Плавный розжиг и затухание светодиодов: особенности, устройство, схема

Можно ли сделать своими руками

Плату по описанной выше схеме можно сделать своими силами. Но, если нет опыта работы с транзисторами, светодиодами и резисторами, лучше приобрести блок в магазине. Сборка своими руками обойдётся намного дешевле. Если знать все тонкости, на работу уйдёт не более 1 часа. Для этого следует знать, как подобрать необходимые элементы и иметь оборудование, чтобы качественно выполнить соединения.

Что понадобиться для работы

Для изготовления устройства для плавного розжига светодиодов своими руками понадобится следующее:

  • припой и паяльник;
  • светодиоды;
  • резисторы;
  • конденсатор;
  • транзисторы;
  • корпус для размещения необходимых элементов;
  • для создания платы требуется кусок текстолитового листа.

Рис.2 – текстолитовый лист для пайки.

Ёмкость рекомендуемого конденсатора – 220 mF. Напряжение не более 16V. Номиналы резистора:

  • R1 – 12 kOm;
  • R2 – 22 kOm;
  • R3 – 40 kOm.

При сборке блоке желательно использовать полевой транзистор «IRF540».

Пошаговая инструкция изготовления своими руками

Для создания блока с плавным розжигом мастер должен уметь паять и знать принцип работы схемы и каждого из её элементов. Первый этап – это изготовление платы. Для начала на текстолите необходимо обозначить границы. После этого можно начать вырезать лист по контурам. Далее заготовку следует проштукатурить с помощью наждачной бумаги (зернистость P800-1000).

На следующем этапе нужно распечатать схему (слой с дорожками). Для этого используют лазерный принтер. Такую схему для распечатки можно найти в интернете. Лист А4 малярным скотчем приклеивается к глянцевой бумаге (например, с журнала). Затем следует приступить к распечатке изображения.

Рис.3 – схема после распечатки.

На лист схема приклеивается с помощью прогревания утюгом. Чтобы плата остыла, её нужно поместить в холодную воду на несколько минут, и после этого, снять бумагу. Если сразу она не отслаивается, это необходимость делать постепенно, сдирая пальцами.

Теперь понадобится двусторонний скотч чтобы приклеить плату к пенопласту такого же размера и поместить в раствор хлорного железа на 5-7 минут. Чтобы не передержать плату, её нужно периодически доставать и смотреть на состояние. Для ускорения процесса вытравливания можно иногда покачивать емкость с жидкостью. Когда лишняя медь стравиться, плату необходимо отмыть в воде.

Рис.4 – плата в растворе хлорного железа.

Следующий этап – это зачистка дорожек с помощью наждачной бумаги. Далее можно приступать к просверливанию дырочек для установки элементов платы. Для этого подойдут сверла диаметром до 1 см. Далее плату нужно облудить. Для этого её можно смазать флюсом, после чего облудить паяльником. Чтобы не спровоцировать перегрев или разрыв цепи, паяльник постоянно должен находиться в движении.

Рис.5 – подготовленная плата к установке элементов.

Следующий этап – это установка элементов по схеме. Чтобы было понятнее, на бумаге можно распечатать ту же схему, но со всеми необходимыми обозначениями. После пайки необходимо полностью избавиться от флюса. Для этого плату можно протереть растворителем 646. Затем её можно прочистить зубной щеткой. Когда блок хорошо просохнет, следует приступить к проверке. Для этого постоянный плюс и минус необходимо подключить к питанию. При этом, управляющей плюс трогать не стоит.

Рис.6 – проверка корректности работы платы.

Вместо светодиодов для проверки лучше использовать мультиметр. Если возникнет напряжение, это значит, что плата коротит. Это может происходить из-за остатков флюса. Чтобы избавиться от проблемы, достаточно прочистить плату ещё раз. Если напряжения нет, блок готов к использованию.

Схемы

Для того чтобы правильно использовать блоки плавного включения ЛК необходимо использовать специальные электросхемы. Благодаря таким схемам можно легко понять, как работает данный прибор и устроен изнутри, а также как его необходимо эксплуатировать.

Схема плавного включения лампы накаливания

Обычно при подключении такого устройства специалисты пользуются наиболее простым и лёгким вариантом схемы. Иногда используют специальную схему с внедрением симистеров. Также, кроме блоков данного вида можно брать полевые транзисторы, которые работают аналогично приборам плавного включения.

Вторая схема плавного включения ламп накаливания

Также того чтобы можно было контролировать напряжение в приборе плавного включения можно использовать автоматические приборы.

Что собой представляет тиристорная схема

Тиристорную схему специалисты рекомендуют использовать для повторения. Состоит она из обычных элементов, которые можно найти в каждом доме. Такую схему можно легко сделать в домашних условиях своими руками.

Тиристорная схема плавного включения лампы

Цепь моста выпрямления (рис.VD1, VD2, VD3, VD4) использует лампочку (рис. EL1) как нагрузку и токоограничитель. Плечи выпрямителя оснащены тиристором (рис. VS1) и сдвигающейся цепью (рис. R1, R2 и C1). Также диодный мост устанавливается за счёт спецификации работы прибора тиристора.

После того как напряжение подаётся на схему, электроток начинает идти через спираль накала и поступает на мост, а затем посредством резистора осуществляется зарядка электролита. Когда достигается предел напряжения открытия тиристора, он начинает открываться и тогда через него проходит ток от лампочки. В результате этого вольфрамовая нить разогревается постепенно и плавно. Период ее разогрева будет зависеть от ёмкости находящегося в схеме устройства конденсатора и резистора.

Чем примечательна симисторная

Такая схема имеет меньшее количество деталей за счёт применения симистора (рис. VS1), который служит силовым ключом.

Симисторная схема плавного включенияламп

Такой элемент, как дроссель (рис. L1), который предназначен для удаления различных помех, появляющихся во время открытия силового ключа, разрешено убрать из общей цепи. (рис. R1)Резистор является ограничителем тока, который поступает на главный электрод (рис. VS1). Цепь, которая задаёт время, исполнена на резисторе (рис. R2) и ёмкости (рис. С1), питающимися посредством диода (рис. VD1). Данная схема работает также как и предыдущая. Когда конденсатор заряжается до уровня напряжения открытия симистора, он начинает открываться, а затем через него и лампочку поступает электрический ток.

Схема плавного включения ламп накаливания

На фотографии внизу мы можем увидеть симисторный регулятор. Такое устройство кроме регулировки мощности в нагрузке, также осуществляет плавное поступление электротока на лампочку, когда её включают.

Устройство плавного включения ламп накаливания

Схема работы блока на специализированной микросхеме

Микросхема типа кр1182пм1 была специально создана специалистами для построения различных фазовых регуляторов.

Схема плавного включения на специализированной микросхеме

В этом случае происходит так, что с помощью самой микросхемы происходит регулирование напряжения на источнике, который обладает мощностью до 150 ватт. А если понадобится управлять более сильной системой нагрузки и десятками осветительных приборов одновременно, то в управленческую цепь просто включается дополнительно силовой симистр. На рисунке внизу мы можем увидеть, как это происходит.

Схема плавного включения с силовым симистром

Применение блоков плавного включения не заканчивается только на обычных лампах, так как специалисты рекомендуют использовать их вместе с галогеновыми лампами, мощностью в 220 В.

Важно знать! С люминесцентными и LED лампами (светодиодными) такие блоки устанавливать нельзя. Это связано с тем, что здесь присутствует различная техника разработки схем, а также принцип действия и присутствие у каждого осветительного прибора своего источника размеренного нагрева для люминесцентных ламп или нет потребности в таком регулировании ламп LED

Место установки защитного блока

Плавное включение света в квартире достигается при правильном выборе места установки. Защиту для каждого светильника устанавливают в зависимости от его места расположения. Если имеется техническая возможность, то лучше поместить его в полость под люстрой. Достоинство устройства — его компактность. Поэтому оно устанавливается в любом доступном месте рядом с осветительным прибором.

С блоком поставляется подробная инструкция. Поэтому его можно установить самостоятельно, не прибегая к услугам электрика. Если позволяет мощность УПВЛ – возможен монтаж для группы из нескольких ламп. В этом случае лучшее место размещения — распределительная коробка. Если в защитной схеме присутствует осветительный трансформатор для понижения мощности, то блок должен находиться первым по ходу тока. Напряжение 220 В должно первым поступать на него, а далее по цепи на всю сеть освещения.

При монтаже устройства плавного включения света необходимо придерживаться строгих правил:

  1. Доступность для ремонта.
  2. Запрещено заклеивать УПВЛ обоями, закрывать гипсокартоном и заделывать штукатуркой.

Пример пользы

При поездках зимой на короткие дистанции, особенной в сильный мороз, большое количество энергии аккумулятора тратиться на запуск двигателя. Со временем аккумулятор теряет свою емкость и хуже держит заряд. Использование ДХО вместо ближнего света позволит быстрее заряжать батарею во время движения.

Посчитаем:

  1. ближний свет потребляет около 100вт, 2 лампы примерно по 50вт;
  2. приличные ДХО до 15W;
  3. 100вт – 15вт = 85W энергии будет потребляться меньше.

Например, у меня в Дастере стоит штатный ТЭН, который греет салон пока не прогрелся двигатель. Соответственно, автомобиль будет прогреваться быстрее.

Здравствуйте Сергей! Купил я себе ДХО вот такой модели с контролером ДХО В ПОВОРОТНИКИ 2 В 1 ЦОКОЛЬ 1156 BA15S СВЕТОДИОДНЫЕ и контролер такой как Вы выше показали, нужна помощь его подключения , схема есть но не доработана по моему мнению. раньше бы знал что Вы есть на сайте то с Вами посоветовался , а теперь прошу разъяснить мне как подключить контролер к ДХО Видео искал но там показывают простое подключения которое и так понятно а вот куда подлючить контролер я так понимаю он выполняет роль стабилизатора напряжения но тогда получается нужно зачистить до резистора или после ? не могу понять. Спасибо. Олег.

Контроллер подключается к лампам и питанию, тут всё просто. Спросите там где покупали, они точно знают схему подключения.

Здравствуйте, сгорел контроллер дхо osram drl 401 пришлось искать аналог , нашел похожий в китае который не приглушает свет а полностью выключает при включении габаритов , заметил странную особенность неприятное мерцание светодиодных ламп причем только на холостых оборотах , контроллер брал не самый дешевый рублей за 700 с хорошим жгутом проводов , а сегодня вечером после выключения ближнего Led лампы вообще загорелись на 10% от своей яркости не ужели второй контроллер сдох, машина Honda CR-V 2008 куда копать дальше незнаю, прошу совета

Чтобы проверить исправность блока протестируйте его отдельно, чтобы не грешить цепи в авто. Китайские блоки ДХО имеют много брака, у меня коллега пробовал разные покупать, многие сгорели.

Здравствуйте Сергей. Вместе с б/у бампером митсубиши аутлендер пришли, кустарно установленные дхо, по виду ну очень кошерные (ARL 0200 13677 NCC/ML-018SAE PY2 06). На проводе подключения висела лейба ( Never connect light without driver to 12V.) Подключил через стабилизатор КРЕН8, предварительно проверив выход-12,08В, полярность определил прозвонкой и….они сгорели нахально вспыхнув на последок. Подскажите пожалуйста, на какие грабли я наступил, может кто другой прочитает и не споткнется. С уважением николай.

Там стоял драйвер, который стабилизировал ток. А вы подключили источник напряжения. Ток получился большим, вот диоды и сгорели.

Все отлично.вопрос-по незнанию купил дхо FT-DRL-046 подключаю через генератор но от бл.управления идут еще 2 белых и 1 синий как их подключать. Точнее какой провод на ближний.у меня газ-31105 спасибо.

Лучше спросите в магазине, в котором покупали, они точно знают. или можно у производителя.

Всем привет, сегодня хочу поделиться схемой плавного включения и плавного затухания светодиодов. Данную схему можно воткнуть куда ваша душа пожелает, привожу схему как с управляющим минусом, так и с управляющим плюсом. Схема не требует каких-либо дополнительных настроек и работает сразу.

Принцип работы схемы:

Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.

Схема с управляющим минусом:

Отмечена распиновка IRF9540N

Можно ли сделать своими руками

Если знать все тонкости, на работу уйдёт не более 1 часа. Следует подобрать необходимые элементы и оборудование, чтобы качественно выполнить соединения.

Что понадобится

Нужны будут:

  • припой и паяльник;
  • светодиоды;
  • резисторы;
  • конденсатор;
  • транзисторы;
  • корпус для размещения необходимых элементов;
  • кусок текстолита для платы.

Рис.2 – текстолитовый лист для пайки.

Ёмкость конденсатора – 220 mF. Напряжение не более 16 V. Номиналы резисторов:

  • R1 – 12 kOm;
  • R2 – 22 kOm;
  • R3 – 40 kOm.

При сборке желательно использовать полевой транзистор IRF540.

Пошаговая инструкция изготовления

Первый этап – изготовление платы. На текстолите необходимо обозначить границы и вырезать лист по контурам. Далее заготовку зашкурить наждачной бумагой (зернистость P 800-1000).

Далее распечатать схему (слой с дорожками). Для этого используют лазерный принтер. Схему можно найти в интернете. Лист А4 малярным скотчем приклеивается к глянцевой бумаге (например, с журнала). Затем распечатывается изображение.

Рис.3 – схема после распечатки.

На лист схему приклеивают, прогревая утюгом. Чтобы плата остыла, её нужно поместить в холодную воду на несколько минут, и после этого снять бумагу. Если сразу она не отслаивается, необходимо очистить постепенно.

Двусторонним скотчем приклеить плату к пенопласту такого же размера и поместить в раствор хлорного железа на 5-7 минут. Чтобы не передержать плату, её нужно периодически доставать и смотреть состояние. Для ускорения процесса вытравливания можно покачивать емкость с жидкостью. Когда лишняя медь стравится, плату необходимо промыть в воде.

Рис.4 – плата в растворе хлорного железа.

Следующий этап – зачистка дорожек наждачной бумагой и можно приступать к просверливанию дырочек для установки элементов платы. Далее плату нужно залудить. Для этого её смазывают флюсом, после чего лудят паяльником. Чтобы не спровоцировать перегрев или разрыв цепи, паяльник постоянно должен находиться в движении.

Рис.5 – плата, подготовленная к установке элементов.

Следующий этап – установка элементов по схеме. Чтобы было понятнее, на бумаге можно распечатать ту же схему, но со всеми необходимыми обозначениями. После пайки необходимо полностью избавиться от флюса. Для этого плату можно протереть растворителем 646, затем прочистить зубной щеткой. Когда блок хорошо просохнет, его нужно проверить. Для этого постоянный плюс и минус необходимо подключить к питанию. При этом управляющей плюс трогать не стоит.

Рис.6 – проверка корректности работы платы.

Вместо светодиодов для проверки лучше использовать мультиметр. Если возникнет напряжение, это значит, что плата коротит. Такое возможно из-за остатков флюса. Чтобы избавиться от проблемы, достаточно прочистить плату ещё раз. Если напряжения нет, блок готов к использованию.

Дневные ходовые огни своими руками: схема

По требованиям дневные огни должны автоматически включаться вместе с запуском двигателя. Производить их включение и выключение надо без помощи дополнительного инструмента (то есть непосредственно из салона автомобиля).

Для этого ДХО коммутируется в блок подачи напряжения на центральные фары. Наиболее распространенной законной схемой установки является схема подключения, при которой дневные огни включаются вместе с фарами.

Следует помнить, что установка ДХО своими руками должна придерживаться требований ГОСТ Р 41.48-2004, которые обязывают всякое изменение в описании доводить до сведения Органа по сертификации.

Этот орган может вынести два вердикта:

  • прийти к заключению, что транспортное средство соответствует стандартным требованиям и изменения, которые внесли, не окажут отрицательного влияния
  • запросить дополнительный протокол лаборатории, которая уполномочена проводить испытания

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.

Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:

  • ток стока: до 23 Ампер;
  • полярность: n;
  • напряжение сток – исток: 100 Вольт.

Более детальную информацию, в том числе и ВАХ, можно найти на сайте производителя в datasheet.

Доработанный вариант с возможностью настройки времени

Рассмотренный выше вариант предполагает использование устройства без возможности регулировки времени розжига и затухания LED. А иногда это необходимо. Для реализации всего лишь нужно дополнить схему несколькими элементами, а именно R4, R5 – регулируемые сопротивления. Они предназначены для реализации функции подстройки времени полного включения и выключения нагрузки.

Рассмотренные схемы плавного розжига и затухания отлично подойдут для реализации дизайнерской подсветки в автомобиле (багажник, двери, область ног передних пассажиров).

Еще одна популярная схема

Вторая самая популярная схема плавного включения и выключения светодиодов очень похожа на две рассмотренные, но сильно отличаются по принципу работы. Управление включением происходит по минусу.

Отличия схемы от рассмотренных ранее. Главное отличие – это другой транзистор. Полевик обязательно нужно заменить на p – канальный (маркировка указана на схеме ниже). Нужно «перевернуть» конденсатор, теперь плюс кондера пойдет на исток транзистора. Не забывайте, доработанный вариант имеет питание с обратной полярностью.

Плавное включение и выключение светодиодов

Есть случаи, когда необходимо обеспечить плавное включение светодиодов, применяемых для освещения или подсветки, а в некоторых случаях и выключение. Плавный розжиг может потребоваться по разным причинам.

Во-первых, при мгновенном включении свет сильно «бьет по глазам» и заставляет нас жмуриться и прищуриваться, выжидая, пока глаза привыкнут к новому уровню яркости. Этот эффект связан с инерционностью процесса аккомодации глаза и конечно имеет место не только при включении светодиодов, но и любых других источников света.

Просто в случае со светодиодами он усугубляется тем, что излучающая поверхность очень мала. Если говорить научным языком – источник света имеет очень большую габаритную яркость.

Во-вторых, могут преследоваться чисто эстетические цели: согласитесь плавно загорающийся или гаснущий свет – это красиво. Схема питания светодиодов должна быть усовершенствована должным образом. Рассмотрим два различных способа плавного включения и выключения светодиодов.

Задержка RC-цепью

Первое что должно прийти в голову человеку, знакомому с электротехникой – введение задержки с помощью включения в схему питания светодиодов RC-цепочки: резистора и конденсатора. Схема приведена на рис.1. При подаче напряжения на вход – напряжение на конденсаторе, по мере его заряда, будет нарастать за время приблизительно равное 5τ, где τ=RC – постоянная времени.

То есть, говоря простым языком, время включения света будет определяться произведением емкости конденсатора и сопротивления резистора. Соответственно, чем больше емкость и сопротивление, тем дольше будет происходить розжиг светодиодов. При отключении питания конденсатор будет разряжаться на светодиоды.

Время, в течение которого будет происходить плавное затухание, также будет определяться τ, но в этом случае вместо R в произведение войдет динамическое сопротивление светодиодов. К примеру, конденсатор на 2200 мкФ и резистор на 1 кОм теоретически «растянут» время включения на  2,2 секунды.

Представленная простейшая схема хорошо позволяет понять принцип действия этого метода, но для практической реализации она мало пригодна. Для получения рабочего решения усовершенствуем ее введением нескольких дополнительных элементов (рис.2).

Работает схема следующим образом: при включении питания конденсатор С1 заряжается через резистор R2, транзистор VT1, по мере изменения напряжения на затворе, уменьшает сопротивление своего канала, тем самым увеличивая ток через светодиод. Выключение питания приведет к разряду конденсатора через светодиоды и резистор R1.

Включим «мозги»…

Если схема должна обеспечить большую гибкость и функциональность, например, не меняя «железо» мы хотим получить несколько режимов работы и задавать время розжига и затухания более точно, то самое время включить в схему микроконтроллер и интегральный драйвер LED  с входом управления.

Микроконтроллер способен с высокой точностью отсчитывать необходимые интервалы времени и выдавать команды на управляющий вход драйвера в виде ШИМ. Переключение режимов работы можно предусмотреть заранее и вывести для этого соответствующую кнопку. Необходимо только сформулировать – что мы хотим получить и написать соответствующую программу.

В качестве примера можно привести драйвер мощных светодиодов LDD-H, который выпускается с номинальными значениями токов от 300 до 1000 мА и имеет вход ШИМ. Схема включения конкретных драйверов обычно приводится в тех. описании производителя (data sheet).

Особенности подключения светодиодов

В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них. Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи. Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.

Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток. Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор. При подаче питания светильник выходит из строя буквально за несколько минут.

Одним из вариантов некорректного подключения в сеть на 12 вольт является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.

Существует несколько способов, как подключить светодиоды на 12 вольт схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства. Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению. При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.

Варианты схем

В магазинах предлагается широкий выбор устройств плавного пуска для ламп от российских и зарубежных производителей. Монтаж не требует особой квалификации. Нужно сделать разрыв провода фазы, ведущего к лампе накаливания, и подключить прибор при помощи клеммников.

При отсутствии клеммников провода спаиваются.

Чаще всего на производствах используется одна из трех схем:

  • туристорная;
  • симисторная;
  • специализированная (обычно микросхема КР1182ПМ1или DIP8).

В сети 220 В

Самая простая схема плавного включения ламп туристорная.

Для самостоятельного изготовления требуются:

  • лампа накаливания;
  • 4 диода (для создания выпрямительного моста);
  • туристор;
  • конденсатор (10 мкФ);
  • 2 резистора (один из них переменной емкости).

Время включение определяет переменное сопротивление.

В момент включения ток проходит через лампочку, выпрямляется мостом, проходит через резистор и начинает скапливаться в конденсаторе. После достижения определенного порога зарядки ток подается на туристор, он немного открывается. По мере наполнения конденсатора туристор открывается все больше, лампочка постепенно загорается. Максимальная мощность света достигается при полной зарядке конденсатора.

Лампочки накаливания рассчитаны на 220 В (на практике может быть до 240 В). Диоды и туристор выбираются, базируясь на этот показатель. При самостоятельном изготовлении необходимо учесть, что можно использовать любые диоды с напряжением от 300 В и туристор, способный выдерживать мощность от 2 кВт. Емкость накопителя тоже большого значения не имеет

Важно знать, что при ее уменьшении лампочка будет зажигаться быстрее

Использование симистора (попупроводникового ключа) позволяет уменьшить количество элементов в туристорной схеме.

Используется:

  • дроссель;
  • 2 резистора;
  • конденсатор;
  • диод;
  • симистор.

По принципу действия эта схема мало отличается от предыдущей. Время включения определяет цепочка из резистора и конденсатора, которые подключены через диод. По мере наполнения емкости конденсатора постепенно открывается симистор, через который подпитана лампочка накаливания. Она загорается не мгновенно, а плавно. Такой прибор более удобен в использовании благодаря небольшим размерам.

Плавный пуск ламп при помощи приборов, созданных на основе микросхемы КР1182ПМ1(DIP8), можно использовать с источниками освещения, обладающими мощностью до 150 Ватт.

Основа этого прибора – 2 туристора и 2 системы управления. Время регулируется резистором и конденсатором. Силовую часть от управляющей отделяет симистор, подключенный через задающий ток резистор. Работу внутренних туристоров регулируют 2 наружных конденсатора, от помех, создаваемых сетью, защищает дополнительный конденсатор и резистор.

При использовании этой схемы свет не только плавно включается, но и плавно выключается. Длительность загорания и затухания регулируется подбором емкости конденсаторов.

Плавное включение обладает существенным недостатком – снижением яркости светового потока. Для достижения оптимального уровня освещения требуются лампы с максимальной мощностью.

Для одноклавишных выключателей существует схема на основе транзистора. Когда лампочка накаливания выключена, он закрыт. После включения напряжение через резистор и диод поступает на конденсатор, он начинает заряжаться. Максимальный уровень (9,1 В) ограничивает стабилитрон.

После достижении оптимального напряжения транзистор начинает открываться, нить накаливания лампочки, подключенной последовательно, постепенно нагревается. Обязателен второй резистор у конденсатора, обеспечивающий его разрядку после выключения. Основное преимущество использования транзистора – отсутствие мерцания лампочки накаливания.

При напряжении 12 В

Если светильник точечный, то используется трансформатор, преобразующий 220 вольт в 12 вольт. Для подключения к 12 В устройства плавного пуска он устанавливается перед преобразователем напряжения.

Если такой прибор необходим для автомобиля, требуются специальные схемы – импульсные или линейные (ШИМ-регуляторы).

Линейные подключаются к источникам света параллельно. После включения ток проходит через резистор, лампы тусклые. После подключения реле они загораются на всю мощность.

Резистор должен быть керамический, мощность примерно 5 Вт, сопротивление 0,1-0,5 Ом.

Импульсные схемы создаются на основе полевого транзистора, подающего ток короткими импульсами. За счет этого нити накаливания не нагреваются до уровня, при котором возможен разрыв. В перерывах между импульсами ток успевает равномерно распределиться по нити, выравнивая сопротивление.

Низковольтные мигающие светодиоды

Что касается низковольтных мигающих светодиодов, то у них отсутствует ограничительный резистор. При переполюсовке питания требуется наличие защитного диода. Он необходим для того, чтобы не допустить выхода микросхемы из строя.

Чтобы работа высоковольтных мигающих светодиодов была долговременной и шла бесперебойно, напряжение питания не должно превышать 9 вольт. Если напряжение тока возрастет, то рассеиваемая мощность мигающего светодиода увеличится, что приведет к нагреву полупроводникового кристалла. Впоследствии из-за чрезмерного нагрева начнется деградация мигающего светодиода.

Когда необходимо проверить исправность мигающего светодиода, то для того, чтобы это сделать безопасно, можно использовать батарейку на 4,5 вольта и включенный последовательно со светодиодом резистор сопротивлением 51 Ом. Мощностью резистора должна быть не менее 0,25 Вт.

Другие причины перегорания светодиодных ламп

Вы снизили количество вредных факторов до минимума, но лампы все равно выходят из строя. Отчего это происходит? Есть еще две причины:

  • слишком частое включение и выключение;
  • плохой источник питания.

Частое включение-выключение ламп

При включении света происходит бросок тока через сглаживающий конденсатор. Поэтому возникает опасность перегорания предохранителя или токоведущей дорожки. Чтобы избежать такой проблемы, не нужно постоянно переключать освещение. LED-светильники экономичны, и лишний час работы не ударит по бюджету.

Преобразователь напряжения

Отсутствие защиты от перепадов напряжения — основная проблема ламп бюджетного ценового сегмента. Стабильный ток для работы светодиодов обеспечивает драйвер. Часто именно он выходит из строя по описанным выше причинам. Проверьте наличие напряжения на выходе блока питания, а также целостность всех светодиодов.

Для низковольтных светильников (12 В) используют также электронные трансформаторы. Если у вас не горит ни одна лампа – проверьте сначала именно его. Кстати, из нескольких перегоревших совсем несложно собрать одну.

Качественный свет очень важен для вашего здоровья и зрения, но дешевая продукция – это удар по бюджету. Лампы часто сгорают, коэффициент пульсаций, качество цветопередачи не соответствуют нормативам. Следите за состоянием ваших светильников, выключателей и проводки, чтобы избежать преждевременной “смерти” ламп. Тогда вы избежите излишних трат.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий