Способы передачи электроэнергии
Знакомство с пиковыми и другими зонами тарификации электроэнергии
Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.
Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.
Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.
Прокладка кабелей
Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.
Современное использование катушки Тесла
Самой популярной является демо-версия, которая позволяет увидеть электрическую дугу красивого фиолетового цвета и включить лампу без проводов. Однако иногда все же используется принцип катушки Тесла:
- В системах зажигания двигателя внутреннего сгорания. Он использует тот же принцип преобразования энергии в электрическую дугу. Только зажигание работает на низких частотах, а катушка Тесла работает на высоких частотах.
- Для питания люминесцентных и неоновых ламп. Хотя последнее чаще всего используется в качестве уловки.
- Для обнаружения дыр в вакуумных системах.
Как видите, изобретение еще не полностью разработано. Патент все еще находится на рассмотрении инвестора. Но, скорее всего, инвестора никогда не будет.
Плюсы и минусы
Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.
К достоинствам относятся:
- Полное отсутствие проводов;
- Не нужны источники питания;
- Необходимость батареи упраздняется;
- Более эффективно передается энергия;
- Значительно меньше нужно технического обслуживания.
К недостаткам же можно отнести следующее:
- Расстояние ограничено;
- магнитные поля не так уж и безопасны для человека;
- беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
- высокая стоимость монтажа.
Трансформаторные подстанции
Как передается электроэнергия без проводов на расстояние
Трансформаторные подстанции наряду с ЛЭП – основная составная часть энергосистемы. Они делятся на:
- Повышающие. Находятся вблизи электростанций. Основное оборудование – силовые трансформаторы, повышающие напряжение;
- Понижающие. Расположены на других участках электросети, находящихся ближе к потребителям. Содержат понижающие трансформаторы.
Существуют еще преобразовательные ПС, но они не относятся к трансформаторным. Служат для преобразования переменного тока в постоянный, а также получения тока другой частоты.
Основное оборудование трансформаторных ПС:
- Распредустройство высокого и низкого напряжения. Оно может быть открытого типа (ОРУ), закрытого типа (ЗРУ) и комплектное (КРУ);
- Силовые трансформаторы;
- Щит управления, релейный зал, где сосредоточена аппаратура защит и автоматического управления коммутационными аппаратами, сигнализация, измерительные приборы и счетчики электроэнергии. Два последних вида оборудования, как и некоторые виды защит, могут присутствовать и в КРУ;
Щит управления подстанцией
- Аппаратура собственных нужд ПС, куда входят трансформаторы собственных нужд (ТСН), понижающие напряжение с 6-10 до 0,4 кВ, шины СН 0,4 кВ с коммутационными аппаратами, батарея аккумуляторов, устройства подзаряда. От СН питаются защиты, освещение ПС, отопление, двигатели обдува трансформаторов (охлаждение) и т. д. На тяговых железнодорожных ПС трансформаторы собственных нужд могут иметь первичное напряжение 27,5 или 35 кВ;
- В распредустройствах находятся коммутационные аппараты трансформаторов, питающих и отходящих линий и фидеров 6-10 кВ: разъединители, выключатели (вакуумные, элегазовые, масляные, воздушные). Для питания цепей защит и измерений применяются трансформаторы напряжения (ТН) и тока (ТТ);
- Оборудование для защиты от перенапряжений: разрядники, ОПН (ограничители перенапряжений);
- Токоограничивающие и дугогасительные реакторы, батареи конденсаторов и синхронные компенсаторы.
Последнее звено понижающих подстанций – трансформаторные пункты (ТП, КТП-комплектные, МТП-мачтовые). Это небольшие устройства, содержащие 1, 2, реже 3 трансформатора, понижающие напряжение иногда с 35, чаще с 6-10 кВ до 0,4 кВ. Со стороны низкого напряжения установлены автоматы. От них отходят линии, непосредственно распределяющие электрическую энергию реальным потребителям.
Комплектная трансформаторная подстанция
К истокам появления
В 1893 году проходила выставка в Чикаго. На ней была демонстрация беспроводного освещения, в которой все действовало за счет люминесцентных ламп. Это работа принадлежала Николе Тесла.
Сейчас эксперимент сможешь повторить и ты – просто встань с лампой дневного света под линией с высоким напряжением. А тогда это было больше похоже на сеанс магии, поэтому изобретатель получил такую популярность.
Сегодня не каждый ученый согласится, что именно Тесле принадлежит идея создания беспроводного электричества. Они считают, что его работы – это доработка уже существующей идеи. Например, за 73 года до выставки, Андре Ампер записал закон, который указывает, что при использовании электротока возникает магнитное поле. Через одиннадцать лет, Майкл Фарадей открыл закон индукции. Был проведен опыт, который показал, что генерируемое в одном проводнике магнитное поле индуцирует ток в другой проводник.
В 1864 году произошло объединение всех теорий. Работа принадлежит Джеймсу Максвеллу. Он пришел к уравнению, которое описывало электромагнитное поле, а также связь с электрозарядами и токами в вакууме.
Спустя двадцать семь лет Тесла модернизировал передатчик волн, который изобрел Герц немного ранее. Он запатентовал его в качестве устройства для радиочастотного энергоснабжения.
Потери электроэнергии
Причины потерь при передаче электрической энергии на расстояние кроются в строении вещества. Электрический ток – это направленное движение по проводнику свободных носителей зарядов. В случае с ЛЭП и кабелями их роль играют электроны. Эти частицы, проходя по сечению провода, неизбежно сталкиваются с окружающими их атомами меди или алюминия и сообщают им часть своей кинетической энергии. Микрочастицы металла за счёт этого удара становятся подвижнее, что и воспринимается органами чувств человека как повышение температуры.
Количество теплоты Q, выделенной в проводнике за время t и потерянной впустую, вычисляется по закону Джоуля – Ленца. Оно пропорционально квадрату протекающего в проводе тока I и его сопротивлению R
Q = I2Rt.
Дополнительная информация. Потери электричества имеются и в трансформаторе. К самым большим из них относятся затраты энергии на создание вихревых токов в сердечнике и нагрев обмоток.
Беспроводная передача
Передача и распределение электроэнергии потребителям без использования проводов – это реалии наших дней. Этот метод был впервые придуман и реализован Никола Тесла. На сегодняшний день разработки в этом направлении продолжаются. Есть всего 3 основных способа.
Катушки
Катушки представляют собой намотанные изолированные провода. Текущий метод передачи состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение с таким же напряжением. Любое изменение напряжения на катушке передатчика изменится и на катушке приемника. Этот метод очень прост и имеет шанс на существование. Но есть и минусы:
- невозможно передать электричество на большое расстояние;
- нет возможности подать высокое напряжение и принять его, поэтому нельзя одновременно подавать напряжение на несколько потребителей;
- коэффициент полезного действия (КПД) этого метода составляет всего 40 %.
В настоящее время актуальны методы простого использования катушек в качестве источника и приемника энергии. Таким образом заряжаются электросамокаты и велосипеды. Есть конструкции электромобилей без аккумулятора, но со встроенной катушкой. Предлагается использовать дорожное покрытие в качестве источника, а автомобиль – в качестве приемника. Но стоимость строительства таких дорог очень высока.
Лазерный
Передача электричества с помощью лазера – это источник, преобразующий электрическую энергию в лазерный луч. Луч фокусируется на приемнике, который снова преобразует его в электричество. Laser Motive мог передавать электрический ток 0,5 кВ с помощью лазера на расстояние 1 км. При этом потери напряжения и мощности составили 95%. Ущерб был нанесен атмосферой Земли. Луч многократно сжимается при взаимодействии с воздухом. Кроме того, обычное преломление луча случайными объектами может стать проблемой. Такой способ без потери мощности может быть актуален только в космосе.
СВЧ-передача
Основой для передачи электричества через микроволны является способность волн 12 см на частоте 2,45 ГГц быть невидимыми для атмосферы Земли. Подобная функция может минимизировать потери при передаче. Для этого метода требуются передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновке. Это изобретение называется магнетроном. Он есть в каждой микроволновой печи и очень безопасен. Проблемы возникли с изобретением приемника и преобразователя микроволнового излучения в электричество.
В 60-х годах прошлого века американцы изобрели ректенну. Другими словами, микроволновый приемник. С помощью изобретения можно было передавать 30 кВт электрического тока на расстояние 1,5 км. При этом коэффициент потерь составил всего 18%. Больше установка не могла сделать из-за использования в приемном устройстве полупроводниковых деталей. Для приема и передачи большей мощности при использовании ректенны необходимо создать огромную приемную панель. Это увеличит расход энергии, частоту и длину волны и, следовательно, соответствующий процент потерь. Высокая радиация могла убить все живое в радиусе нескольких десятков метров.
В СССР был изобретен циклотронный преобразователь микроволн в электричество. Это была 40-сантиметровая трубка, полностью собранная на лампах. КПД устройства составил 85%. Но для этого метода основным недостатком является метод сборки на светильниках. Устройства, основанные на таких деталях, могут вернуть человечество в мир огромных телефонов, компьютеров размером с комнату. О миниатюрной технике можно забыть.
Микроволновую передачу можно организовать из космоса. Подобный проект должен был собрать солнечную энергию с помощью спутника и перенаправить ее на приемник, расположенный на поверхности Земли. Но для этого нужно будет построить спутник диаметром один километр и приемник диаметром 5 километров. Вы можете полностью забыть о рейсах в зоне действия системы.
Основная проблема беспроводной передачи электроэнергии – это расстояние и атмосферное преломление. Также стоит учесть потенцию. Суммарное энергопотребление всей бытовой техники в квартире 30-40 кВт. Чтобы обеспечить квартиру электричеством, нужно было построить гигантские сооружения.
На сегодняшний день единственный способ передачи энергии большой мощности – проводной. Не требует прямого и обратного преобразования электрической энергии. Достаточно вначале приложить высокое напряжение, а в конце его значительно занизить. Этот метод имеет ряд недостатков, но остается актуальным в течение многих лет.
Трансформаторные подстанции
Для преобразования напряжения одной величины в другую служат трансформаторные подстанции. Они представляют собой огороженный забором объект, имеющий на своей территории трансформатор. Внутри него располагаются первичная и вторичная обмотки (катушки). Их электромагнитное взаимодействие позволяет с большим КПД преобразовывать энергию. На подстанцию заходят воздушные линии или кабеля с одним напряжением, а выходят с другим, как правило, более низким.
Понижающий трансформатор
Там же располагаются всевозможные системы контроля и учёта электроэнергии и распределительное устройство (РУ). Оно предназначено для связи с другими объектами энергосистемы и является неотъемлемой частью трансформаторной подстанции. РУ позволяет отключить отдельного потребителя по стороне низкого напряжения, не обесточивая при этом всех остальных.
Производство электроэнергии
Среди генераторов электроэнергии наиболее распространены электромеханические генераторы переменного тока
. Они преобразуют механическую энергию вращения ротора в энергию индукционного переменного тока, возникающего благодаря явлению электромагнитной индукции.
На рис. 1 проиллюстрирована основная идея генератора переменного тока: проводящая рамка (называемая якорем
) вращается в магнитном поле.
Рис.1. Схема генератора переменного тока
Магнитный поток сквозь рамку меняется со временем и порождает ЭДС индукции, которая приводит к возникновению индукционного тока в рамке. С помощью специальных приспособлений (колец и щёток) переменный ток передаётся из рамки во внешнюю цепь.
Если рамка вращается в однородном магнитном поле с постоянной угловой скоростью , то возникающий переменный ток будет синусоидальным. Покажем это.
Выберем направление вектора нормали к плоскости рамки. Вектор , таким образом, вращается вместе с рамкой. Направление обхода рамки считается положительным, если с конца вектора этот обход видится против часовой стрелки.
Напомним, что ток считается положительным, если он течёт в положительном направлении (и отрицательным в противном случае). ЭДС индукции считается положительной, если она создаёт ток в положительном направлении (и отрицательной в противном случае).
Предположим, что в начальный момент времени векторы и сонаправлены. За время рамка повернётся на угол . Магнитный поток через рамку в момент времени равен:
(1)
где — площадь рамки. Дифференцируя по времени, находим ЭДС индукции:
(2)
Если сопротивление рамки равно , то в ней возникает ток:
(3)
Как видим, ток действительно меняется по гармоническому закону, то есть является синусоидальным.
В реальных генераторах переменного тока рамка содержит не один виток, как в нашей схеме, а большое число витков. Это позволяет увеличить в раз ЭДС индукции в рамке. Почему?
Объяснить это несложно. В самом деле, магнитный поток через каждый виток площади по-прежнему определяется выражением (1), так что ЭДС индукции в одном витке согласно формуле (2) равна: . Все эти ЭДС индукции, возникающие в каждом витке, складываются друг с другом, и суммарная ЭДС в рамке окажется равной:
Сила тока в рамке:
где есть по-прежнему сопротивление рамки.
Кроме того, рамку снабжают железным (или стальным) сердечником. Железо многократно усиливает магнитное поле внутри себя, и поэтому наличие сердечника позволяет увеличить магнитный поток сквозь рамку в сотни и даже тысячи раз. Как следует из формул (2) и (3), ЭДС индукции и ток в рамке увеличатся во столько же раз.
Принципы передачи и распределение электрической энергии
Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии (Рис. 9).
Трансформаторные подстанции позволяют преобразовать напряжение из высокого в низкое.
При передаче электроэнергии, чем выше напряжение в сети, тем ниже уровень технических потерь электроэнергии. Однако потребители не могут использовать электроэнергию с высоким напряжением. Распределительные подстанции служат для приема и распределения электроэнергии, в основном, в городских электрических сетях, крупных промышленных и нефтедобывающих предприятиях.
Рисунок 9 — Передача и распределение электрической энергии
Принцип передачи и распределения электрической энергии заключаются в выполнении следующих основных приоритетов:
- максимальное приближение источников высокого напряжения к потребителям;
- сокращение ступеней трансформации;
- повышение напряжения электропитающих сетей;
- использование минимального количества электрооборудования;
- раздельная работа линий и трансформаторов;
- резервирование питания для отдельных категорий потребителей;
- секционирование всех звеньев распределения энергии с применением устройств АВР при преобладании потребителей I и II категорий.
Однако существует ряд особенностей при транспорте электроэнергии В реальности при передаче электроэнергии от электростанций в магистральные сети зачастую используются трансформаторные подстанции (Рис. 10).
Рисунок 10 — Транспортировка электроэнергии
Просмотров:
279
Основные технологические процессы в электроэнергетике
Нормативы потребления электроэнергии на человека без счетчика
Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.
Три вида генерирования электричества
Электростанция | Топливо | Генерация |
ТЭС | Уголь, мазут | Получение пара от сгорания топлива, который движет турбины генераторов |
ГЭС | Потенциальная энергия потока воды | Движение турбин под напором воды |
АЭС | Урановые сердечники | Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины |
Ультразвуковой способ
Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.
Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).
Метод электромагнитной индукции
Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.
Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.
Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.
Демонстрация метода электромагнитной индукции
Электростатическая индукция
В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.
Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.
Микроволновое излучение
Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.
Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.
Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт
Электропроводность Земли
Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.
Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.
Всемирная беспроводная система
Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.
Питание электрокара беспроводным способом
Многие производители автомобилей, работающих на электрическом токе, проводят разработки альтернативной подзарядки авто без его подключения к сети. Больших успехов в этой области добилась технология зарядки транспорта от специального дорожного полотна, когда машина принимала энергию от покрытия, заряженного магнитным полем или СВЧ волнами. Но подобная подпитка была возможна только при условии, когда расстояние между дорогой и приемным устройством было не более 15 сантиметров, что в современных условиях не всегда исполнимо.
Зарядка автомобиля
Данная система находится на стадии разработок, поэтому можно предполагать, что подобный тип передачи питания без проводника еще получит свое развитие и, возможно, будет внедряться в современную транспортную индустрию.
Применение электромагнитной индукции
Хотя большинство людей даже и не подозревает об этом, этот метод используется уже очень давно, практически с самого начала использования переменного тока. Самый обычный трансформатор переменного тока является простейшим устройством беспроводной передачи электроэнергии, только расстояние передачи при этом очень маленькое.
Первичная и вторичная обмотки трансформатора не соединены в одну цепь, а при протекании переменного тока в первичной обмотке возникает электроток во вторичной. Перенос энергии при этом происходит посредством электромагнитного поля. Поэтому этот метод беспроводной передачи электроэнергии использует преобразование энергии из одного вида в другой.
Уже разработаны и успешно используются в быту ряд приборов, работа которых основана на этом методе. Это и беспроводные зарядные устройства для мобильных телефонов и других гаджетов, и бытовые электроприборы с низким потреблением электроэнергии при работе (компактные камеры видеонаблюдения, всевозможные датчики и даже телевизоры с жидкокристаллическими экранами).
Многие специалисты утверждают, что электротранспорт будущего будет использовать беспроводные технологии зарядки аккумуляторов или получения электроэнергии для движения. В дороги будут вмонтированы индукционные катушки (аналоги первичной обмотки трансформатора). Они будут создавать переменное электромагнитное поле, которое при проезде транспорта над ним вызовет течение электротока во встроенной приемной катушке. Первые эксперименты уже проведены и полученные результаты вызывают сдержанный оптимизм.
https://youtube.com/watch?v=G0mV-8fLRdw
Из достоинств такого способа можно отметить:
- высокий КПД для небольших расстояний (порядка нескольких метров);
- простота конструкции и освоенная технология применения;
- относительная безопасность для здоровья людей.
Недостаток метода — малое расстояние, на котором передача энергии эффективна — существенно снижает область применения беспроводного электричества на основе электромагнитной индукции.
Экономическое значение
Со школьной скамьи нам известно, что электроэнерговооруженность – один из основных факторов получения высокой производительности труда. Электроэнергетика – стержень всей деятельности человека. Нет ни одной отрасли, которая бы обходилась без нее.
Развитость этой отрасли свидетельствует о высокой конкурентоспособности государства, характеризует темпы роста производства товаров и услуг и почти всегда оказывается проблемным сектором экономики. Затраты на производство электроэнергии зачастую складываются из значительных первоначальных инвестиций, которые будут окупаться долгие годы. Несмотря на все свои ресурсы, Россия не исключение. Ведь значительную долю экономики составляют именно энергоемкие отрасли.
Статистика говорит нам о том, что в 2014 году производство электроэнергии Россией еще не вышло на уровень советского 1990 года. По сравнению с Китаем и США РФ производит – соответственно – в 5 и в 4 раза меньше электричества. Почему так происходит? Специалисты утверждают, что это очевидно: высочайшие непроизводственные расходы.
Передача электроэнергии по сетям
Для обеспечения передачи энергии используются электрические сети. Данная инфраструктура представляет собой комплекс электроустановок, реализующих трансляцию и распределение энергоресурса от вырабатывающей его станции до конечного потребителя. В зависимости от назначения передача электроэнергии может выполняться по разным сетям. В частности, выделяются следующие разновидности:
- Сети с общим назначением. Как правило, обеспечивают бытовые, транспортные, промышленные и сельскохозяйственные нужды.
- Контактные сети. Их можно выделить в отдельную группу, которая обслуживает транспортные средства, питающиеся энергией в процессе движения. Это могут быть локомотивы, трамваи, поезда и др.
- Электросети для снабжения технологических объектов. В данном случае передача электроэнергии на расстояние позволяет обслуживать удаленные производственные объекты, а также различные инженерные коммуникации.
- Сети для автономного снабжения. Питают энергией автономные и мобильные единицы, среди которых – те же станции, самолеты, суда, космические аппараты и т. д.
Производство электроэнергии
В настоящее время большая часть электроэнергии производится на генераторах переменного тока, расположенных на электростанциях.
Различают три основных типа электростанций: тепловые, гидро- и атомные электростанции.
На тепловых электростанциях (ТЭС) источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. В паровых котлах нагревает воду до высоких температур. А затем под действием пара приводят во вращение турбины, которые в свою очередь вращают роторы электрических генераторов. Коэффициент полезного действия ТЭС достигает 40%. Причем большая часть энергии теряется вместе с горячим отработавшим паром. Если этот пар использовать для технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение), то КПД достигает 60-70%.
На гидроэлектростанциях (ГЭС) падающая вода вызывает вращение гидротурбины, соединенной с ротором генератора. Мощность станции зависит от создаваемой плотиной разности уровней воды и от массы воды, проходящей через турбины в секунду (расхода воды). КПД ГЭС достигает 95 %.
На атомных электростанциях (АЭС) технология производства электрической энергии почти такая же, как и на ТЭС. Разница состоит в том, что на АЭС энергию для преобразования воды в пар получают при помощи ядерных реакций. КПД АЭС около 20 %.
Статистика Белэнерго за 2012 год
Суммарная установленная мощность электростанций Белорусской энергосистемы (БЭС):
- Конденсационные электростанции (БЭС): 2 станции, общей мощностью 3420,6 МВт (38%)
- Теплофикационные электростанции (БЭС): 35 станций, общей мощностью 4919 МВт (55%)
- Ветро- и гидроэлектростанции (БЭС): 24 станции, общей мощностью 27,7 МВт (0,3%)
- Промышленные блок-станции (ведомственные): 162 станции, общей мощностью 558 МВт (6%).
В 2012 году электростанциями “Белэнерго” выработано 28,046 млрд. кВт⋅ч электрической энергии и закуплено 7,898 млрд. кВт⋅ч:
- из них 4,051 млрд. кВт⋅ч из Украины,
- 3,698 млрд. кВт⋅ч из России,
- 0,149 млрд. кВт⋅ч из Литвы
Трансформаторные подстанции
Для преобразования напряжения одной величины в другую служат трансформаторные подстанции. Они представляют собой огороженный забором объект, имеющий на своей территории трансформатор. Внутри него располагаются первичная и вторичная обмотки (катушки). Их электромагнитное взаимодействие позволяет с большим КПД преобразовывать энергию. На подстанцию заходят воздушные линии или кабеля с одним напряжением, а выходят с другим, как правило, более низким.
Понижающий трансформатор
Там же располагаются всевозможные системы контроля и учёта электроэнергии и распределительное устройство (РУ). Оно предназначено для связи с другими объектами энергосистемы и является неотъемлемой частью трансформаторной подстанции. РУ позволяет отключить отдельного потребителя по стороне низкого напряжения, не обесточивая при этом всех остальных.
Схема передачи электроэнергии
Расстояние до токоведущих частей находящихся под напряжением
В цепи от производства энергии до получения ее потребителями существует несколько звеньев:
- генератор на электростанции, вырабатывающий электроэнергию напряжением 6,3-24 кВ (есть отдельные агрегаты с большим номинальным напряжением);
- повышающие подстанции (ПС);
- сверхдальние и магистральные ЛЭП напряжением 220-1150 кВ;
- крупные узловые ПС, понижающие напряжение до 110 кВ;
- ЛЭП 35-110 кВ для передачи электрической энергии на питающие центры;
- дополнительные понижающие подстанции – питающие центры, где получают напряжение 6-10 кВ;
- распределительные ЛЭП 6-10 кВ;
- трансформаторные пункты (ТП), ЦРП, находящиеся рядом с потребителями, для понижения напряжения до 0,4 кВ;
- низковольтные линии для подведения к домам и другим объектам.
Упрощенная схема передачи электроэнергии
Получаем энергию с катушками и без них
Мы пытаемся удалить энергию эфира двумя способами. Сначала трансформатор работает автономно, без дополнительных катушек. Слева — напряжение потребления, справа — ток. Напряжение около 11 вольт, сила тока 1,8. Теперь соединяем две одинаковые катушки. Трубки для снятия вставляются в их середину. На их выходе горят лампочки. Те, которые используются в холодильнике на 220 вольт, 15 ватт. Катушки наматываются так же, как и качер. Все концы луковиц уйдут в землю. Посмотрим, как меняются параметры.
7. Информация об измерении частоты на плате. Как это произошло? Включен во вторичную обмотку. Он пошел от катушки, прошел феррит, затем намотал на кольцо 3 витка обычного провода и выводы пошли на осциллограф. Я положил начало этому. Предел составляет 1 микросекунду. Предел напряжения 1 вольт. Мы смотрим.