Как изготовить электронную печатную плату в домашних условиях?

XIX век

Позапрошлый век был отмечен быстрым развитием технологий. Всё ускоряющийся прогресс начинал набирать обороты. Паровозы позволили путешествовать через всю страну не за 5-7 месяцев, а за 5-7 дней; электричество пришло на смену углю, дереву, маслу. Изобретение телеграфа, а затем и телефона обеспечило быструю связь, не доступную никогда прежде.

Бензиновый двигатель и автомобиль, фотография, граммофон-фонограф, электронно-лучевые трубки и паяльные лампы, трансформаторы и перфокарты, радио и кино, эскалаторы и посудомоечные машины – большинство вещей, которыми мы пользуемся до сих пор, или которые оказали непосредственное влияние на современную электронику, были созданы или запатентованы в XIX веке.

Речи о печатных платах тогда ещё не шло, но без промышленных достижений того времени и широкого распространения электричества платы никогда не стали бы тем, чем они являются сегодня.

Перенос рисунка на подготовленный текстолит

3) Третий этап – самый ответственный. Необходимо напечатанный на термотрансферной бумаге рисунок перенести на подготовленный текстолит. Для этого отрезаем бумагу так, как показано на фото, оставляя запасы по краям. На ровную деревянную дощечку кладём бумагу рисунком вверх, затем сверху прикладываем текстолит, медью к бумаге. Загибаем края бумажки так, как будто она обнимает кусочек текстолита. После этого аккуратно переворачиваем бутерброд, чтобы бумага оказалась сверху. Проверяем, чтобы рисунок никуда не сместился относительно текстолита и кладём сверху чистый кусочек обычной офисной белой бумаги так, чтобы он закрывал собой весь бутерброд. 

Теперь осталось лишь всё это дело хорошенько нагреть, и весь тонер с бумаги окажется на текстолите. Нужно приложить разогретый утюг сверху и нагревать бутерброд в течение 30-90 секунд. Время нагрева подбирается экспериментально и во многом зависит от температуры утюга. Если тонер перешёл плохо и остался на бумаге – нужно держать дольше, если же, наоборот, дорожки перевелись, но размазались – явный признак перегрева. Давить на утюг при этом не нужно, хватает его собственного веса. После прогрева нужно убрать утюг и прогладить ещё не остывшую заготовку ватным тампоном, на случай, если в некоторых местах тонер плохо перешёл при глажке утюгом. После этого остаётся только подождать, пока будущая плата остынет и снять термотрансферную бумагу. С первого раза может не получиться, это не беда, ведь опыт приходит со временем.

Разработка и изготовление макета

Чертеж платы можно выполнить вручную или на компьютере с помощью одной из специальных программ.

Вручную лучше всего выполнять рисунок платы на бумаге от самописцев в масштабе 1:1. Подходит также миллиметровая бумага. Устанавливаемые электронные компоненты должны изображаться в зеркальном отражении. Дорожки одной стороны платы изображаются сплошными линиями, а другой – пунктирными. Точками отмечаются места крепления радиоэлементов. Вокруг этих мест рисуют паечные площадки. Все чертежи обычно выполняют рейсфедером. Вручную, как правило, делают простые рисунки, более сложные схемы печатных плат разрабатывают на компьютере в специальных приложениях.

Чаще всего используют простую программу Sprint Layout. Для печати годится только лазерный принтер. Бумага должна быть глянцевая. Главное, чтобы тонер не въедался, а оставался сверху. Принтер нужно настроить так, чтобы толщина тонера чертежа была максимальной.

Промышленное производство печатных плат начинается с ввода принципиальной схемы прибора в систему автоматизированного проектирования, которая создает чертеж будущей платы.

Создание корпуса

Давайте покажу, как можно сделать корпус для своего устройства. Я начинаю с того, что экспортирую чертеж получившегося корпуса из Autodesk Fusion 360 в графический редактор Paint.net. После чего оформляю. Когда все готово, печатаю получившийся шаблон на прозрачной пленке. Корпус предварительно шкурится наждачной бумагой и обезжиривается. Затем на корпус наклеивается фоторезист – специальный фоточувствительный материал, который применяют, в том числе и при производстве печатных плат.

Подготовка заготовки корпуса и фотошаблона с рисунком

Затем фотошаблон с оснасткой фиксируются на корпусе, и вся конструкция помещается под ультрафиолетовую лампу. Незащищенные участки засвечиваются. После этого незасвеченные участки легко проявляются в растворе с щелочью (к примеру, гидроксид натрия, который есть в составе всем известного средства «Крот»).

Экспонирование рисунка и проявление фоторезиста

Теперь корпус готов к электрохимическому травлению, в процессе которого получится своеобразная гравировка. Нам понадобится какой-нибудь блок питания, я использую USB-зарядку. После чего достаточно поместить заготовку и какой-нибудь металлический предмет в раствор с обычной солью. К заготовке подключаем плюс, а к металлическому предмету – минус. Начинаем процесс травления.

Процесс электрохимического травления

Не забываем периодически проверять и поворачивать заготовку. Лично у меня процесс занимает чуть больше часа. Когда все готово, корпус можно отмыть и перейти к сверловке и фрезеровке. Мне очень нравится, если в процессе возникли небольшие артефакты: перетравленные или наоборот слегка не протравившиеся участки. Это придает устройству больше индивидуальности.

В домашних условиях я использую шуруповерт, а на работе – фрезерный станок. Думаю, что не стоит подробно останавливаться на этом – задача заключается в ровной сверловке отверстий по заранее заданным точкам. Чтобы сверлить боковые стороны, можно использовать дополнительный шаблон, который можно изготовить из чертежа с полной разверткой всех сторон.

Готовый корпус одного из shape mimic

Изготовление электронной печатной платы в домашних условиях

Какой материал будем использовать для изготовления

Для печатных плат используют диэлектрические основания из фольги. Материал состоит из многослойных пластин с электроизоляцией или из синтетических фторопластовых или полиимидных пленок. Сверху изоляции или пленки находится медная, алюминиевая или никелевая фольга.

  • Фольга из алюминия плохо спаивается.
  • Фольга из никеля обладает повышенным сопротивлением и небольшой теплоотводностью. Кроме этого, ее себестоимость более затратна.
  • Медная фольга хорошо поддается пайке. Толщина — от 18 до 35 мкм.

В продаже доступно множество материалов для производства плат. Для изготовления пластины своими руками можно использовать стеклотекстолит или гетинакс:

  • Стеклотекстолит — спрессованный материал, в основе которого лежит стеклоткань. Композиционный материал пропитан эпоксидной смолой и облицован фольгой из меди. Стеклотекстолит обладает высокой теплопроводностью, прочностью и электроизоляцией. Вес материала не утяжелит собираемое устройство. Материал удобен в механической обработке. Температура применения варьируется от минус 60 до плюс 125 градусов по Цельсию. Допустимая толщина — 1,5 миллиметра. В домашних условиях желательно использовать 0,8 миллиметра с покрытием одного слоя.
  • Гетинакс — бумага с пропиткой из бакелитового лака. Слои материала получаются после прессования бумаги горячим способом. Гетинакс пропитан эпоксидной смолой. Температура применения варьируется от минус 65 до плюс 120 градусов по Цельсию. Выбор разновидности Гетинакса зависит от дальнейшей эксплуатации.

Какое отношение к этому имеют бутерброды?

Честно говоря, аналогия с бутербродами не совсем идеальна, но чем больше я пытался придумать идеальное физическое представление о том, как изготавливается печатная плата, тем больше подходил именно бутерброд. У вас есть верхние и нижние слои (это хлеб), ваши внутренние слои (это мясо, сыр и приправы), и все это в итоге объединяется в единое целое.

Типичный набор слоев печатной платы выглядит своего род как бутерброд (картинка слева)

Прежде чем мы начнем, важно знать, что печатные платы производятся на больших панелях, которые содержат

множество других печатных плат. Может быть, они все ваши, а иногда несколько разработок объединяют в одну панель, чтобы сэкономить деньги. Процесс, о котором мы поговорим ниже, заключается в создании полноценной многослойной платы, а если вы просто имеете дело с 1-2 слойными платами, тогда этапов будет меньше.

Процесс изготовления печатных плат в домашних условиях

1. Готовим проект печатной платы. Я пользуюсь программой DipTrace: удобно, быстро, качественно. Разработана нашими соотечественниками. Очень удобный и приятный пользовательский интерфейс, в отличие от общепризнанного PCAD. Есть конвертация в формат PCAD PCB. Хотя многие отечественные фирмы уже начали принимать в формате DipTrace.

В DipTrace есть возможность узреть своё будущее творение в объёме, что весьма удобно и наглядно. Вот что должно получиться у меня (платы показаны в разных масштабах):

2. Сначала размечаем текстолит, выпиливаем заготовку для печатных плат.

3. Выводим наш проект на лазерном принтере в зеркально отражённом виде в максимально возможном качестве, не скупясь на тонер. Путём долгих экспериментов была выбрана лучшая бумага для этого — плотная матовая фотобумага для принтеров. 

4. Не забудем почистить и обезжирить заготовку платы. Если нет обезжиривателя, можно пройтись по меди стеклотекстолита ластиком. Далее с помощью обыкновенного утюга “привариваем” тонер с бумаги к будущей печатной плате. Я держу 3-4 минуты под небольшим нажимом, до лёгкого пожелтения бумаги. Нагрев ставлю максимальный. Сверху кладу ещё один лист бумаги для более равномерного прогрева, иначе изображение может “поплыть”. Важный момент здесь — равномерность прогрева и нажима.

5. После этого, дав плате немного остыть, кладём заготовку с прилипшей к ней бумагой в воду, желательно горячую. Фотобумага быстро намокает, и через минуту-две можно аккуратно снять верхний слой.

В местах, где большое скопление наших будущих токопроводящих дорожек, бумага прилипает к плате особенно сильно. Её пока не трогаем.

 

6. Даём плате ещё пару минут отмокнуть. Остатки бумаги аккуратно снимаем с помощью ластика или трения пальцем.

7. Вынимаем заготовку. Просушиваем. Если где-то дорожки получились не очень чёткими, можно сделать их ярче тонким маркером для CD. Хотя лучше добиться того, чтобы все дорожки вышли одинаково чёткими и яркими. Это зависит от 1) равномерности и достаточности прогрева заготовки утюгом, 2) аккуратности при снятии бумаги, 3) качества поверхности текстолита и 4) удачного подбора бумаги. С последним пунктом можно поэкспериментировать, чтобы найти наиболее подходящий вариант.

8. Кладём получившуюся заготовку с отпечатанными на ней будущими дорожками-проводниками в раствор хлорного железа. Травим часа 1,5 или 2. Пока ждём, накроем нашу “ванночку” крышкой: испарения достаточно едкие и токсичные.

9. Достаём из раствора готовые платы, промываем, сушим. Тонер от лазерного принтера замечательно смывается с платы с помощью ацетона. Как видно, даже самые тонкие проводники шириной 0,2 мм вышли вполне хорошо. Осталось совсем немного.

10. Лудим изготовленные методом “лазерного утюга” печатные платы. Смываем бензином или спиртом остатки флюса.

11. Осталось только выпилить наши платы и смонтировать радиоэлементы!

Подготовка печатной платы к монтажу радиодеталей

Следующий шаг, это подготовка печатной платы к монтажу радиоэлементов. После снятия с платы краски, дорожки нужно обработать круговыми движениями мелкой наждачной бумагой. Увлекаться не нужно, потому что медные дорожки тонкие и можно легко их сточить. Достаточно всего нескольких проходов абразивом со слабым прижимом.

Далее токоведущие дорожки и контактные площадки печатной платы покрываются и лудятся мягким припоем эклектрическим паяльником. чтобы отверстия на печатной плате, не затягивались припоем, его на жало паяльника нужно брать немного.

После завершения изготовления печатной платы, останется только вставить в предназначенные позиции радиодетали и запаять их выводы к площадкам. Перед пайкой ножки деталей нужно обязательно смочить спирто-канифольным флюсом. Если ножки радиодеталей длинные, то их нужно перед пайкой обрезать бокорезами до длины выступания над поверхностью печатной платы 1-1,5 мм. После окончания монтажа деталей нужно удалить остатки канифоли с помощью любого растворителя – спирта, уайт-спирта или ацетона. Они все успешно растворяют канифоль.

Подробно о технологии пайки на примерах пайки деталей, о марках припоев и флюсов, устройстве и ремонте паяльников Вы можете узнать из цикла статей раздела «Как паять паяльником».

На воплощение этой простой схемы емкостного реле от разводки дорожек для изготовления печатной платы до создания действующего образца ушло не более пяти часов, гораздо меньше, чем на верстку этой страницы.

Травление печатной платы

4) Следующий этап – травление. Вся та область медной фольги, которая не покрыта тонером должна быть удалена, а медь под тонером должна остаться не тронутой. Сперва нужно приготовить раствор для травления меди, самый простой, доступный и дешёвый вариант – раствор лимонной кислоты, соли и перекиси водорода. В пластиковой или стеклянной ёмкости нужно размешать одну-две столовые ложки лимонной кислоты и чайную ложку поваренной соли на стакан воды. Пропорции не играют большой роли, можно высыпать на глаз. Тщательно перемешать и раствор готов. Нужно положить в него плату, дорожками вниз для ускорения процесса. Также можно слегка подогреть раствор, это ещё увеличит скорость процесса. Примерно через пол часа вся лишняя медь вытравиться и останутся только дорожки.

Контроль качества и исправление ошибок

Листы заготовок проверяются современной системой технического зрения в присутствии сотрудника, вооруженного различными резаками и скребками. При обнаружении различий между внешним видом платы и файлом проекта сотрудник, курирующий процесс, принимает решение – является ли дефект серьезным, и плату следует забраковать (например, в случае перетравливания), или ее можно исправить вручную. Ремонт обычно производится под мощными микроскопами, поэтому результат часто бывает удовлетворительным.

Система компьютерного зрения проверяет соответствиепечатной платы файлам проекта.
 
Мелкие ошибки исправляются вручную.

Печать рисунка платы

1) Печать рисунка на термотрансферной бумаге. Купить такую бумагу можно, например, на Алиэкспресс, там она стоит сущие копейки – по 10 рублей за лист формата А4. Вместо неё можно использовать любую другую глянцевую бумагу, например, из журналов. Однако качество переноса тонера с такой бумаги может оказаться гораздо хуже. Некоторые используют глянцевую фотобумагу «Ломонд», хороший вариант, если бы не цена – стоит такая фотобумага куда дороже. Рекомендую попробовать распечатать рисунок на разных бумагах, а затем сравнить, с какой из них получится самый лучший результат.

Ещё один важный момент при печати рисунка – настройки принтера. В обязательном порядке нужно отключить экономию тонера, плотность же стоит выставить максимальную, ведь чем толще слой тонера, тем лучше для наших целей.

Также нужно учитывать такой момент, что на текстолит рисунок переведётся в зеркальном отображении, поэтому нужно заранее предусмотреть, нужно или не нужно отзеркалить рисунок перед печатью. Особенно критично это на платах с микросхемами, ведь другой стороной их поставить не удастся.

6Подготовка платык травлению

Вынимаем заготовку из воды и просушиваем. Если где-то дорожки получились не очень чёткими, можно сделать их ярче тонким маркером для CD или, например, лаком для ногтей (смотря чем вы собираетесь травить плату).

Подготовка платы к травлению

Нужно добиться, чтобы все дорожки были чёткими, ровными и яркими. Это зависит от:

  • равномерности и достаточности прогрева заготовки утюгом;
  • аккуратности при снятии бумаги;
  • качества подготовки поверхности текстолита;
  • удачного подбора бумаги.

Поэкспериментируйте с разными видами бумаги, разным временем нагрева, разными видами очистки поверхности стеклотекстолита, чтобы найти наиболее оптимальный по качеству вариант. Подобрав приемлемое сочетание этих условий, в дальнейшем вы сможете быстрее и качественнее изготавливать печатные платы дома.

Сверление платы

Вытравленная и очищенная плата нуждается в сверловке, так как не всегда есть возможность применения поверхностного монтажа.   Для сверления платы у меня припасена небольшая сверлилка. Она представляет собой моторчик типа ДПМ с насаженным на вал цанговым патроном. Брал я его в радиомагазине за 500р. Но думаю можно применить для этого любой другой моторчик, например от магнитофона.

Сверлим плату острым сверлом, стараясь сохранять перпендикулярность. Перпендикулярность особенно важна при изготовлении двусторонних плат.   Кернение отверстий под сверловку нам не требуется, так как отверстия в фольге образовались при травлении автоматически.

Проходимся по плате шкуркой нулевкой,  снимая заусенцы после сверловки, и готовимся к лужению нашей платы.

Подготовка рисунка печатной платы и перенос на текстолит

Нарисованный заранее рисунок печатной платы, мы распечатываем на фотобумагу. Причем в принтере отключаем режим экономии тонера, а рисунок выводим на глянцевой стороне фотобумаги.

Теперь достаем из-под стола утюг и включаем в сеть, пускай нагревается. Свежераспечатанный лист бумаги ложим на текстолит рисунком вниз и начинаем проглаживать утюгом. С фотобумагой, в отличие от кальки, подложки от самоклейки церемониться не нужно, «елозим» утюгом до начала пожелтения бумаги.

Здесь можно не бояться передержать плату, или переборщить с давлением. После берем этот бутерброд с прижаренной бумагой и несем его в ванную. Под струей теплой воды подушечками пальцев начинаем скатывать бумагу. Далее берем в руки заготовленную зубную щетку и хорошенько проходим ею по поверхности платы. Наша задача содрать белый меловой слой с поверхности рисунка.

Просушиваем плату и под яркой лампой хорошенько проверяем.

Зачастую меловой слой сдирается с первого раза зубной щеткой, но бывает, что этого оказывается недостаточно. В этом случае можно воспользоваться изолентой. Белесые волокна налипают на изоленту оставляя нашу платку чистой.

Текстолит –> Текстолит с дорожками

Для травления, нам понадобится пластиковый контейнер (или любая не-металлическая тара, в которую плата поместится лёжа). А также, одноразовая ложка или варибаси для помешивания платы (против пузырьков, которые мешают травиться).

Персульфат аммония рекомендуется разводить в тёплой воде 1:2. Но это довольно высокая концентрация, 1:3 или даже 1:4 хватит. В конце концов, можно еще подразмешать потом. Рекомендуемая температура разбодяживания — 40-50 градусов.

Однако, учтите, что перегревать всякого рода химикаты довольно опасно. Высокая концентрация, высокая температура и соли меди могут привести к криповому результату:

https://vk.com/video-24764675_456239191

Пользуйтесь респиратором.

Желательно шевелить плату, сгонять с нее пузырьки и поддерживать температуру в районе 35-45 градусов на водяной бане. Но если персульфат не дохлый, она и сама может поддерживаться (см. видео выше).

Если плохо травится, можно:

  1. Купить новый аммоний, он теряет свои свойства при хранении в условиях повышенной влажности
  2. Перестать помешивать
  3. Еще подождать
  4. Вытащить плату и подогреть раствор в микроволновке (аккуратно)
  5. Подразмешать ещё чучуть белого порошка

После травления, тонер стирается ацетоном.

Конец 40-х — 60-е годы

Хотя первые транзисторы были разработаны ещё в 1947 году, серийное их производство началось только в 1953-м. Про разработку транзистора можно прочитать в нашем цикле «История транзистора«.

Прототип транзистора Бреттейна и Бардина

В том же 1953 году вышла одна из первых советских разработок на печатных платах — это был радиоприёмник “Дорожный”, который собирали в Воронеже. Его единственная плата была изготовлена электрохимическим способом (плата из гетинакса подвергалась бестоковому (химическому) меднению, а проводниковые дорожки — гальваническому (электрическому) меднению).

На современный взгляд плата была примитивной — широкие, в 4-5 мм, проводники с пилообразными кромками по обеим сторонам платы, соединённые через металлизированные отверстия. Но даже она была дорогой в производстве, и очень скоро выпуск приёмника прекратили — из-за высокой стоимости, низких эксплуатационных качеств и быстро стареющей элементной базы.

В эти же годы многие разработчики радиоэлектронной аппаратуры и технологические институты отрабатывали различные технологии производства печатных плат. В 1954-м на Московском радиотехническом заводе начали собирать телевизор “Старт”, в котором применялись печатные платы оригинального изготовления. Их подложки прессовали из карболита или подобного материала, причём так, чтобы на пластинах при этом образовывались канавки. После металлизации эти канавки и служили проводниками.

Холодная война между Советским блоком и США, гонка вооружений, соперничество в освоении космоса требовали всё большего развития технологий. В СССР первая половина 60-х годов характеризовалась разработкой новой радиоэлектронной аппаратуры, организацией многочисленных производств в опытном производстве НИИ и КБ — с непременным использованием печатных плат.

Не менее интенсивная работа шла и в Соединённых Штатах. Мо Абрамсон (Moe Abramson) и Станислаус Ф. Данко (Stanislaus F. Danko), служившие в корпусе связи армии США, ещё в конце 40-х годов разработали процесс автоматической сборки платы, при котором элементы устанавливались на платы и паялись погружением.

С развитием технологий ламинирования и травления платы этот метод стал стандартным процессом изготовления печатных плат. В 1956 году Абрамсон и Данко получили патент на свою разработку, который передали армии.

В 60-х компания Hazeltyne Corporation получила патент на технологию сквозного монтажа, при котором выводные компоненты и электронные узлы монтируются в сквозные отверстия печатной платы. Это позволило располагать компоненты очень близко друг от друга, не опасаясь перекрытия.

Первый патент на технологию сквозного монтажа

В то же время компания IBM разработала технологию поверхностного монтажа, при которой компоненты монтируются на поверхность платы со стороны токопроводящих дорожек, и отверстия в плате не требуются. Эти новые разработки нашли первое практическое применение в ракетах “Сатурн-5”, которые использовались для космической программы “Аполлон”, в том числе и для запуска на Луну “Аполлона-11”.

Что нам понадобится

  • KiCad
  • лазерный принтер (ИМЕННО лазерный, струйный не подойдет);
  • журналы/каталоги;
  • пластиковые ванны (хорошо, если их будет две);
  • маленькая кисточка или зубная щетка;
  • хлорид железа;
  • листы стеклотекстолита, покрытые медной фольгой.

Два пункта, которые вы скорее всего не найдете у себя дома, – это хлорид железа и листы стеклотекстолита, покрытые медной фольгой; и хлорное железо, и фольгированный стеклотекстолит можно найти в ближайшем магазине радиодеталей, либо заказать на Aliexpress. Кстати, хлорное железо вы можете повторно использовать снова и снова (это хорошо, потому что это не тот химикат, который можно просто выбросить).

Перед покупкой фольгированного стеклотекстолита важно убедиться, что вы покупаете текстолит, покрытый только медной фольгой без дополнительно нанесенного фоторезиста, который необходим для изготовления печатных плат другим способом. Журналы и каталоги, которые вам необходимо найти, должны быть из полуглянцевой бумаги – это упростит процесс переноса рисунка платы

Глянцевая бумага или фотобумага из магазина канцтоваров также хорошо подойдет, но журналы бесплатны. Остальные пункты, которые вам понадобятся, и так понятны; вы не обязаны использовать Kicad, существует много других программ, которые могут делать то же самое, но Kicad является бесплатным и довольно мощным программным обеспечением для проектирования печатных плат

Журналы и каталоги, которые вам необходимо найти, должны быть из полуглянцевой бумаги – это упростит процесс переноса рисунка платы. Глянцевая бумага или фотобумага из магазина канцтоваров также хорошо подойдет, но журналы бесплатны. Остальные пункты, которые вам понадобятся, и так понятны; вы не обязаны использовать Kicad, существует много других программ, которые могут делать то же самое, но Kicad является бесплатным и довольно мощным программным обеспечением для проектирования печатных плат.

Предупреждение о безопасности при работе с хлорным железом: хлорид железа является мощным химикатом, который разъедает большинство металлов, а некоторые особенно сильно (следите за алюминием!), но не взаимодействует с синтетическими материалами, такими как пластик, чернила, лак для ногтей. Настоятельно рекомендуется надевать защитные очки, когда работаете с этим химикатом, и хранить его надежно закрытым, так как даже пары могут вызывать коррозию металла. Взгляните на бутылку:

Если символы внизу бутылки недостаточно ясны – если вам нравится ваша кожа, то возможно вам стоит надевать латексные или нитриловые перчатки

По всей вероятности хлорное железо не попадет вам на руки, но всё равно важно принять меры предосторожности. Если немного хлорного железа попадет вам на кожу, немедленно промойте ее с мылом и ХОЛОДНОЙ водой, и всё будет хорошо

Также можно купить хлорное железо в сухом виде. Перед использованием его необходимо растворить в воде из расчета 200-300 грамм на 1 литр воды. При растворении FeCl3 в воде происходит сильное тепловыделение, поэтому добавлять FeCl3 в воду небольшими порциями при помешивании.

Итоги моего опыта

В целом я доволен. Я не рассчитывал получить дорожки/зазоры в 0.1 мм и я их не получил. Тут и возможности принтера сильно ограничивают (размер пикселей), да и вообще для таких результатов нужен неплохой опыт. Но я надеялся получить хотя бы 0.2 мм, а если повезет, то и 0.15 мм – и я это получил. 0.2 мм уверенно, 0.15 мм – ну так себе… Если постараться, то можно добиться 🙂

Не обошлось без огрехов – это и непротрав в некоторых участках, и неидеальное совмещение слоев и отверстий. Но и то и другое не критично. По непротраву – я думаю, что просто поспешил вынуть из проявки, боялся после ПФ-ВЩ, что начнут отслаиваться тонкие дорожки. Хотя в отзывах народ пишет, что перепроявить этот Ordyl довольно сложно, нужно постараться для этого. Неидеальное совмещение слоев и отверстий – это ожидаемо. От такого простейшего способа совмещения я и ожидал погрешности в 0.1-0.2 мм, что и получил, но меня это устраивает.

Спасибо тем, кто дочитал.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий