виду устройства наличие постороннего вмешательства.

Сам датчик представляет собой небольшую капсулу, заполненную веществом, которое чувствительно реагирует на присутствие магнитного поля. Если подобное вмешательство имело место, происходит распространение содержимого по всей капсуле. После этого никакими средствами не получится вернуть ей первоначальный внешний вид. Полностью окрашенная капсула будет свидетельствовать о том, что учетный прибор пытались остановить.

Антимагнитная пломба для электросчетчика

Сколько стоит опломбировать счетчик электроэнергии

Опломбирование осуществляется, когда подходит срок замены электросчетчика или возникает необходимость в его ремонте. Все расходы по сервисному обслуживанию устройства погашает собственник, однако монтаж пломбы выполняется бесплатно. Если предполагается выполнение ремонта или замены электросчетчика, цена уже включена в стоимость этих процедур. Если же к опломбированию прибегают повторно, в этом случае услугу нужно будет оплатить (от 100 до 500 рублей, в зависимости от региона проживания).

Вынуждение собственника к оплате первичной установки пломбы после вышеуказанного обслуживания считается незаконным. В подобных случаях есть несколько путей решения проблемы:

  1. Внести требуемую сумму, сразу же получить квитанцию, подтверждающую факт оплаты с обязательным указанием, что назначенная сумма была взята именно за установку пломбы. Данный документ может стать основанием для написания претензии в вышестоящие контролирующие органы о том, что незаконно взимается плата за выполнение бесплатной услуги.
  2. Подать исковое заявление в суд.
  3. Направить заявление в службу, занимающуюся антимонопольной деятельностью (ФАС).

Первичное опломбирование счетчика осуществляется бесплатно

Стоит отметить, что для бытовых электросчетчиков цена на установку пломбы невысокая, поэтому владелец квартиры самостоятельно принимает решение в отношении того, оплачивать эту услугу или нет.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В351015203040506075100
Коэффициент, nНоминальная предельная кратность
3000/5373125201713119865
4000/538322622201513111086
5000/5382925222016141211108
6000/5392825222016151312108
8000/5382120191814141312119
10000/5371615151412121211109
12000/53920191818121514131211
14000/53815151414121312121110
16000/536151413131210101099
18000/54116161515121414131212

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

Коэффициентом трансформации трансформаторов называется отношение напряжения обмотки высшего напряжения (ВН) к напряжению обмотки низшего напряжения (НН) при холостом ходе:

Где: Кл- коэффициент трансформации линейных напряжений;

U1 — линейное напряжение обмотки ВН;

U2 — линейное напряжение обмотки НН.

При определении коэффициента трансформации однородных трансформаторов или фазного коэффициента трансформации трехфазных

трансформаторов отношение напряжения можно приравнять к отношению чисел витков обмотки

где: Кф — фазный коэффициент трансформации;

U1ф,U2ф — фазные напряжения обмоток ВН и НН соответственно;

WI,W2 — число витков обмоток ВН и НН соответственно.

При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего линейных напряжения обмоток и соответственно числа витков ВН и НН сохраняется лишь при одинаковых группах соединения этих обмоток.

Если первичная и вторичная обмотки соединены по одинаковой схеме, например, обе в звезду, обе в треугольник и так далее, фазный и линейный коэффициенты трансформации равны друг другу. При различных схемах соединений обмоток, например, одной в звезду, а другой в треугольник, линейньй и фазный коэффициенты трансформации неодинаковы (они в данном случае отличаются друг от друга в 3 раз).

Определение коэффициента трансформации производится на всех ответвлениях обмоток и для вех фаз. Эти измерения, кроме проверки самого коэффициента трансформации дают возможность проверить также правильность установки переключателя напряжения на соответствующих ступенях, а также целостность обмоток.

Для определения коэффициента трансформации применяют метод двух вольтметров (рис.2)

Рис.2 Определение коэффициента трансформации.

Со стороны высокого напряжения (ВН) подводится трехфазовое напряжение 220 В и измеряется напряжение на вторичной обмотке.

Внимание! Напряжение подводится только к обмоткам ВН (А, В, С). Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В

Пределы измерения вольтметров: PV1-250 В,PV2-15В

Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В.

Примечание: В данной работе трансформатор имеет одно положение переключателя.

Коэффициент трансформации отдельных фаз, замеренных на одних и тех же ответвлениях не должен отличаться друг от друга более чем на 2%.

Электронные или индукционные

Специалисты в области электротехники отмечают, что на сегодняшний день потребители отдают предпочтение электронным видам считывающих устройств, поскольку у них класс точности ниже, чем у индукционных устройств. Коэффициент трансформации счетчика влияет на точность конечных показаний. В среднем у индукционных образцов класс точности равен 2.5, тогда как у электронных – 2.0. Это означает, что погрешность показаний в результате работы электрического считывающего устройства электронного типа составляет до 2%, а у индукционного – 2,5%.

Именно по этой причине на данный момент чаще устанавливается электронное оборудование, так как оно позволяет больше сэкономить, получая показании точней. Специалисты настоятельно не рекомендуют устанавливать оборудование с завышенным значением коэффициента трансформации. В современной электротехнике принято использовать трансформаторы со статичным КТ, который гарантированно не будет изменяться при эксплуатации.

К таким электрическим счетчикам можно отнести Меркурий-230. Меркурий-230 производится на территории России и считается одним из лучших образцов для коммерческого и частного использования. Меркурий-230 может изготавливаться для одно- и друхтарифного плана. Обычно модель Меркурий-230 поддерживает трехфазную электрическую сеть.
В среднем для Меркуия-230 гарантийный срок составляет 25 лет, что является оптимальным выбором при учете качества и цены. Меркурий-230 полностью соответствует ГОСТ стандартам.

Меркурий-230 имеет хороший класс точности и стабильно работает при значительных изменениях температуры в окружающей среде в течение всего срока эксплуатации устройства. Меркурий-230 позволяет обеспечить точное измерение текущих параметров электрической сети – частоту, коэффициент мощности, текущее значение фазного тока, напряжение.

Тарификатор Меркурия-230 позволяет одновременно учитывать показания по 4 тарифам в 16 временных зонах суток, а также для четырех типов дня. Меркурий-230 может учитывать активную электроэнергию прямого направления и полной ее мощности по фазам, сумме значений фаз с определением направления вектора полной мощности.

Размер сбытовой надбавки гарантирующего поставщика

Гарантированный поставщик зарабатывает на сбытовой надбавке, которая устанавливается службой по тарифам вашего региона.

Согласно Постановлению Правительства РФ No877 от 4 ноября 2011 года, сбытовая надбавка является единственным официальным источником дохода гарантирующего поставщика.

В сбытовую надбавку включаются расходы гарантирующего поставщика

  • на обслуживание потребителей электрической энергии и
  • на обслуживание банковских займов, направленных на перекрытие кассовых разрывов.

Как правило, сбытовая надбавка составляет от 5% до 10% в конечной стоимости электроэнергии.

Сбытовые надбавки разные в каждом регионе, так как, количество потребителей и объем их потребления, отличаюстя от региона к региону.

Как правило, чем меньше регион и чем меньше в нем потребителей, тем выше сбытовая надбавка.

Снизим ваши затраты на электроэнергию на 5% — 30%

Узнать подробно Узнать размер сбытовой надбавки можно на сайте вашего гарантирующего поставщика в разделе для юридических лиц.

Сбытовая надбавка меняется каждый год, а иногда и каждые пол года.

Важный нюанс:

Что такое максимальная мощность и как она рассчитывается можно узнать здесь.

  • Если максимальная мощность вашей организации менее 670 кВт – у вас максимальная сумма сбытовой надбавки.
  • Если максимальная мощность вашей организации от 670 кВт до 10 МВт – ваша сбытовая надбавка должна быть примерно в 2 раза ниже.
  • Самая низкая сбытовая надбавка у предприятий, максимальная мощность которых более 10 МВт.

Для того, чтобы проверить правильно ли вы платите, вам необходимо сверить сумму сбытовой надбавки в счете за электроэнергию с данными, которые опубликованы на сайте гарантирующего поставщика.

Бывают случаи когда эти суммы не “бьются”.

А еще чаще бывают случаи, когда с одним потребителем существует несколько договоров, в каждом из которых, указана только часть максимальной мощности.

Соответственно, максимальная мощность потребителя разбита на 2 или 3 части.

Потребитель попадет в более низкую категорию и оплачивает максимальную сбытовую надбавку.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Онлайн калькулятор (ссылка откроется в новой вкладке)

Варианты определения расхода электроэнергии

  1. Каждый электрический прибор содержит ярлык с указанием его технических характеристик, значение которое измеряется в Ваттах (W или Вт) это и есть электрическая мощность. На некотором оборудовании, например, микроволновой печи, может указываться диапазон значений, например, от 800 до 1000Вт в таком случае принято брать среднее значение 900 Вт. Так же, известно приблизительное время работы каждого потребителя электрической энергии. Холодильник работает не более 8 часов в сутки и так по каждому прибору. Только время работы обогревателя, вентилятора и кондиционера могут существенно отличаться в зависимости от сезона. В таком случае точнее будет проводить разные расчёты для каждого времени года. Далее, мощность каждого электроприбора умножается на время его работы, в часах за сутки. После чего находится суммарный расход по квартире (дому, предприятию) и делится на 1000, поскольку стандартная единица расхода кВт*ч, формула в этом случае достаточна, проста, и в результате подсчёта получается расход электроэнергии за сутки. Умножив число на количество дней в месяце или в году, можно определить месячный и годовой расход соответственно.
  2. Второй способ очень похож на первый.  Но в нём указано как считать расход электроэнергии у электроприборов с неуказанной мощностью. Правильно рассчитать мощность можно зная величину потребляемого тока и напряжения в сети. Ток указывается на бирке с индексом «А», напряжение «В» («V»). Величина напряжения, общепринятая в нашей стране 220 В. Умножив ток на напряжение, можно достаточно точно рассчитать потребляемую прибором мощность. Дальнейший расчёт не отличается от первого варианта.
  3. Как правило, электросчётчик достаточно точно рассчитывает количество потреблённой электроэнергии. Руководствуясь его показаниями можно достаточно точно определить объём потреблённой энергии. Для этого достаточно из текущих показаний прибора, вычесть предыдущие. Полученное значение и будет расход за конкретный период времени. В случае со счётчиками непрямого измерения, то есть с трансформаторами тока и (или) напряжения, полученное число нужно умножить на коэффициент трансформации.

Метод

Использование ваттметра

  1. Купите ваттметр. Это устройство измеряет фактическую мощность, потребляемую электроприборами. Данный способ приводит к получению более точных результатов по сравнению с использованием значений, указанных на этикетке прибора.

    Если вы знакомы с инструментами электрика, вместо ваттметра воспользуйтесь мультиметром. Для этого потребуется доступ к проводке прибора, когда он подключен к электросети. Если вы не знаете, что делать, не разбирайте прибор.

  2. Ваттметр подключается между электророзеткой и прибором. Включите ваттметр в розетку, а электроприбор подключите к ваттметру.

  3. Измерьте значение мощности в киловатт-часах. Настройте ваттметр на отображение потребляемой мощности в киловатт-часах. Подключив прибор к работающему ваттметру, устройство измерит общее количество потребляемой электроэнергии (в киловатт-часах).

    • Если ваша модель ваттметра измеряет мощность только в ваттах, для вычисления мощности в киловатт-часах воспользуйтесь методом, описанным в первом разделе этой статьи.
    • Почитайте инструкцию по эксплуатации ваттметра, если не знаете, как его настраивать.
  4. Пользуйтесь электроприбором в обычном режиме. Подключив прибор к работающему ваттметру на длительный срок, вы получите более точные результаты.

  5. Найдите ежемесячное или ежегодное значение потребляемой мощности (в киловатт-часах). На индикаторе ваттметра отображается значение киловатт-часов, измеренное с момента подключения электроприбора к работающему ваттметру. Умножьте это значение на определенное число, чтобы узнать величину потребляемой электроэнергии в течение более длительного промежутка времени.

    Например, ваттметр работает в течение 5 дней, а вам нужно вычислить ежемесячный (30 дней) расход электроэнергии. В этом случае разделите 30 на 5 и получите 6, а затем 6 умножьте на значение, отображаемое на индикаторе ваттметра.

Классификация

Электросчетчики разделяются на одно- или многофазные, применяются такие устройства для сетей, где может быть переменное напряжение.

Например, однофазный счетчик, который установлен почти во всех жилых помещениях, функционирует только в диапазоне от 220 до 230 В, тогда как трехфазных также измеряет напряжение в пределах от 220 до 400 В.


Подробная схема классификации счетчиков Многие энергокомпании предоставляют возможность сэкономить на электричестве с помощью установки многотарифного счетчика. Такие устройства имеют две или более независимые шкалы, переход между ними осуществляется в определенное время.

Обычно ночью 1 кВт электроэнергии обходится значительно дешевле, но объемы ее потребления тоже сильно снижаются. Для экономии можно запрограммировать работу некоторых устройств, например, стиральной или посудомоечной машины на ночное время.

Существует 3 типа счетчиков:

  • индукционные;
  • электронные;
  • бесконтактные.

Разновидности приборов учета электроэнергии

Устройства для подсчета электроэнергии – это многофункциональные механизмы, которые могут отражать текущее положение данных, сохранять и передавать важную информацию. На сегодняшний день используют три разных варианта счетных механизмов.

Механические или индукционные приборы учета

Однофазные индукционные счетчики электроэнергии

Классический тип устройств, который встречается чаще всего. Конструкция состоит из двух обычных катушек. Одна из них ограничивает данные переменного напряжения, предотвращая искажения и получая электрический ток. Вторая преобразует поток переменного напряжения.

Основные плюсы – простота в эксплуатации, долговечность устройств. Срок службы счетчиков подобного типа высокий, а стоимость – низкая. Минус – габариты механизма.

Электронные приборы учета

Модульный трехфазный электронный электросчетчик

Устройства имеют более высокий уровень точности в подсчетах, но и цена их выше. Дополнительный плюс – возможность функционировать в нескольких режимах (например, утро и ночь, двух- и трехтарифные приборы).

Электронные счетчики преобразуют входящие аналоговые показатели в специальную цифровую кодировку, которые в свою очередь преобразуются небольшим микроконтроллером. Полученные данные можно увидеть на дисплее. Такие приборы стараются устанавливать все чаще, заменяя устаревшие механические модели.

Другие преимущества – компактный размер, возможность дистанционного контроля.

Гибридные приборы учета

Гибридный электросчетчик

Являются средним вариантом между счетчика электронного и механического типа работы. С одной стороны – устройства оснащают цифровым дисплеем для удобства. С другой – используют классический индукционный способ получения и обработки данных.

Гибридные устройства устанавливают редко, предпочитая аналоговые или электронные механизмы.

Как посчитать электроэнергию по счетчику

Чтобы исключить ошибки, необходимо проводить расчет грамотно.

Где найти информацию о тарифе

Для самостоятельного определения суммы оплаты электроэнергии за текущий период нужно точно знать стоимость услуги. В зависимости от региона РФ, а также дополнительных параметров (вид населенного пункта, наличие определенных электрических приборов и ставок в разное время суток), тариф для населения может существенно отличаться.

Узнать стоимость для конкретной территории можно следующим образом:

  1. Уточнить на сайте или в офисе исполнителя коммунальных услуг. Данные обязательно указываются на стендах в специализированных центрах оплаты.
  2. При повышении тарифов сведения публикуются в официальной прессе и на сайте региональной комиссии, которая занимается этим вопросом. Также на ресурсе ведомства есть онлайн-калькулятор, который условно рассчитывает плату за указанный временной промежуток.
  3. Посмотреть в квитанции. В период, когда происходит повышение тарифов, возможны некоторые разночтения.

Расчет

Посчитать плату за потребленную электроэнергию несложно, для этого необходимо действовать по определенной схеме, в зависимости от разновидности устройства.

Однотарифный прибор

Самые простые модели электросчетчиков фиксируют затраченные киловатт-часы по одному тарифу. Рассчитать оплату по такому устройству очень легко. Для этого необходимо записать показания электросчетчика до десятых долей и вычислить из них прошлый результат. Получившиеся данные умножаются на тариф.

При этом следует учитывать, что в некоторых регионах установлен норматив потребления электроэнергии 150 кВт в месяц. Если этот показатель превышен, то все, что выше нормы, рассчитывается по повышенному тарифу.

Например: Разница между новыми и старыми данными составляет 250 кВт. Это значит, что 150 кВт оплачивается по одному тарифу, условно 3 рубля, а оставшиеся 100 кВт по более высокой ставке, к примеру, 3,5 рубля.

Считать киловатты по счетчику нужно внимательно. Иногда люди путаются в расчетах и вписывают десятичную часть данных как целую, и получают неверный результат.

Двухтарифный ИПУ

Показания электросчетчика за новый расчетный период: Т1 – 000898, Т2 – 000576. Предыдущие значения: Т1 – 000840, Т2 – 000539.

Тариф для зоны пика в Москве (в домах с газовыми плитами) составляет 6,19 р., для ночного периода – 1,92 р.

Определять расход и оплату нужно поэтапно, сначала необходимо вычислить текущее потребление:

Т1. 898–840=58 кВт/ч х 6,19=359,02 р.

Т2. 576–539=37 кВт/ч х 1,92=71,04 р.

Итого за месяц: 359,02+71,04=430,06 р.

Трехтарифный электросчетчик

Необходимо снять показания трех зон: Т1 – 000587, Т2 – 000456, Т3 – 000832. Данные за прошедший месяц: Т1 – 000545, Т2 – 000415, Т3 – 000780.

Тарифы по времени: зона пика – 6,46 р.; ночь – 1,92 р.; полупик – 5,38 р.

Чтобы узнать, сколько требуется заплатить за месяц, нужно считать расход последовательно.

Т1: 587–545=32 кВт/ч х 6,46=206,72 р.

Т2: 456–415=41 кВт/ч х 1,92 = 78,72 р.

Т3: 832–780=53 кВт/ч х 5,38 = 285,14 р.

Далее необходимо сложить все данные:

206,72+78,72+285,14=570,58 р.

Именно эту сумму нужно оплачивать за свет.

Учитывается, что итоговые цифры в квитанции могут несколько отличаться: необходимо обращать внимание на строку «ОДН», которая отражает общие показания по дому и входит в оплату

Разновидности приборов учета электроэнергии

Все существующие сегодня счетчики, разделяют по принципу их действия, бывают трехфазные и однофазные. К сети их подключают не напрямую, между ними, в цепи, в большинстве случаев, присутствует трансформатор. Но возможно и прямое включение. Для сетей с напряжением до 380В, применяют приборы учета электроэнергии от 5 до 20А. Мы уже знаем, что коэффициент трансформации, это разница между напряжением на входе в трансформатор, и напряжением на его выходе.

На электросчётчик попадает чистая электроэнергия, имеющая постоянное значение. Сегодня прибегают к использованию двух основных разновидностей приборов учета. До середины девяностых годов прошлого века, монтировали в основном счетчики индукционного типа. Они продолжают работать и сегодня, но постепенно идет замена их на электронные счетчики (это утверждение касается и общедомового счетчика).

Счетчик индукционного типа имеет устаревшую конструкцию. В основе его работы, взаимодействие магнитных полей, продуцируемых в индуктивных катушках и диске, который в процессе вращения считывает расход электричества. Недостаток этих приборов состоит в том, что они не в состоянии обеспечить многотарифный учет. К тому же, нет возможности удаленной передачи данных.

В основе работы электронных счетчиков, лежат микросхемы, они напрямую преобразуют считываемые сигналы. В этих устройствах нет вращающихся частей, что значительно повышает их надежность и долговечность службы. Проще говоря, коэффициент трансформации счетчика, оказывает прямое влияние на точность выдаваемых им данных.

Раньше, показатели точности составляли 2.5, но приборы учета, используемые сегодня, имеют класс точности, на уровне 2.0. Такие высокие данные точности, имеет именно оборудование электронного типа. Сегодня повсеместно устанавливают только электронные счетчики, которые уверенно вытесняют индукционные.

Главное преимущество, технологически продвинутого оборудования, состоит в том, что они являются многотарифными. Такое обстоятельство позволяет не только учитывать суточный уровень потребления электроэнергии, но также и в соответствии с порой года. Смена тарифов контролируется автоматикой и производится автономно, не требуя вмешательства человека.

По типу изоляции

Трансформатор электротока может быть:

  • с эпоксидной смолой или специальным лаком;
  • в пластиковом корпусе;
  • с твердой изоляцией из фарфора, бакелита. твердого пластика;
  • с вязким составом (маслом);
  • наполненные газом;
  • с масляно-бумажной изоляцией.

Какие параметры учитывать

Для расчета показаний электросчетчика с трансформаторами тока важен коэффициент трансформации. Он может быть одноступенчатый или каскадный (многоступенчатый). Последний вид ТТ отличается наличием нескольких вторичных обмоток и большим количеством витков в первичной обмотке.

Нежелательно покупать ТТ со слишком высоким уровнем трансформации. При подобном выборе придется устанавливать счетчик на приемный вход. Более популярны преобразователи с одним коэффициентом, не меняющие показание во время эксплуатации. При их использовании проблема, как считаются показания счетчика электроэнергии, подключенного через трансформаторы тока, решается проще.

Расчет электроэнергии по счетчику с трансформаторами тока можно провести только в том случае, если известен коэффициент трансформации. Он должен быть указан в техдокументации, с которой продавался ТТ, и на корпусе. При подозрениях на неточности в отображаемых цифрах коэффициент можно посчитать самостоятельно.

Чтобы рассчитать коэффициент, необходимо подключить преобразователь к электротоку, создающему короткое замыкание во вторичной обмотке, и измерить, сколько ампер в ней.

Коэффициент трансформации – соотношение значений поданного электротока и проходящего во вторичной обмотке.

Например, если короткое замыкание вызвали 150 А, на вторичной обмотке 5 А, действительный коэффициент 30. Это более точное значение, чем номинальное, которое определяется по номинальному электротоку первичной и вторичной обмотки. Результат расчета показаний электросчетчика с трансформаторами тока более точный.

Формула для определения КТ

Расчет показаний электросчетчика с трансформаторами тока и соответствующими коэффициентами производится по определенной формуле. Результат отражает необходимое масштабирование – повышение или понижение данных. Другими словами – трансформатор изменяет уровень напряжения и показывает колебания в цифрах.

Чтобы понять, как правильно считать показания счетчика электроэнергии с трансформаторами тока, стоит разобраться с используемой формулой. В большинстве случае коэффициент трансформации шифруют английскими буквами k и n (другие символы встречаются реже). Если обозначение на трансформаторе k ˂ 1, значит, устройство работает на повышение, если k ˃ 1 – на понижение.

Общая формула следующая:

где: U1 – уровень напряжения на входе, U2 – уровень на выходе, N1 – первичная обмотка (число витков), N2 – вторичная обмотка (число витков).

Данная формула используется, если можно пренебречь показателями потерь в обмотках. В ином случае прибегают к следующим расчетам:

где: R1и R2 – данные по сопротивлению первичной и вторичной обмоток соответственно, I1 и I2 – уровень силы электроэнергии на соответствующих витках.

Для крупных объектов формулы могут быть сложнее указанных, чтобы расчеты учитывали все нюансы и детали потребления электроэнергии.

Это интересно: Кабель для подключения асинхронного двигателя на 37 кВт — наш взгляд на вопрос

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий