Почему провод нагревается при протекании по нему тока

Профилактика нулевого подключения

Естественно, для того чтобы избежать всего вышеописанного желательно периодически осматривать места подключения проводников и при необходимости осуществлять их ревизию. Конечно работать с электрическими проводниками должен специалист – электрик.

Так, при выявлении места нагрева следует выполнить переподключение нулевого провода к шине. Для чего вначале следует обесточить место проведения работ и убедиться в отсутствии напряжения на выходе с автоматического выключателя и непосредственно на участке проведения работ.

Затем следует ослабить зажимные винты и отсоединить нулевой проводник от места подключения (обычно шина или винтовая клемма).

Далее нужно выполнить ревизию точек подключения, для чего в случае с алюминиевыми и моножильными проводниками нужно выполнить их зачистку от окислений, а при необходимости – произвести полную перезачистку провода.

В случае же с многожильными проводниками, их также желательно зачистить и качественно пролудить или же обжать специальной гильзой или кабельным наконечником.

В финале производится соединение проводника с точкой подключения в обратной последовательности.

Кстати, если возникает необходимость непосредственного соединения медных и алюминиевых участков, то этого допускать нельзя (высокое сопротивление переходного контакта), а как вариант применять алюмомедные наконечники или же делать соединение через хромированные шайбы (устанавливаются на шпильку между медью и алюминием).

Ну и конечно же следует защищать собственную электропроводку от подобных явлений при помощи специальных устройств типа УЗО, реле напряжения, автоматический выключатель с тепловым расцепителем. О чем мы уже неоднократно рассказывали на страницах нашего ресурса.

Видео по теме

Опасность тока

Электрический ток, к которому мы так привыкли, что даже о нём не думаем, на самом деле очень опасное изобретение человечества. Будучи невидимым и неосязаемым электрический ток, несет смертельную угрозу для человека и потенциальную опасность для жилища.

Опасность электрического тока проявляется не только при серьёзных аварийных ситуациях, таких как короткое замыкание или оголение токоведущих элементов проводки. Есть скрытая опасность тока, проявляющаяся в нагреве, перегреве и дальнейшем возгорании участков электропроводки, в частности в местах соединений и присоединений.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U 2 /R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Q = I^2 R t

Формула говорит что чем больше тепла (Q), тем выше значение тока (I), сопротивление проводника (R) и время (t) тока. Это открытие было спорным в то время – тепловая теория предполагала что оно должно отводиться от одного объекта, чтобы нагреть другой. И вдруг кто-то заявил, что провод выделяет тепло сам по себе! Но вскоре миру пришлось смириться с тем фактом, что теория тепловой энергии, выдвинутая Джоуля, была верной. Связь между силой трения и теплотой позволила ему вычислить, насколько выше температура воды внизу водопада, чем вверху, и сколько работы требуется, чтобы нагреть фунт воды на один градус по Фаренгейту. Количество способов получения тепла было большим, что доказало – это не более чем один из видов энергии.

Как снизить температуру адаптера?

Теперь вы знаете, почему блок питания ноутбука сильно греется. Осталось понять, как избавить лэптоп от этого недостатка. Можно попробовать следующие способы:

  • Поместите блок питания в такое место, где он может охлаждаться естественным образом. Как уже было отмечено выше, адаптер не должен быть закрыт одеялом или любой тканью. Также ему противопоказано лежание на ковре и попадание прямых солнечных лучей.
  • Постарайтесь при зарядке не нагружать ноутбук сильно. Подождите, пока аккумулятор зарядится, и лишь затем запускайте «тяжелые» игры и требовательные к ресурсам программы.

Если ни естественное охлаждение, ни временный отказ от игр не снижает температуру блока питания, то придется покупать новое оборудование с большей мощностью. Но чтобы ноутбук не сгорел, необходимо правильно подобрать блок питания, учитывая напряжение. Изучите маркировку на корпусе лэптопа. Там должны быть указаны параметры зарядного устройства: например, 19V-2.4A.

Затем посмотрите ситу тока и напряжение на старом блоке питания, который сильно греется. Вольтаж на нем должен совпадать, а сила тока может быть чуть больше.

Чтобы избавиться от перегрева, вам следует купить адаптер с таким же напряжением (19V) и большей силой тока – например, 4,7A вместо 2,7A. В таком случае блок питания при зарядке будет поддерживать низкую температуру, потому что нагрузка на узлы снизится.

Что мы узнали?

Итак, мы поговорили кратко о нагревании проводников электрическим током. Нагрев проводников происходит из-за того, что электроны, движущиеся упорядоченно с определенной скоростью, сталкиваются с атомами вещества и отдают часть своей энергии, которая переходит в тепло. Количество тепла можно определить, применив формулу Джоуля-Ленца.

Почему при прохождении электрического тока проводник нагревается? Ответ на этот вопрос крайне важен при выборе материалов и сечения проводников, а также в контексте борьбы с последствиями токов короткого замыкания.

Поэтому в нашей статье мы постараемся максимально подробно, но при этом на доступном языке, разобраться с причинами нагрева, его этапами и использовании этого свойства проводников на практике.

Насколько сильно греется кабель?

Столкновение сопровождающее прохождение тока, является бесконечным источником кинетической энергии, которая увеличивает вибрацию проводника и увеличивает его температуру. Если в какой-то момент отключить электричество, эта энергия будет выделяться в окружающую среду в виде тепла. Но что, если ток проходит много часов? Согласно закону Джоуля, количество тепла, аккумулируемого в проводнике, должно со временем увеличиваться. Есть ли предел?

Что это значит для провода? Как только включается питание, когда провод еще холодный, он начинает очень быстро нагреваться. Но со временем, когда температура достигает значения в несколько десятков градусов, кабель начинает отдавать все больше тепла в окружающую среду, что замедляет его дальнейший нагрев. В конце концов дело доходит до того что скорость выделения энергии совпадает со скоростью нагрева, и повышение температуры проводника прекращается. Затем кабель достигает так называемой предельной температуры, что видно на графике:

Основные причины нагрева кабеля проводки и питающего шнура электроприборов

Нагрев питающего провода — это крайне опасное явление, требующее незамедлительного устранения. Но прежде чем приступать к ремонту, нужно понять, где и почему происходит нагрев. В этой статье мы как раз рассмотрим основные причины нагрева и способы их устранения. Итак, начнем.

Почему может греться кабель или питающий шнур

Итак, давайте начнем с того, что определимся с основными причинами нагрева. Существуют несколько главных причин, а именно:

1.Кабель либо питающий шнур не справляется с токовой нагрузкой.

2. Монтаж проводки выполнен с нарушениями и из-за этого происходит нагрев.

3. Соединения проводов выполнены ненадлежащим образом.

4. Неудовлетворительное качество питающего кабеля или шнура.

Это основные причины нагрева кабеля, теперь давайте поговорим о них подробно, сразу разбирая способы устранения.

Как решить проблему

Для начала давайте рассмотрим случай, когда греется питающий шнур электроприбора.

Итак, первым делом определите место нагрева:

— греется область возле питающей вилки.

— греется область возле самого электроприбора.

— или нагревается весь питающий кабель.

Итак, в первом варианте причин может быть две: это плохой контакт проводов внутри самой вилки. И способ устранения таков: разбираем вилку и при необходимости протягиваем болтовое соединение.

Второй причиной может быть сама розетка: от интенсивной эксплуатации губки розетки неплотно фиксируют вилку и из-за этого в данном месте происходит нагрев. Способ устранения следующий: в идеале поменяйте розетку на качественную со специальными поджимными пружинами. Но если нет возможности, то просто с помощью пассатижей сожмите контактные губки

Еще одним из вариантов нагрева розетки является не соответствие ее номинала протекающему току. Возможно у вас розетка рассчитана на 10 А

, а вы подключаете в нее мощный электроприбор. Решение тут только заменить розетку на более мощную, рассчитанную на16 А .

Если же у вас греется шнур возле электроприбора, то виной тому тоже плохой контакт. Для устранения откройте корпус электроприбора и протяните болтовое соединение на самом приборе.

А вот если у вас греется весь питающий шнур, то значит что нерадивый производитель сэкономил и вместо, например, провода сечением 1,5 мм2 установил с сечением 0,75мм2. В этом случае поможет только полная замена питающего шнура.

Теперь давайте разберем причины нагрева самой проводки

Начнем с самой банальной и распространенной причины. В очень многих домах старая алюминиевая проводка и при ее прокладке она рассчитывалась на одни нагрузки, а сейчас электрические нагрузки на сеть стали несоизмеримо больше. И из-за этого проводка начинает перегреваться. В таком случае есть только один выход: это полная замена проводки в доме (квартире).

Так же очень распространен вариант, когда перегревается провод в распределительном щитке. Причина этого кроется в плохом контакте или неправильно выполненном подключении.

Например, если используется гибкий провод, то подключать его в автомат или на заземляющую шину без предварительной опрессовки категорически запрещено.

Электрическое отопление

Поскольку нет идеальных проводников, а каждый электрический провод все равно нагревается, может это выделяемое тепло использовать для чего-то? Обогреватели, фены, духовки, электрочайники – все эти устройства используют закон Джоуля для вырабатывания огромного количества тепла при относительно низком токе. Как это делается?

Поскольку сопротивление вырабатывает тепло, для создания нагревательных элементов следует использовать материалы с относительно высоким удельным сопротивлением. Чтобы обеспечить максимальное сопротивление и температуру, до которой нагревается такой элемент, он сделан из проводника с минимально возможным диаметром. Скатывая его дополнительно в спираль, получаем бОльшую поверхность теплообмена при тех же размерах.

В общем производство тепловой энергии – интересный побочный эффект сопротивления. С одной стороны, электроэнергетика отдала бы многое, чтобы избавиться от него, с другой – теплоэнергетика не могла бы существовать без сопротивления. А что касается ненужного нагрева токонесущих линий электропередач, возможно вскоре изобретут материалы с нулевым сопротивлением (сверхпроводники) и это позволит значительно снизить потери мощности.

   Форум по обсуждению материала ПОЧЕМУ ПРОВОДА НАГРЕВАЮТСЯ

СХЕМЫ ЭЛЕКТРОМАГНИТНЫХ ПИСТОЛЕТОВ

Приводится несколько рабочих схем электромагнитных Gauss Gun. Первая часть сборника.

SMD ПРЕДОХРАНИТЕЛИ

Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.

В КАКОМ НАПРАВЛЕНИИ ТЕЧЕТ ТОК

В каком направлении течет ток – от плюса к минусу или наоборот? Занимательная теория сути электричества.

ПРОВОДНИКИ И ИЗОЛЯТОРЫ

Что такое изолятор и чем он отличается от токопроводящего материала. Занимательная теория радиоэлектроники.

Розетка

Причиной нагрева может быть слабая розетка, рассчитанная на подключение нагрузки с меньшей мощностью. Так для современных электрочайников, обогревателей, бойлеров требуется розетка на 16 Ампер или подключение напрямую в щиток через автоматический выключатель (если мощность потребления выше 3,5 кВт). Стандартная 10-амперная розетка при подключении такого прибора, будет греться и за небольшое время может расплавиться или даже загореться. Для безопасной и бесперебойной работы электрооборудования розетку необходимо заменить.

Можно встретить и вариант несоответствия электровилки и розетки даже небольшая разница в расстоянии между штифтами штепселя и отверстиями в розетке приводит к тому, что контакт слабый. Так бывает у разных производителей или если техника (или розетка) устаревшей модели. Возникает нагрев, со всеми опасными последствиями. В этом случае потребуется подключить прибор к другой розетке, применить переходник, или провести замену вилки или розетки.

Практические причины, почему греется проводка

Как я сказал в начале статьи, если вы заметили, что греется проводка, это сигнал на который нужно реагировать. Не доводя ситуацию до аварийной, нужно выяснить причины нагрева.

Причина 1

Неправильно был сделан расчет электрической сети и был использован электрический кабель сечение, которого не соответствует потребляемой мощности. Например, для питания электрической плиты 220 В, 10 кВт, был использован кабель сечением 2,5 кв. мм.

Устранение. Не включать мощные бытовые приборы или заменить кабель, на кабель с большим сечением.

Причина 2

Установлен автомат защиты с завышенным номиналом по току. Автомат защиты группы и кабель электропроводки этой группы подбираются по планируемой мощности подключаемых приборов. Завышение номинала автомата защиты и подключение мощного бытового прибора приведет к нагреванию проводки.

Устранение. Обязательное снижение номинала автомата защиты до уровня надежное отключение и далее не включать мощные бытовые приборы. Заменить кабель, на кабель с большим сечением, увеличить номинал автомата защиты.

Причина 3

Неправильно сделано соединение проводов (жил кабеля) на участке электропроводки. Некачественное соединение проводов в распаячных коробках, в местах соединения двух кабелей, прямое соединение алюминиевых и медных проводов могу привести к нагреву проводки, особенно с течением времени.

Исправление. Использовать для соединения проводов специальные клемники.

Причина 4

Плохой контакт в местах подключения. Чаще плохой контакт в местах подключения проводников к розетке или шине, приводит к нагреву в месте подключения (нагрев контактов), но может приводить и к нагреву проводки.

Устранение. Протяжка всех контактных соединений электропроводки.

Способы устранения проблемы

Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.

Бытовая техника

Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.

  1. Проверьте, по всей ли длине кабель одинаково нагрет, или большая температура наблюдается в одном месте. Частая проблема – плохой электрический контакт вилки и кабеля, идущего к бытовому прибору.

Как устранить:

  • Необходимо выкрутить болты крепления корпуса вилки и снять верхнюю крышку.
  • Послабить контакты крепления проводов и достать провода.
  • Зачистить провода и места контактов – устранить все препятствия на пути прохождения электрического тока. Затем уложить провода на своё место и тщательно затянуть болты.
  • Окончательный этап – сборка крышки.
  1. Плохой контакт кабеля на входе бытового прибора. Если вилка цела, качество контактов на должном уровне, а провод греется с другой стороны, то следует проверить распредкоробку (или как её называют – клеммную коробку) бытового прибора.

Как устранить:

  • Выкрутить 4 болта крепления верхней крышки клеммной коробки и снять саму крышку. Под ней размещена клеммная колодка, в которой выполнен прямой контакт входного провода и провода бытового прибора.
  • Колодку следует открутить, достать провода и зачистить их, а также места крепления колодки. Для зачистки удобно использовать небольшой надфиль или мелкозернистую наждачную бумагу.
  • После зачистки, кабели установить в клеммную колодку, затянуть болтами и поставить на своё место крышку.
  1. Если кабель греется по всей длине, а розетка рассчитана на допустимый ток бытового прибора, то причина только одна — низкое качество кабеля. Такой проводник следует заменить.

Электропроводка

Излишнее нагревание проводов в домашней электропроводке сопровождается запахом горелой изоляции и приводит к неправильной работе бытовой техники. В некоторых случаях возможен даже выход из строя электрических приборов.

Последовательность определения неисправности:

  1. Основной проблемой может быть место подключения силовых кабелей в квартирном щитке. Обычно входной кабель крепят к медной шине, от которой пойдут провода дальше в квартиру. Ослабленный контакт на шине приводит к постепенному нагреву кабеля, также возможно искрение. Достаточно зачистить провод и немного подтянуть контакты.

Важно! Многожильные медные провода необходимо сначала опрессовать гильзой, после чего наконечник закрепить на шине с помощью болтового соединения

  1. Ещё одна причина повышения температуры проводника – слабый контакт на автоматическом выключателе или его неисправность. Высокий номинал автомата приводит к постепенному нагреву кабелей, оплавлению изоляции и его возгоранию. Достаточно включить несколько мощных бытовых приборов, например, стиральную машину и бойлер, при неработающем автомате, и результат не заставит себя долго ждать.

    Плохой контакт проводника и автоматического выключателя

  2. Распределительная коробка – одно из самых небезопасных мест электромонтажа. Одна недожатая скрутка приводит к сгоревшей изоляции и возможному короткому замыканию. Поэтому все соединения в распределительных коробках лучше выполнять, используя медные клеммники.

Неисправная вилка

Медлить с починкой не стоит — розетка может заискрить, появится неприятный запах гари. Помимо выхода из строя оборудования, это просто опасно, например, из-за риска пожара или удара током. Нужно ограничить использование розетки и вилки, а лучше — прекратить.

При появлении задымления или прочих серьезных признаков следует отключить электричество. Обычно рубильник находится в счетчике на распределительном щитке. Нужно привлечь специалиста либо починить самостоятельно. Работы проводятся после отключения электричества.

При поломке вилки можно заменить ее либо попробовать отремонтировать.

Конструкция штепселя встречается двух типов:

  1. Корпус запаян. Можно лишь установить новую вилку. Провод со старой аккуратно обрезается, концы зачищаются, подсоединяется другой штепсель.
  2. Разборная — появляется возможность устранить конкретную неисправность, починить вилку.

Решение проблем с разборной вилкой

Проверяем надежность соединения ножек штепселя с кончиками проводов.

Контакт нарушается по следующим причинам:

  1. Слабое закрепление болтом. Нужно просто затянуть до упора.
  2. Обгорание проводки. Поврежденный участок обрезается, производится новое крепление: изоляция снимается, провод зачищается, соединяется болтом.
  3. Окисление устраняется одним из способов: зачисткой ножом или наждачной бумагой, при помощи кислоты для травления, простым обрезанием поврежденного участка и сборкой нового контакта.

Причины, связанные с вилкой

Распространенные причины, по которым нагревается вилка в розетке:

  1. Плохой контакт розетки и вилки. Соединение должно быть без зазоров. Диаметры ножек штепселя и отверстий розетки должны совпадать. Для проверки нужно слегка покачать вставленную вилку. Если присутствует заметный люфт, необходимо заменить розетку.
  2. Использование тройников, переходников, которые могут быть не рассчитаны на подобную нагрузку. Параметры уточняют у продавца или в документах. В целях безопасности для подключения мощных приборов «посредники» лучше не использовать.
  3. Подключение в розетку оборудования с разными по диаметру контактами штепселя, например, нагревателя воды и фена.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Из формулы также следует –  чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление  0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге –  подгорание с последующим пропаданием контакта.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать  электрические цепи. В 1832 году  Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что  существует некая  зависимость между силой тока, электрическим сопротивлением  и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился  спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена  были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося  раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

9.Сопротивление и проводимость.

Сопротивление зависит от геометрии и от вещества, из которого сделан проводник.

Для цилиндрического проводника одинакового поперечного сечения оно вычисляется особенно просто.

Измерив сопротивление, можно вычислить ёмкость и наоборот.

Данное устройство иногда называется конденсатором с утечкой.

По физическому смыслу, удельное сопротивление – это сопротивление куба вещества с ребром 1 м, если подводящие провода подключены к центрам противоположных граней.

Приведем таблицу удельных сопротивлений

Медь1,72·10-8Ом·м
Серебро1,6·10-8Ом·м
Алюминий2,6·10-8Ом·м
Свинец2,0·10-6Ом·м
Графит3·10-5Ом·м
Германий0,6Ом·м
Стекло10+9Ом·м

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Закон Джоуля-Ленца

На основании этого и других экспериментов можно сделать следующие предположения:

  • чем больше сопротивление, тем сильнее нагреваются проводники. То есть количество теплоты Q, которое выделяется при протекании электрического тока по проводнику, прямо пропорционально величине сопротивления проводника R;
  • чем больше сила тока, тем большее количества тепла выделяется. При возрастании тока большее количество частиц проходит через поперечное сечение проводника в единицу времени, то есть число столкновений возрастает, а значит больше энергии передается атомам проводника.

Формулу для вычисления количества тепла получили независимо друг от друга в 1842 г. английский физик Джеймс Джоуль и российский ученый Эмилий Ленц:

$ Q = I^2*R*t $

где:

Q — количество теплоты, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время, с.

Согласно закону Ома:

$ U = I*R $

где U — напряжение, В.

Пользуясь этой формулой, закон Джоуля-Ленца может быть представлен еще в одном варианте, когда известно напряжение на участке проводника, а сила тока неизвестна:

$$ Q = {U^2\over R}*t $$

Формулы закона Джоуля-Ленца справедливы тогда, когда работа, совершаемая электрическим током идет исключительно на нагревание. Если в цепи есть потребление энергии на выполнение механической работы (электродвигатель) или на совершение химических реакций (электролит), то для расчета необходимо применять другие формулы.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий