Что такое переходное сопротивление и как его измерить

Введение

Электрический контакт является одним из основных элементов любой электрической схемы. В связи с усложнением технических систем растет количество и разнообразие типов и форм контактов, их режимов и условий работы. Роль контактов становится ответственнее как в техническом, так и в технико-экономическом отношении. Все это требует более интенсивного и глубокого изучения физических процессов в различных режимах и условиях работы контактов, методов инженерного расчета и конструирования, правильного нормирования режимов и условий работы, разработки и исследования новых контактных материалов и новых конструктивных форм контактов.

В данной статье излагаются основные принципы действия, физические процессы и явления, происходящие в электрических соединителях, обозначаются основные понятия и их физический смысл. Приводятся факторы, определяющие надежность, долговечность и условия сохраняемости электрических соединителей. Определяются пути повышения надежности и долговечности, излагаются правила эксплуатации.

Методика измерения

Гост 21534-76 нефть. методы определения содержания хлористых солей (с изменениями n 1, 2, 3, с поправкой)

Существует регламент измерений Rп для коммутационных устройств: автоматических выключателей, разъединителей, сборных и соединительных шин и другой аппаратуры.

Методы измерений следующие:

  • метод непосредственного отсчёта;
  • способ вольтметра-амперметра;
  • измерение статической нестабильности Rп.

При первом способе тестирования применяют приборы, позволяющие выполнять непосредственный отсчёт с учётом погрешности (±10%). При этом методе измеряют сопротивление контактного соединения.

Важно! Тестируемые поверхности контакт-детали не зачищают и не обрабатывают перед измерением. Контакт-деталь сочленяют (замыкают) и присоединяют к выводам приборов. Размыкание контактов и передвижение измерительных проводов недопустимы

Размыкание контактов и передвижение измерительных проводов недопустимы.

При помощи метода вольтметра-амперметра определяют величину падения напряжения (при установленном значении тока) на тестируемом переходе.


Схема измерительной установки

Все погрешности измерений приборов, входящих в схему, должны быть в пределах ±3%. Значение R1 подбирают на два порядка больше, чем предполагаемое измеряемое сопротивление.

Расчёт результатов измерений выполняют по формуле:

Rп = UPV2/IPA,

где:

  • UPV2 – результат, полученный на вольтметре PV2, В;
  • IPA – ток, измеряемый амперметром PA, А.

Статическую нестабильность Rп определяют, находя величину среднеквадратичного отклонения Rп по результатам многочисленных замеров.

Внимание! Переходное сопротивление замеряют одним из методов, рассмотренных выше. Контакт-деталь размыкают и заново смыкают перед каждым тестированием, снимая электрическую нагрузку. Необходимый результат получают, используя формулы на рис

ниже

Необходимый результат получают, используя формулы на рис. ниже.


Формулы для расчёта результата методом статической нестабильности

Погрешность результатов, полученных при этом методе, лежит в пределах ±10% (с вероятностью 0,95).


Перечень приборов, применяемых для измерений

Измерения Rп переходов проводят и микрометром ММR-610. В результате работы тестируют сопротивления постоянному току контактов автоматов и других соединений. Проводят два вида измерений:

  • однонаправленным током;
  • двунаправленным током.

В первом случае не отображается величина активного сопротивления R, зато этот метод убыстряет процесс измерений там, где нет внутренних напряжений и сил электростатики. Во втором случае прибор устраняет погрешности (ошибки), возникающие от присутствия в тестируемой конструкции таких сил и напряжений.


Микроомметр MMR – 610

Полученные в результате измерений (проверки) данные записываются в протокол, согласно ПУЭ-7 п.1.8.5. Протокол хранится совместно с паспортами на оборудование.


Образец протокола проверки

Определение

В электрической цепи, в месте соприкосновения двух или более проводников, создается электрический переходный контакт, или токопроводящее соединение, по которому ток течет из одной части в другую. При простом наложении контактируемая поверхность соединяемых проводников не дает хорошего контакта. Реальная площадь соприкосновения в несколько раз меньше всей контактной поверхности , подтверждение чему можно увидеть с помощью микроскопа. Ввиду малой площади соприкосновения контактное соединение дает весьма заметное сопротивление при прохождении тока из одной поверхности в другую и называется переходным контактным сопротивлением. Само переходное сопротивление контакта априори больше, нежели сопротивление сплошного проводника такой же формы и размеров.

Наши преимущества

Лицензия РосТехНадзора №5742

Лицензируемая организация ООО Инженерный центр ”ПрофЭнергия” гарантирует точность, объективность и достоверность результатов.

Поверенные приборы и оборудование (СП №0889514)

Проверенные приборы и оборудование (СП №0889514): В нашей кампании используется только качественные приборы и оборудование.

Бесплатный выезд на объект и расчет сметы

Бесплатный выезд на объект и расчет сметы: Наши специалисты бесплатно приедут на объект и рассчитают стоимость.

На 25% выгоднее конкурентов

На 25% выгоднее конкурентов: У нас честные цены. А так же действуют индивидуальные скидки.

Кандидаты технических наук в штате

Кандидаты технических наук в штате: «ПрофЭнергия» имеет очень отлаженный коллектив квалифицированных инженеров с допусками ко всем видам проводимых работ.

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

Влияние встроенного трансформатора тока (ТТ) на измерение Rпер баковых выключателей

При подаче измерительного тока через полюс бакового выключателя во вторичной обмотке ТТ возникает переходный процесс, который проявляется в индуцировании в первичную цепь импульса напряжения, постепенно спадающего до нуля. Это изменяющееся напряжение суммируется падением напряжения на Rпер., созданного измерительным током, и воспринимается микроомметром как дополнительное (внесение из вторичной обмотки ТТ) сопротивление, включенное последовательно Rпер. и изменяющееся во времени. Время затухания переходного процесса спада внесенного сопротивления зависит от многих факторов и может меняться от 1,0 до 60 с. Переходный процесс, в цепи содержащей ТТ, возникает не только при включении тока, но и при его выключении.

Предисловие

Ладно, начнем издалека… Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие «блок». Например, источник питания, собранный по этой схеме:

состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.

В красном блоке мы получаем постоянное напряжение, а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:

Блочная схема — это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод «от простого к сложному» полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем — готовое устройство, например, телевизор.

Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.

— Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?

Да! Именно на это нацелена сейчас современная электроника 😉 Микроконтроллеры  и конструкторы, типа Arduino, добавляют еще больше гибкости в творческие начинания молодых изобретателей.

На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.

Думаю, все помнят, что такое сопротивление и что такое резистор. Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением. Но что такое входное и выходное сопротивление? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление — это сопротивление какого-то входа, а выходное — сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления?  А вот «прячутся» они в самих блоках радиоэлектронных устройств.

Металлосвязь и проверка наличия цепи заземления

Начиная статью, уместно ответить на вопрос: «Что такое металлосвязь ?». Металлосвязь – это величиная, которая характеризует контактное соединение заземляемого объекта с заземляющим устройством. В процессе эксплуатации электроустановки из-за коррозии, замыкания или механического повреждения возникают разрывы цепи заземления, что приводит к появлению опасной разницы потенциалов, что в свою очередь может привести к травмам и порче электрооборудования. При касании незаземленной дверки электрического щита, корпуса электрооборудования или корпуса светильника в процессе технического обслуживания существует риск поражения электрическим током. Многие чувствительные электроприборы в принципе не могут работать без качественного заземления.

Во избежание вышеуказанных случаев необходимо проводить измерение металлосвязи с привлечением электротехнической лаборатории. Протокол металлосвязи по результатам обследования включает отчет о целостности проводников, величине сопротивления тестируемого участка цепи и значении напряжения на заземляемом оборудовании. Сопротивление тестируемого участка является показателем качества соединения. Правила устройства электроустановок ПУЭ включают в себя допустимые значения сопротивления.

Для замеров используется прибор из парка электролаборатории, который подает ток на тестируемый участок и показывает сопротивление участка цепи. Полученное значение, как правило, не должно превышать 0,05 Ом. Проверка металлосвязи проводится и в рамках приемо-сдаточных испытаний, и в рамках профилактических испытаний, проводимых каждые 2-3 года. Периодичность испытаний определяется эксплуатирующей организацией исходя из рекомендаций ГОСТ Р 50571.16-2007, ПТЭЭП, ПОТРМ и состояния электроустановки. Испытание металлосвязи возможно проводить без отключения напряжения. Измерение сопротивления металлосвязи необходимо поручать только аттестованным лабораториям, так как без аттестата Ростехнадзора протокол не имеет законной силы для контролирующих органов. ОАО «Энергетик ЛТД» предлагает замеры металлосвязи по ценам, существенно ниже рыночных, за счет большого объема проводимых работ на территории Москвы и Московской области.

Все материалы защищены законом РФ об авторских правах и ГК РФ. Запрещено полное копирование без разрешения администрации ресурса. Разрешено частичное копирование с прямой ссылкой на первоисточник. Автор статьи: коллектив инженеров ОАО «Энергетик ЛТД»

Какая периодичность измерений

Перед тем как замерить сопротивление заземления тем или иным способом – важно учесть требования ПУЭ в части периодичности проведения этих испытаний. Согласно основным положениям этого документа они могут проводиться в следующих формах:

  • плановые обследования;
  • внеочередные проверки;
  • пусковые испытания.

Периодичность каждой из этих разновидностей проверок определяется теми целями, которые они перед собой ставят. Периодичность проверок сопротивления изоляции станционного оборудования обычно согласуется с обследованием самого ЗК. Рассмотрим различные их виды более подробно.

Плановые проверки

Сроки проведения плановых мероприятий оговариваются инструкцией РД-34.22.121-87, а также требованиями ПУЭ. Из этих документов можно узнать, какова периодичность визуального осмотра видимых частей устройств заземления, которая согласно им организуется не реже одного раза в полгода. Помимо этого из этих же нормативов следует, что не реже чем раз в 12 лет должны проводиться обследования конструкции со вскрытием грунта вокруг нее. Измерение сопротивления контуров заземления согласно тем же документам должно проводиться не реже раза в 6 лет.

Ответственными за проведение таких проверок являются лица, уполномоченные на это соответствующими органами. Владелец частного дома должен заранее оформить заявку на их проведение с последующей оплатой. По завершении испытаний он обязан предоставить в местную энергетическую службу протокол измерений сопротивлений контактов между элементами ЗК.

Внеочередные

Внеочередные измерения параметров контура должны проводиться в следующих внештатных ситуациях:

  • После внесения в конструкцию изменений, не предусмотренных проектом, но влияющих на сопротивление растеканию току (измерение заземления в частном доме должно проводиться при переносе его на другое место).
  • После аварийного разрушения и последующего восстановления ЗК.
  • По завершении ремонтных работ.

Периодичность их проведения по понятным причинам не регламентируются.

Пусковые или вводные

Пусковые или вводные проверки заземления и измерения сопротивления организуются сразу же по окончании монтажа защитного контура (то есть накануне сдачи его представителю местной энергетической службы). Для этого потребуется пригласить специалиста от электрической лаборатории или другой организации, имеющей лицензию на право проведения таких испытаний.

По итогам проверки оформляется акт приемки, являющийся основанием для последующего пуска устройства в эксплуатацию и подтверждением того, что все питающие линии в частных домах заземлены.

Условия проведения испытаний

При организации мероприятий по проверке заземления важно обратить внимание на те условия, в которых предполагается их проведение. Они должны учитываться еще на стадии подготовки испытаний, а по их окончании вноситься в особый журнал. Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты

Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения

Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты. Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения.

При проведении контрольных замеров допустимых сопротивлений в осеннюю сырую погоду, например, полученные результаты будут в значительной степени искажены. Это объясняется тем, что пропитанный влагой грунт существенно увеличивает показатель проводимости почвы. Для того чтобы избежать всех этих сложностей и получить значение близкое к реальной величине – проще всего воспользоваться услугами профессионалов. Для этого необходимо обратиться в специальную электротехническую лабораторию, имеющую лицензию на проведение соответствующих работ.

Специалисты по прибытию на место выявят все факторы и организуют испытания защитного оборудования в соответствие с требованиями действующих нормативов. По завершении всего испытательного цикла ими же будет оформлен протокол измерения сопротивления заземления образец которого представлен ниже.

Протокол проверки сопротивлений заземлителей

Факторы, влияющие на величину переходного сопротивления

Удельное сопротивление

Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:

  • точечные – соединение происходит в точке;
  • линейные – соприкасаются по линии;
  • плоскостные – контакт по плоскости.

Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.

Площадь прикосновения контактов можно подсчитать по формуле:

Sпр = F/σ,

где:

  • F – сила сжатия контактов;
  • σ – временное сопротивление материала контактов сжатию.

Существуют разные способы соединения:

  • механические (скрутки, болтовые зажимы, опрессовка);
  • сварка;
  • пайка.

Величина переходного сопротивления определяется по формуле:

Rп = knx/(0,102*Fk)n,

где:

  • knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
  • Fk – сила, с которой сжимаются контакты;
  • n – показатель степени, показывающий число точек соприкосновения.

Показатель степени для разных видов контактов:

  • для точечного – n = 0,5;
  • для линейного – n = 0,5-0,7;
  • для плоскостного (поверхностного) – n = 0,7-1.

Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.


Факторы, влияющие на Rп

Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления

Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.

К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.


Результат нагрева места соединения

Измерение – переходное сопротивление

Измерение переходных сопротивлений является вспомогательным и необходимо для контроля состояния контактов при испытаниях на устойчивость к токам короткого замыкания и на механическую износоустойчивость.

Измерение переходных сопротивлений контактных соединений производится микроомметрами или контактомерами, т.е. специальными приборами для измерения малых сопротивлений. Эти приборы имеют специальные контактные наконечники щупов, которые прижимаются к токопроводящим элементам с обеих сторон проверяемого контактного соединения. Со стороны проверяемого сопротивления присоединяются потенциальные наконечники, с внешней стороны – токовые наконечники щупов. Обозначения потенциальных ( П) и токовых ( Т) наконечников нанесены на рукоятки щупов. Оценка качества контактного соединения производится сопоставлением значения сопротивления участка с контактным соединением со значением сопротивления токоведущего элемента на участке, длина которого равна участку с проверяемым контактным соединением.

Измерение переходного сопротивления рельсового пути производится прибором МС-08. Перед началом измерений исследуемый участок рельсового пути электрически изолируют от остальной трассы путем снятия средних шинок путевых дросселей.

Измерение переходного сопротивления рельсового пути выполняется прибором МС-08. Перед началом измерений исследуемый участок пути электрически изолируется от остальной трассы путем снятия средних шинок путевых дросселей. В качестве заземляющего электрода могут быть использованы: в туннеле с чугунной отделкой – любая конструкция, имеющая металлическую связь с тюбингом; в туннеле с железобетонной отделкой – металлическая шина, соединяющая кабельные кронштейны.

Измерение переходных сопротивлений контактов переключающих устройств производится при постоянном токе одним из следующих методов ( см. ГОСТ 8008 – 63, пп.

Внешний вид моста Р316.

Измерение переходных сопротивлений паек якорных обмоток машин постоянного тока и аналогичные ему измерения удобно производить с помощью микроомметров.

Измерением переходного сопротивления контактов выключателя проверяют его надежность, так как повышенное переходное сопротивление может привести к перегреву контактов, их оплавлению и выходу выключателя из строя. Величина переходных сопротивлений контактов выключателей зависит от типа выключателя.

Измерением переходного сопротивления контактов выключателя проверяют его надежность, так как повышенное переходное сопротивление может привести к перегреву контактов, их оплавлению и выходу выключателя из строя.

Производится измерение переходного сопротивления контактов каждой фазы. Если при текущем ремонте сопротивление контактов превышает норму и возросло против значения, измеренного при капитальном ремонте, более чем в два раза, контакты должны быть улучшены.

Для измерения переходного сопротивления контактов может быть использован определенный искробезопасный омметр М-372 И. На рис. 58 показан омметр, переделка которого осуществлена Северодонецкнм химическим комбинатом по рекомендации института Гппронисэлектрошахт на базе серийно выпускаемого омметра М-372. Он состоит из собственного прибора, в корпусе которого расположен источник питания ( аккумулятор МЦ-4к), и соединительных проводов с зажимами на конце.

Схема измерения сопротивления контактов выключателя ( метод падения напря -, жения.

При измерении переходного сопротивления с помощью моста ( рис. 126) величина переходного сопротивления определяется непосредственным отсчетом по шкале моста.

Согласно Нормам измерение переходного сопротивления контактов сборных и соединительных шин может производиться лишь в установках с номинальным током 1 000 а и больше и выборочно у 5 – 10 % контактов.

Пример определения коэффициента р по результатам измерения переходного сопротивления на действующем трубопроводе.

Переходное сопротивление контактов и влияющие на него факторы

Переходное сопротивление контактов или, иначе говоря, сопротивление непосредственно зоны контакта — величина, которая может быть математически выражена отношением падения напряжения на соединении к протекающему через него ток (ΔU/I).

Значение переходного сопротивления (далее по тексту — ПС

) — очень важный качественный показатель состояния любого контактного соединения, является величиной нормируемой, максимально допустимое значение которой составляет 0,05 Ом.

Рассмотрим здесь основные факторы, влияющие на величину ПС

контактных соединений.

Площадь поверхности соприкосновения контактируемых проводников

. Большее ее значение снижаетПС соединения. В свою очередь, площадь поверхности зависит от силы воздействия (нажатия) поверхности одного проводника на поверхность другого.

Кроме того, площадь поверхности соприкосновения зависит от гладкости поверхностей соединяемых проводников; так, по понятным причинам, площадь соприкосновения проводников, имеющих шероховатые поверхности будет меньше площади соприкосновения проводников аналогичного сечения с плотно “подогнанными” гладкими поверхностями.

Многим, даже достаточно далеким от электротехники читателям известно значение выражения “плохой контакт”; во многих случаях его возникновение обусловлено именно упомянутыми выше факторами.

Степень окисления

контактируемых поверхностей соединяемых проводников. Пленка окиси, независимо от материала изготовления проводника имеет значительно большее электрическое сопротивление.

Особенно сильно подвержены окислению проводники из алюминия. Для сведения: довольно быстро образующаяся на воздухе пленка их окиси имеет удельное сопротивление 1012 ом*см.

Следует иметь ввиду, что интенсивность окисления проводников во многом зависит от температуры контакта; при его нагреве этот процесс протекает значительно быстрее, существенно увеличивая ПС

контактного соединения.

Электрохимическая совместимость материалов

. Этот влияющий наПС соединения фактор тесно связан с предыдущим. При соединении электрохимически несовместимых проводников, поверхность соприкосновения представляет собой контакт двух окислов, имеющих высокое значениеПС .

Показательным примером такой несовместимости являются медные и алюминиевые проводники: недопустимость их прямого соединения обусловлена повышением температуры контакта, что нередко может представлять собой потенциальную угрозу возникновения пожара.

Учитывая перечисленные факторы, влияющие на ПС

контактных соединений следует добавить, что в целях его снижения далеко не последнее место занимает соответствие видов соединительных изделий материалам проводников и условиям эксплуатации.

Возможные погрешности

Как и любой тестер, мультиметр не даёт абсолютно точных результатов. Наибольшее значение они принимают в приближении к пределам диапазона измерения прибора. Самые распространённые сложности связаны с определением низких сопротивлений. Возможные причины искажений:

Грязные контакты

Чтобы правильно произвести замер, важно убедиться, что тестируемый компонент не покрыт окислами и другими загрязнениями. Высокое сопротивление контактов не позволит измерить значение без искажений

Наведённые помехи. Если тестирование производится под влиянием внешних магнитных полей, возможны отклонения результатов от действительности. Для минимизации эффекта в таких условиях применяют щупы с короткими идеально экранированными проводами. Кроме того, явление температурной ЭДС из-за образования термопар в месте контактов разнородных металлов также может искажать результаты.

Факторы, из-за которых появляется

Сопротивление контакта связывает между собой отдельные участки цепи. В месте соединения образуется взаимное прикосновение провождения тока. Через этот участок ток из одной ветки может попасть в другую. Если просто наложить жилы друг на друга, то надежного соединения не будет. Связано это в первую очередь с тем, что поверхность, какой бы гладкой она не казалась, состоит из неровностей. При многократном увеличении это можно заметить даже на идеально отшлифованных и отполированных материалах.

Важно! На практике станет понятно, что площадь реального контакта намного меньше, чем визуального. Еще одним фактором возникновения сопротивления перехода является пленка, получающаяся в результате окисления металла проводника. Такие пленки мешают току двигаться и стягивают его направления в точках касания

Избавиться от этого полностью нельзя, так как его величина всегда больше, чем удельное сопротивление металла проводника

Такие пленки мешают току двигаться и стягивают его направления в точках касания. Избавиться от этого полностью нельзя, так как его величина всегда больше, чем удельное сопротивление металла проводника

Еще одним фактором возникновения сопротивления перехода является пленка, получающаяся в результате окисления металла проводника. Такие пленки мешают току двигаться и стягивают его направления в точках касания. Избавиться от этого полностью нельзя, так как его величина всегда больше, чем удельное сопротивление металла проводника.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий