Что такое петля фаза-ноль — для чего и как правильно ее измерять

Примеры проведения вычислений

В качестве примеров таких измерений рассматриваются два способа.

Эффект от падения напряжения на контролируемом участке силовой цепи

При описании этого способа важно обратить внимание на трудности его практической реализации. Это объясняется тем, что для получения конечного результата потребуется несколько этапов. Сначала придется измерить параметры сети в двух режимах: с отключенной и подключенной нагрузкой

Сначала придется измерить параметры сети в двух режимах: с отключенной и подключенной нагрузкой

В каждом из этих случаев сопротивление измеряется путем снятия показаний по току и напряжению. Далее оно рассчитывается по классическим формулам, вытекающим из закона Ома (Zп=U/I)

Сначала придется измерить параметры сети в двух режимах: с отключенной и подключенной нагрузкой. В каждом из этих случаев сопротивление измеряется путем снятия показаний по току и напряжению. Далее оно рассчитывается по классическим формулам, вытекающим из закона Ома (Zп=U/I).

В числителе этой формулы U представляет собой разницу двух напряжений – при включенной и при выключенной нагрузке (U1 и U2). Ток учитывается только для первого случая. Для получения корректных результатов разница между U1 и U2 должна быть достаточно большой.

Полное сопротивление учитывает импеданс катушки трансформатора (он суммируется с полученным результатом).

Применение независимого источника электрического питания

Данный подход предполагает определение интересующего специалистов параметра с помощью независимого источника питающего напряжения. При его проведении потребуется учесть следующие важные моменты:

  • В процессе измерений первичная обмотка питающего станционного трансформатора замыкается накоротко.
  • С независимого источника напряжение питания подается непосредственно в зону КЗ.
  • Сопротивление фаза-ноль рассчитывается по уже знакомой формуле Zп=U/I, где: Zп – это значение искомого параметра в Омах, U – измеренное испытательное напряжение в Вольтах, I – величина измерительного тока в Амперах.

Все рассмотренные методы не претендуют на абсолютную точность полученных по их итогам результатов. Они дают лишь приблизительную оценку величины полного сопротивления петли фаза-ноль. Такой ее характер объясняется невозможностью в рамках предложенных методик измерять индуктивные и емкостные потери, которые всегда присутствуют в силовых цепях с распределенными параметрами. При необходимости учета векторной природы измеряемых величин (фазовых сдвигов, в частности) придется вводить специальные поправки.

Испытание цепи «Ф-Н» измерителем MZC 300

Измерение петли фаза ноль прибором MZC 300 требует соблюдения определенной последовательности действий, учитывая некоторые особенности устройства.

Обязательные условия

Первоначально рекомендуется включить MZC 300 и убедиться в отсутствии на экране надписи bAt. Она сигнализирует о разряженных батарейках, а следовательно, провести достоверные измерения не удастся.

В процессе осуществления замеров могут появляться характерные ошибки, обусловленные следующими причинами:

  1. Напряжение сети менее 180 или более 250 Вольт. В первом случае на экране высветится буква U в сопровождении с двумя звуковыми сигналами, а во втором надпись OFL и одно продолжительное звучание.
  2. Высокая нагрузка на измеритель, сопровождающаяся перегревом. На дисплее высветится буква T, а зуммер выдаст два длительных звука.
  3. Обрыв нулевого или защитного провода в исследуемой схеме, что сопровождается появлением на дисплее символа «— —» и продолжительным звуком.
  4. Превышено допустимое значение общего сопротивления исследуемой схемы — два продолжительных звука и символ «—».

Способы подключения

С помощью MZC 300 можно произвести замеры различных участков цепи. При этом необходимо обеспечить качественный контакт наконечников прибора.

Далее представлен порядок подключения измерителя в зависимости от вида проводимого тестирования:

  1. Снятие характеристик с петли «Ф-Н» — один наконечник измерителя фиксируется к нулевому (N) проводу, а второй поочередно устанавливается на линейные (L) провода.
  2. Проверка защитной цепи — один контакт поочередно крепится к линейным проводникам, а второй к защитному заземлению (PE).
  3. Тестирование надежности заземления корпуса электрооборудования производится в зависимости от типа сети — с занулением (TE) или с защитным заземлением (TT). При этом порядок производства измерений идентичен. Один наконечник прибора цепляется к корпусу электрооборудования, а второй поочередно к питающим проводникам.

Считывание показаний о напряжении сети

MZC 300 рассчитан на выдачу показаний фазного напряжения в пределах от 0 до 250 В. Для снятия данных понадобится нажать на клавишу «Start». При отсутствии указанных манипуляций измерительное устройство автоматически выведет на дисплей полученное значение, по истечении пяти секунд с момента начала тестирования.

Измерение характеристик контура «Ф-Н»

Для получения основных показателей в MZC 300 используется методика искусственного короткого замыкания. Она позволяет измерить полное сопротивление петли, разлагая на активную и реактивную составляющую, а также выдавая данные по углу сдвига фаз и величине предполагаемого Iкз. Для их поочередного просмотра понадобится нажимать кнопку «Z/I».

Измерительный ток протекает по тестируемому контуру в течение 30 мс. Для ограничения величины тока в схеме прибора смонтирован ограничивающий резистор на 10 Ом. При этом прибор автоматически устанавливает требуемую величину измерительного тока, учитывая уровень напряжения в сети и величину сопротивления схемы «Ф-Н».

При наличии в схеме УЗО следует предварительно исключить защитный аппарат из тестируемого контура посредством установки шунта. Это обусловлено тем, что подаваемый от MZC 300 измерительный ток приводит к отключению УЗО.

Вывод результатов измерения

После осуществления необходимых подключений на экране прибора будет отражаться уровень напряжения сети. Процесс измерения начинается после нажатия кнопки «Start». По факту окончания тестирования на дисплей выводится информация о величине полного сопротивления или предполагаемого Iкз, в зависимости от первоначальных установок. Для отображения других доступных показаний понадобится использовать клавишу «SEL».


Вывод результатов испытания на экран

Для получения достоверных измерений цепи «Ф-Н» рекомендуется воспользоваться услугами профессионалов. От правильности испытаний зависит дальнейшая безопасность эксплуатации электрической сети.

Сроки проведения испытаний

Электрические сети и оборудование эксплуатируются в различных режимах. Со временем наблюдается естественное старение изоляции кабеля, ухудшение свойств проводников из-за токовых перегрузок, отклонений напряжения, влияния окружающей среды и т. д. Этим обусловлена необходимость в периодической проверке целостности контура фаза ноль.

В соответствии с указаниями ПУЭ испытание петли «Ф-Н» проводится, как минимум, один раз в 36 месяцев, а для электрических сетей, эксплуатируемых в опасных или агрессивных средах, как минимум, один раз в 24 месяца. Также предусматриваются внеплановые проверки, в следующих ситуациях:

  • при внедрении в работу нового оборудования;
  • после осуществления модернизации, профилактики или ремонта действующей сети;
  • по требованию поставщика электроэнергии;
  • по факту запроса от потребителя.


Периодичность осмотров электрооборудования жилых домов

Зачем измерять полное сопротивление петли короткого замыкания?

Повышенное сопротивление сети и работа на предельно допустимых токах существенно повышает износ установленного оборудования и в несколько раз увеличивает вероятность аварии или его досрочного выхода из строя. Короткое замыкание в электрической цепи вследствие механического повреждения изоляции кабеля или в результате необратимых процессов при естественном старении приводит к мгновенному повышению величины тока и быстрому нагреву проводников. При этом начинает плавиться и гореть изоляция. Нескольких секунд до момента срабатывания защиты может хватить для повреждения и возгорания кабеля, а затем и воспламенения соседних кабелей. Такая ситуация грозит пожаром даже при последующем обесточивании поврежденной цепи. Разумеется, чем быстрее сработает выключатель автоматической защиты, тем меньшие повреждения будут нанесены электрическому оборудованию и тем меньшему риску подвергнется жизнь и здоровье людей.

В электроустановках с заземленной нейтралью нулевой проводник соединен с нейтралью понижающего трансформатора, которая объединена с контуром заземления. При аварийном замыкании фазы на фазу, на корпус или нейтральный провод возникает новая электрическая цепь – так называемая петля короткого замыкания. Существует несколько методов измерения сопротивления петли короткого замыкания:

  • метод падения напряжения в отключенной цепи;
  • метод падения напряжения на нагрузочном сопротивлении;
  • метод короткого замыкания цепи.

Для измерения полного сопротивления (импеданса) петли короткого замыкания компания Sonel применяет технический метод создания «искусственного короткого замыкания». Прибор серии MZC измеряет напряжение сначала без нагрузки, а затем при кратковременной нагрузке резистором 10 Ом (номинал варьируется между моделями) в течение 30 мс. Полное сопротивление петли короткого замыкания содержит активную и реактивную составляющие сопротивления и рассчитывается на основе разницы падений напряжения по формуле:

SLC


Рисунок 1. Активная и реактивная составляющие полного сопротивления

Полное сопротивление петли короткого замыкания должно быть как можно меньше, тогда ток короткого замыкания в цепи будет наибольшим и защита сработает быстрее. При межфазном замыкании ток в контуре будет больше, чем при однофазном замыкании. По полученному значению импеданса рассчитывают значение тока короткого замыкания. Условия исправной защиты описаны формулой:

SAN

Из вышеприведенных формул и диаграммы становится понятно, почему необходимо измерять именно импеданс, т.е. ПОЛНОЕ сопротивление петли короткого замыкания. Определение только резистивной составляющей, т.е. активного сопротивления цепи, занижает фактическое значение, вследствие чего расчет тока срабатывания приведет к ошибочному результату и ложному выводу о соответствии параметров защиты! В действительности, в случае значительного индуктивного сопротивления петли короткого замыкания (например, обмотка питающего трансформатора, длинная кабельная линия) ток срабатывания, рассчитанный на основании только значения активного сопротивления, может оказаться недостаточным для обеспечения требуемого времени срабатывания защиты, что неминуемо подвергнет риску жизнь людей в аварийной ситуации. Проведение измерений сопротивления петли фаза-нуль в электроустановках до 1000 В регламентировано пунктом 28.4 таблицы 28 Правил технической эксплуатации электроустановок потребителя (ПТЭЭП) при проверке срабатывания защиты в сетях с заземленной нейтралью (TN-C, TN-C-S, TN-S) и проводится раз в два года (п. 2.7.16), а также после каждой перестановки и монтажа нового электрооборудования перед его включением (п. 2.7.17). Проверка осуществляется путем непосредственного измерения тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим определением тока короткого замыкания. Величина тока однофазного короткого замыкания при замыкании на корпус или нулевой рабочий проводник должна составлять не менее: 3-х кратного значения номинального тока плавкой вставки предохранителя, 3-х кратного значения номинального тока нерегулируемого расцепителя или 3-х кратной уставки тока срабатывания регулируемого расцепителя автоматического выключателя с обратнозависимой от тока характеристикой. Другие параметры срабатывания защитного автоматического отключения должны соответствовать Правилам устройства электроустановок (ПУЭ изд.7) п. 7.3.139 и 1.7.79.

Методика измерения петли «фаза — ноль»

Применяются следующие методы измерения: падения напряжения в отключенной цепи, то же – на нагрузочном сопротивлении и метод КЗ. Второй способ реализован в принципе действия прибора производства Sonel типа MZC-300. Методика выполнения измерений таким методом изложена в ГОСТе 50571.16-99. Достоинство этого метода – в простоте и безопасности.

Прежде, чем приступить к основным измерениям, следует испытать сопротивление и непрерывность защитных проводников. Во время проведения измерений прибором MZC-300 следует учитывать, что возможна автоматическая блокировка процесса в следующих случаях:

  1. Напряжение в сети превышает 250 В: прибор в это время издает звуковой продолжительный сигнал, а на дисплее появляется надпись «OFL». В таком случае измерения необходимо прекратить.
  2. При разрыве цепи PE/N на дисплее появится символ в виде двойного тире и будет звучать сигнал после нажатия на кнопку «start». Необходимо быть осторожным: защита от токов КЗ в сети отсутствует.
  3. При снижении напряжения в испытуемой цепи менее 180 В на дисплее загорается символ «U», что сопровождается двумя продолжительными звуковыми сигналами после нажатия на кнопку «start».
  4. В случае перегрева прибора из-за значительных нагрузок появляется на дисплее символ «Т» и звучат два сигнала. В этом случае нужно уменьшить количество операций за единицу времени.

Для проведения измерений соответствующие клеммы прибора подключают к одной из фаз и глухозаземленной нейтрали (в сети с защитным заземлением вместо нейтрали подключают прибор к заземляющему проводнику). При проверке состояния защиты электроустановки от замыкания на корпус прибор MZC-300 подключают к заземляющей клемме корпуса и фазному проводу. Необходимо следить за тем, чтобы контакт был надежным: применять следует проверенные наконечники (если необходимо – заостренные зонды), а место соединения должно быть очищено от окиси.

Во время измерения прибором серии MZC-300 происходит имитация короткого замыкания: ток протекает через резистор с известным сопротивлением (10 Ом) в течении 30 мс. Уменьшенное значение силы тока является одним из параметров, участвующих в образовании результата. Непосредственно перед определением значения такого тока прибор измеряет реальное напряжение в сети. Производится поправка по векторам тока и напряжения, после чего процессор высчитывает полное сопротивление петли КЗ, раскладывая его на реактивную и активную составляющие и угол сдвига фаз, образующийся в измеряемой цепи во время протекания тока КЗ. Диапазон измерения полного сопротивления выбирается прибором автоматически.

Считывание и оформление результата

После измерения результат может быть отображен на дисплее в виде значения полного сопротивления петли КЗ или тока КЗ. Для просмотра и смены режима отображения следует нажать клавишу Z/I. Полное сопротивление отражает дисплей, а значение тока КЗ необходимо вычислять.

После подключения прибора к испытуемой цепи определяется напряжение, после чего нажатием на кнопку «start» включается измерительный режим. Если не действуют факторы, которые могут стать причиной блокировки процесса, на дисплее появляется ожидаемое значение тока КЗ или полного сопротивления. Если необходимо знать значения других параметров (реактивного и активного сопротивления, угол сдвига фаз), следует воспользоваться кнопкой SEL. Предельное значение реактивного, активного и полного сопротивления – 199,9 Ом. При превышении этого предела дисплей отразит символ OFL, если же прибор будет находиться в режиме измерения тока КЗ, отобразится символ UFL, означающий малую величину. При необходимости увеличить диапазон нужно использовать другую модификацию прибора — MZC-ЗОЗЕ: специальная функция RCD позволяет получить результаты до 1999 Ом.

Периодичность проведения измерений сопротивления петли «фаза – ноль» определяется документом ПТЭЭП и системой ППР, которая предусматривает своевременное проведение капитальных и текущих ремонтов электрооборудования. В случае выхода из строя устройств защиты после их ремонта или замены проводятся внеплановые работы по установлению значений параметров цепи «фаза – ноль».

Заключение о результатах измерений выполняется следующим образом. После выполнения всех работ по изложенной выше методике, получаем величину однофазного тока КЗ. Сравниваем результат с током, при котором срабатывает расцепитель выключателя-автомата или с номиналом плавко вставки. Делаем выводы о пригодности оборудования защиты. Все полученные результаты заносятся в протокол установленной формы.

Приборы для проведения измерений

Замерить основные показатели контура «Ф-Н» можно двумя типами приборов. Первые допускается использовать исключительно после снятия напряжения, а вторые способны работать под нагрузкой. Также имеются различия в выводе количества информации. Простые приборы выдают значения необходимые для вычисления Iкз. Более сложное исполнение измерителей позволяет сразу вывести значение Iкз.

Специалисты рекомендуют использовать следующие модели приборов:

  1. MZC 300 — современный микропроцессорный измеритель, о нюансах работы которого мы расскажем далее.
  2. М-417 — зарекомендовал себя с наилучшей стороны много лет назад. Испытания ведутся по методу падения напряжения. При этом измеритель можно использовать под рабочим линейным напряжением в сетях с глухо-заземленной нейтралью. Размыкание испытываемой схемы осуществляется за 0,3 с. Предварительно понадобится выполнить калибровку.
  3. ИФН-200 — предназначен для проверки цепей с сопротивлением до 1 кОм, с допустимым напряжением от 180 до 250 В. Помимо замера схемы «Ф-Н», способен функционировать и в других режимах. Память ИФН-200 может хранить данные о тридцати пяти крайних вычислениях.


Измеритель сопротивления ИФН-200

Испытание цепи «Ф-Н» измерителем MZC 300

Измерение петли фаза ноль прибором MZC 300 требует соблюдения определенной последовательности действий, учитывая некоторые особенности устройства.

Обязательные условия

Первоначально рекомендуется включить MZC 300 и убедиться в отсутствии на экране надписи bAt. Она сигнализирует о разряженных батарейках, а следовательно, провести достоверные измерения не удастся.

В процессе осуществления замеров могут появляться характерные ошибки, обусловленные следующими причинами:

  1. Напряжение сети менее 180 или более 250 Вольт. В первом случае на экране высветится буква U в сопровождении с двумя звуковыми сигналами, а во втором надпись OFL и одно продолжительное звучание.
  2. Высокая нагрузка на измеритель, сопровождающаяся перегревом. На дисплее высветится буква T, а зуммер выдаст два длительных звука.
  3. Обрыв нулевого или защитного провода в исследуемой схеме, что сопровождается появлением на дисплее символа «— —» и продолжительным звуком.
  4. Превышено допустимое значение общего сопротивления исследуемой схемы — два продолжительных звука и символ «—».

Способы подключения

С помощью MZC 300 можно произвести замеры различных участков цепи. При этом необходимо обеспечить качественный контакт наконечников прибора.

Далее представлен порядок подключения измерителя в зависимости от вида проводимого тестирования:

  1. Снятие характеристик с петли «Ф-Н» — один наконечник измерителя фиксируется к нулевому (N) проводу, а второй поочередно устанавливается на линейные (L) провода.
  2. Проверка защитной цепи — один контакт поочередно крепится к линейным проводникам, а второй к защитному заземлению (PE).
  3. Тестирование надежности заземления корпуса электрооборудования производится в зависимости от типа сети — с занулением (TE) или с защитным заземлением (TT). При этом порядок производства измерений идентичен. Один наконечник прибора цепляется к корпусу электрооборудования, а второй поочередно к питающим проводникам.

Считывание показаний о напряжении сети

MZC 300 рассчитан на выдачу показаний фазного напряжения в пределах от 0 до 250 В. Для снятия данных понадобится нажать на клавишу «Start». При отсутствии указанных манипуляций измерительное устройство автоматически выведет на дисплей полученное значение, по истечении пяти секунд с момента начала тестирования.

Измерение характеристик контура «Ф-Н»

Для получения основных показателей в MZC 300 используется методика искусственного короткого замыкания. Она позволяет измерить полное сопротивление петли, разлагая на активную и реактивную составляющую, а также выдавая данные по углу сдвига фаз и величине предполагаемого Iкз. Для их поочередного просмотра понадобится нажимать кнопку «Z/I».

Измерительный ток протекает по тестируемому контуру в течение 30 мс. Для ограничения величины тока в схеме прибора смонтирован ограничивающий резистор на 10 Ом. При этом прибор автоматически устанавливает требуемую величину измерительного тока, учитывая уровень напряжения в сети и величину сопротивления схемы «Ф-Н».

При наличии в схеме УЗО следует предварительно исключить защитный аппарат из тестируемого контура посредством установки шунта. Это обусловлено тем, что подаваемый от MZC 300 измерительный ток приводит к отключению УЗО.

Вывод результатов измерения

После осуществления необходимых подключений на экране прибора будет отражаться уровень напряжения сети. Процесс измерения начинается после нажатия кнопки «Start». По факту окончания тестирования на дисплей выводится информация о величине полного сопротивления или предполагаемого Iкз, в зависимости от первоначальных установок. Для отображения других доступных показаний понадобится использовать клавишу «SEL».


Вывод результатов испытания на экран

Для получения достоверных измерений цепи «Ф-Н» рекомендуется воспользоваться услугами профессионалов. От правильности испытаний зависит дальнейшая безопасность эксплуатации электрической сети.

Расчет тока короткого замыкания в сети 0,4 кВ

Введение

В соответствии с пунктом 3.1.8. ПУЭ электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения при этом указано что защита должна проверяться по отношению наименьшего расчетного тока короткого замыкания (далее — тока КЗ) к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя. (Подробнее о выборе защиты от токов короткого замыкания читайте статью: Расчет электрической сети и выбор аппаратов защиты)

В сетях 0,4 кВ с глухозаземленной нейтралью наименьшим током КЗ является ток однофазного короткого замыкания методика расчета которого и приведена в данной статье.

Основные понятия и принцип расчета

Сама формула расчета тока короткого замыкания проста, она выходит из закона ома для полной цепи и имеет следующий вид:

  • Uф — фазное напряжение сети (230 Вольт);
  • Zф-о — полное сопротивление петли (цепи) фаза-нуль в Омах.

Что такое петля фаза-нуль (фаза-ноль)? Это электрическая цепь состоящая из фазного и нулевого проводников, а так же обмотки трансформатора к которым они подключены.

В свою очередь сопротивление данной электрической цепи и называется сопротивлением петли фаза нуль.

Как известно есть три типа сопротивлений: активное (R), реактивное (X) и полное (Z). Для расчета тока короткого замыкания необходимо использовать полное сопротивление определить которое можно из треугольника сопротивлений:

Примечание: Сумма полных сопротивлений нулевого и фазного проводников называется полным сопротивлением питающей линии.

Рассчитать точное сопротивление петли фаза-нуль довольно сложно, т.к. на ее сопротивление влияет множество различных факторов, начиная с переходных сопротивлений контактных соединений и сопротивлений внутренних элементов аппаратов защиты, заканчивая температурой окружающей среды. Поэтому для практических расчетов используются упрощенные методики расчета токов КЗ одна из которых и приведена ниже.

Справочно: Расчетным путем ток короткого замыкания определяется, как правило, только для новых и реконструируемых электроустановок на этапе проектирования электрической сети и выбора аппаратов ее защиты. В действующих электроустановках наиболее целесообразно определять ток короткого замыкания путем проведения соответствующих измерений (путем непосредственного измерения тока КЗ, либо путем косвенного измерения, т.е. измерения сопротивления петли-фаза-нуль и последующего расчета тока КЗ).

Методика расчета тока кз

1) Определяем полное сопротивление питающей линии до точки короткого замыкания:

  • Rл — Активное сопротивление линии, Ом;
  • Xл — Реактивное сопротивление линии, Ом;

Примечание: Расчет производится для каждого участка линии с различным сечением и/или материалом проводника, с последующим суммированием сопротивлений всех участков (Zпл=Zл1+Zл2+…+Zлn).

Активное сопротивление линии определяется по формуле:

  • Lфо — Сумма длин фазного и нулевого проводника линии, Ом;
  • p — Удельное сопротивление проводника (для алюминия — 0,028, для меди – 0,0175), Ом* мм 2 /м;
  • S — Сечение проводника, мм 2 .

Примечание: формула приведена с учетом, что сечения и материал фазного и нулевого проводников линии одинаковы, в противном случае расчет необходимо выполнять по данной формуле для каждого из проводников индивидуально с последующим суммированием их сопротивлений.

Реактивное сопротивление линии определяется по формуле:

2) Определяем сопротивление питающего трансформатора

Сопротивление трансформатора зависит от множества факторов, таких как мощность, конструкция трансформатора и главным образом схема соединения его обмоток. Для упрощенного расчета сопротивление трансформатора при однофазном кз (Zтр(1)) можно принять из следующей таблицы:

3) Рассчитываем ток короткого замыкания

Ток однофазного короткого замыкания определяем по следующей формуле:

  • Uф — Фазное напряжение сети в Вольтах (для сетей 0,4кВ принимается равным 230 Вольт);
  • Zтр(1) — Сопротивление питающего трансформатора при однофазном кз в Омах (из таблицы выше);
  • Z пл — Полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки короткого замыкания в Омах.

Описание измерителей параметров петли короткого замыкания и петли фаза-нуль

Измеритель сопротивления петли короткого замыкания и петли фаза-нуль – прибор, с помощью которого проверяют параметры петли КЗ в электрических цепях, чтобы обеспечить безопасность электрических схем и потребителей питания. Его также применяют во время испытаний, обслуживания и диагностики электроустановок различного типа, сетей зданий, сооружений и оборудования на промышленных предприятиях. Принцип действия приборов основан на измерении падения напряжения в цепи при подключении активной нагрузки известной величины с последующим расчетом полного, активного и реактивного сопротивления сети, прогнозируемого тока короткого замыкания. Сопротивление постоянному току вычисляется по отношению падений напряжений на измеряемом и эталонном сопротивлениях при протекании через них формируемого постоянного тока.

Схема для расчета сопротивления цепи фаза-ноль

На каждом участке цепи есть защитный автоматический выключатель, расположенный на пути, который проходит электрический ток от трансформатора до нагрузки. Полное сопротивление цепи «фаза-нуль» складывается из сопротивлений жил кабеля, а также переходных сопротивлений в местах соединений, подключения к коммутационным аппаратам. Поэтому, двигаясь от ТП в сторону конечных потребителей, оно должно увеличиваться. Его показатель фаза нуль зависит от таких факторов как:

  • Расстояние между местом проведения замера и ТП;
  • Параметры кабеля проверяемой цепи;
  • Количество и качество соединений в цепи;

Провести измерение сопротивления можно в разных точках, но это лучше делать в максимально отдаленной от проверяемого аппарата защиты точке, т.к. сопротивление будет высоким, а КЗ низким.

Назначение измерителя параметров петли короткого замыкания и петли фаза-нуль

Прибор используют для согласования характеристик кабельных линий и выбора средств автоматической защиты для соблюдения правил безопасности, т.к. у электроустановок может возникнуть пробой на корпус, что требует немедленного обесточивания участка. Помимо своевременного выявления причин возникновения пробоя, замеры проводят:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудования электроустановок.
  • По требованию соответствующих служб контроля и надзора.
  • По запросу потребителя.

Согласно ГОСТ Р07 проверку сопротивления необходимо проводить раз в три года, ее также рекомендуют интегрировать в объем эксплуатационных испытаний.

Испытание цепи «Ф-Н» измерителем MZC 300

Измерение петли фаза ноль прибором MZC 300 требует соблюдения определенной последовательности действий, учитывая некоторые особенности устройства.

Обязательные условия

Первоначально рекомендуется включить MZC 300 и убедиться в отсутствии на экране надписи bAt. Она сигнализирует о разряженных батарейках, а следовательно, провести достоверные измерения не удастся.

В процессе осуществления замеров могут появляться характерные ошибки, обусловленные следующими причинами:

  1. Напряжение сети менее 180 или более 250 Вольт. В первом случае на экране высветится буква U в сопровождении с двумя звуковыми сигналами, а во втором надпись OFL и одно продолжительное звучание.
  2. Высокая нагрузка на измеритель, сопровождающаяся перегревом. На дисплее высветится буква T, а зуммер выдаст два длительных звука.
  3. Обрыв нулевого или защитного провода в исследуемой схеме, что сопровождается появлением на дисплее символа «— —» и продолжительным звуком.
  4. Превышено допустимое значение общего сопротивления исследуемой схемы — два продолжительных звука и символ «—».

Способы подключения

С помощью MZC 300 можно произвести замеры различных участков цепи. При этом необходимо обеспечить качественный контакт наконечников прибора.

Далее представлен порядок подключения измерителя в зависимости от вида проводимого тестирования:

  1. Снятие характеристик с петли «Ф-Н» — один наконечник измерителя фиксируется к нулевому (N) проводу, а второй поочередно устанавливается на линейные (L) провода.
  2. Проверка защитной цепи — один контакт поочередно крепится к линейным проводникам, а второй к защитному заземлению (PE).
  3. Тестирование надежности заземления корпуса электрооборудования производится в зависимости от типа сети — с занулением (TE) или с защитным заземлением (TT). При этом порядок производства измерений идентичен. Один наконечник прибора цепляется к корпусу электрооборудования, а второй поочередно к питающим проводникам.

Считывание показаний о напряжении сети

MZC 300 рассчитан на выдачу показаний фазного напряжения в пределах от 0 до 250 В. Для снятия данных понадобится нажать на клавишу «Start». При отсутствии указанных манипуляций измерительное устройство автоматически выведет на дисплей полученное значение, по истечении пяти секунд с момента начала тестирования.

Измерение характеристик контура «Ф-Н»

Для получения основных показателей в MZC 300 используется методика искусственного короткого замыкания. Она позволяет измерить полное сопротивление петли, разлагая на активную и реактивную составляющую, а также выдавая данные по углу сдвига фаз и величине предполагаемого Iкз. Для их поочередного просмотра понадобится нажимать кнопку «Z/I».

Измерительный ток протекает по тестируемому контуру в течение 30 мс. Для ограничения величины тока в схеме прибора смонтирован ограничивающий резистор на 10 Ом. При этом прибор автоматически устанавливает требуемую величину измерительного тока, учитывая уровень напряжения в сети и величину сопротивления схемы «Ф-Н».

Обратите внимание! При проведении тестирования важно учитывать, что прибор ведет расчеты с учетом номинального значения напряжения 220 В, независимо от действующих показаний в сети. Поэтому в дальнейшем необходимо осуществить корректировку полученного значения предполагаемого Iкз в цепи «Ф-Н». Для этого необходимо измерить действующее значение напряжения и разделить на 220

Для этого необходимо измерить действующее значение напряжения и разделить на 220

Полученное значение умножить на измеренный прибором Iкз

Для этого необходимо измерить действующее значение напряжения и разделить на 220. Полученное значение умножить на измеренный прибором Iкз.

При наличии в схеме УЗО следует предварительно исключить защитный аппарат из тестируемого контура посредством установки шунта. Это обусловлено тем, что подаваемый от MZC 300 измерительный ток приводит к отключению УЗО.

Вывод результатов измерения

После осуществления необходимых подключений на экране прибора будет отражаться уровень напряжения сети. Процесс измерения начинается после нажатия кнопки «Start». По факту окончания тестирования на дисплей выводится информация о величине полного сопротивления или предполагаемого Iкз, в зависимости от первоначальных установок. Для отображения других доступных показаний понадобится использовать клавишу «SEL».

Вывод результатов испытания на экран

Для получения достоверных измерений цепи «Ф-Н» рекомендуется воспользоваться услугами профессионалов. От правильности испытаний зависит дальнейшая безопасность эксплуатации электрической сети.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий