Паяльная станция сделанная своими руками

Как использовать паяльную станцию

Для пайки современных микросхем контактное оборудование не годится. Новые чипы имеют немало выводов, потому справиться с ними обычным методом просто не получится. При этом многие из них вообще не снабжаются «ножками» – так обстоят дело с микросхемами, поставляемыми в корпусах типа BGA. Их ставят на материнские платы и модули памяти.

Даже привычные планарные чипы нередко снабжаются сотней и более выводов. Снять или зафиксировать подобную деталь с помощью обычного паяльника в принципе невозможно.

Расскажем, как работать со станцией на примере модели Lukey-702 с феном. Помимо последнего, в ее комплектацию входит также и классический паяльник.

Устройство дает возможность выбирать для каждого элемента наиболее подходящую температуру, что позволяет действовать максимально эффективно.

Порядок работы с термофеном выглядит следующим образом:

  • ремонтируемый элемент закрепляется в специальных фиксаторах;
  • станцию подключают к питанию;
  • на фен устанавливают подходящую насадку;
  • поднимают температуру регулятором до среднего показателя;
  • о том, что аппарат готов к работе, сообщит специальная индикация на табло;
  • исправные детали прикрывают куском плотной фольги для защиты;
  • под пришедший в негодность чип подводят съемник – скобу из стальной проволоки, которая проникает в пространство под его ножками;
  • контакты обрабатывают специальным флюсом с помощью шприца;
  • микросхему (во избежание термошока) сначала прогревают круговыми движениями фена;
  • далее горячим воздухом обдувают «ножки»;
  • по мере размягчения припоя начинают поднимать чип;
  • когда деталь полностью снимают, дорожки продолжают нагревать для выравнивания слоя олова;
  • при необходимости контакты очищают спиртом;
  • перед установкой новой детали опять наносят флюс на плату;
  • чип выравнивают и фиксируют точечно (в каждом углу) паяльником;
  • вновь выводы обрабатывают раскаленным воздухом, совершая круговые движения до того момента, пока микросхема под собственным весом не погрузится в припой.

В конце операции проверяют все выходы на предмет замыкания. При его обнаружении проблемные «ножки» снова смазывают флюсом. Затем, используя паяльник и кусок медной оплетки, снимают излишек олова.

Завершающий этап – промывание микросхемы спиртом от остатков флюса и других загрязнений. Для этого берут старую зубную щетку.

Рекомендации по сборке самодельной паяльной станции с феном

Для начала разберемся в особенностях схемы паяльного фена.

В домашних условиях легче и дешевле всего сделать паяльную станцию своими руками с феном на вентиляторе, а в качестве нагревателя использовать спираль. Керамический нагреватель дорогой, и при резких изменениях температуры он может просто потрескаться. Компрессор в домашних условиях сконструировать сложно. К тому же, компрессор к фену не присоединишь, поэтому от основного блока придется еще проводить трубку для воздуха, что вносит значительные неудобства.

В качестве нагнетателя можно использовать любой малогабаритный вентилятор. В нашем случае – кулер от блока питания компьютера.Он будет находиться возле ручки термофена. К нему нужно будет присоединить трубку, в которой воздух будет нагреваться и выходить на паяемый элемент.

На торце кулера нужно вырезать отверстие, через которое воздух будет попадать в трубку (сопло) с нагревателем. С одной стороны кулер нужно плотно закрыть, чтобы при работе воздух проходил только в трубку, а не выходил в окружающую среду. Нагнетатель устанавливается в задней части фена.

Любой начинающий радиолюбитель и домашний мастер должен знать все тонкости — как правильно паять паяльником. Главными условиями качественной пайки являются обеспечение зачистки и обслуживания деталей перед соединением, а также необходимый прогрев во время самого процесса. Для многих элементов — микросхем и некоторых транзисторов — подходит специальный паяльник, который обеспечит безопасную пайку и защитит от перегрева. Об особенностях такого инструмента можно узнать тут.

Нагреватель собрать куда сложнее. Нихромовая проволока накручивается в виде спирали на основание. Витки спирали не должны касаться друг друга. Длина спирали рассчитывается из условия, что ее сопротивление должно быть 70-90 Ом. В качестве основания должно быть выбрано основание с плохой теплопроводностью и хорошей стойкостью к большим температурам.

Для конструирования термофена много деталей можно взять из старых фенов для волос. В каждом фене, даже самом простом и дешевом, можно найти слюдяные пластины. Из таких пластин нужно собрать крестообразное основание для спирали.

Кроме того, можно использовать основание из старых паяльников или галогенных ламп для прожекторов. Основание на 5-7 сантиметров должно оставаться не занятым спиралью. От спирали отводим концы по основанию, в виде проволоки. Затем эту N-сантиметровую часть плотно обматываем жаропрочной тканью.

После этого нужно сделать трубку (сопло) из фарфора, керамики и т.п. Диаметр рассчитываем так, чтобы между внутренними стенками сопла и спиралью оставался небольшой зазор. Сверху на трубку наклеиваются термоизоляционные материалы: асбестовый слой, стекловолокно и т.д. Такая изоляция обеспечит большее КПД фена, а также возможность спокойно браться за него руками.

Нагревательный элемент и сопло по отдельности крепятся к нагнетателю так, чтобы воздух поступал в трубку, а нагреватель находился точно посередине внутри сопла. Место скрепления сопла с нагнетателем нужно заизолировать, чтобы не выходил воздух.

До того, как подключить светодиодную ленту в машине, необходимо её правильно подобрать. Для этого следует учитывать следующие параметры устройства для LED подсветки транспортного средства: тип, плотность, мощность, цвет и влагозащита. При включении светодиодных лент в домашних условиях используют блок питания на 12 Вольт, который служит стабилизатором тока в цепи диода. LED люстры в жилых помещениях устанавливают не только для улучшения дизайна и интерьера, но и как удобный осветительный прибор, которым можно управлять дистанционным пультом.

У нас получилась конструкция, по форме немного напоминающая пистолет. Для удобства можно прикреплять к корпусу всевозможные ручки и держатели. Специальные насадки можно купить или выточить собственноручно из термостойкого металла.

От изготовленного термофена к основному блоку должны отходить 4 провода. Выходить они будут из задней части фена. Лучше собрать их вместе и повторно заизолировать.

После изготовления термофена нужно сделать основной блок, который будет выполнять функцию регулятора и выключателя.

В корпусе блока размещаем два реостата. Один будет регулировать мощность потока воздуха, другой – мощность нагревательного элемента. Выключатель лучше сделать общий, для нагревателя и нагнетателя.

Затем присоединяем термофен так, чтобы провода соответствовали нужным реостатам и выключателю. Остается сделать выход для розетки, и термовоздушная паяльная станция будет готова.

Способ №2. Бесконтактная паяльная станция

Как показывает практика, далеко не всегда нагревом жала можно воздействовать на любые элементы платы, к примеру, к тем же smd деталям крайне трудно подобраться. В таких ситуациях используется паяльный фен, направляющий поток горячего воздуха на ножки.

Несмотря на схожесть, переделать обычное устройство для сушки волос в инфракрасную станцию не получится, так как рабочая температура должна достигать 500 — 800ºС. Для сборки такой паяльной станции вам понадобится компрессор для подачи воздуха, нагревательный элемент, корпус для элементов управления, сопло, понижающий трансформатор, выпрямитель, блок управления скоростью подачи воздуха.

Принципиальная схема такой паяльной станции приведена на рисунке ниже:

Рис. 2: электрическая схема термофена

Принцип действия паяльной станции основан на воздействии инфракрасного излучения от нагревательного элемента непосредственно в область пайки. Компрессор подает воздух от нагревателя через сужающееся сопло, создавая эффект турбины, производительность насоса желательно обеспечить в пределах от 20 до 30 л в минуту.

При изготовлении инфракрасной станции существует два способа для ее выполнения — ручная модель или стационарная. Первый вариант подходит в тех ситуациях, когда корпус ИК паяльной предвидится относительно небольших размеров и будет удобно помещаться в руке. Второй способ подойдет для крупногабаритных приспособлений, в которых станция установлена неподвижно, а заготовка перемещается под соплом.

Рассмотрим такой пример изготовления паяльной станции бесконтактного типа:

  • Намотайте нагревательную спираль из нихромовой проволоки, в данном случае используется диаметром 0,8мм. Можете взять и другой вариант, к примеру, от электрической плиты.

    Рис. 3: намотайте нагревательный элемент

  • Для намотки используйте жесткий каркас, укладывайте витки вплотную, но не делайте нахлестов и следите за тем, чтобы не закоротить намотку. Чем меньше диаметр проволоки у вас получится, тем эффективнее будет идти нагрев, достаточно будет спирали с наружным диаметром 8 – 10 мм.
  • В данном примере изготавливаются несколько спиралей, соединяемых параллельно для повышения температуры нагрева.
  • Установите полученную спираль на цилиндрический каркас из негорючего материала.

Рисунок 4: поместите спирали на диэлектрический элемент Предварительно удалите с каркаса все лишнее но если он уже готов, можете сразу осуществлять намотку.

  • Изготовьте металлический стакан для нагревательного элемента, в этом примере изготовления паяльной станции мы сделаем его из корпуса пальчиковой батарейки.
  • Из куска телескопической антенны от радиоприемника сделайте сопло, один край которого нужно расплескать и надеть на шайбу.

    Рис. 5. Наденьте шайбу

  • Прикрутите шайбу сопла к стакану из батарейки при помощи соразмерных болтов.

    Рис. 6: прикрутите сопло к стакану

  • Поместите внутрь стакана между спиралью и стенками термоизоляционный материал, чтобы предотвратить перегревание наружных деталей.
  • Соберите диодный мост из четырех полупроводниковых элементов, если под рукой уже есть готовая сборка, можете использовать и ее.
  • Изготовьте блок питания из понижающего трансформатора и выпрямительного агрегата, ваша задача получить на выходе низкое напряжение для снижения вероятности поражения электротоком. В рассматриваемом примере получается около 10 – 15В, мощность трансформатора составляет 150Вт. Аналогичная модель может браться с готового оборудования.
  • Корпус для паяльной станции мы изготовим из обычной пластиковой бутылки. В данном примере нам нужен прозрачный пластик, так как в нем легче подключать блок питания, нагнетатель воздуха и плату управления.

    Рис. 7. соедините все элементы в корпусе

  • Подключите куллер и нагревательную спираль к выводам блока питания, подсоедините регулятор напряжения.

    Рис. 8. установите кулер

Регулировка мощности теплового потока может осуществляться либо по скорости подачи воздуха, либо по уровню напряжения, подаваемого на нагреватель.

Подключите шнур питания к выводам трансформатора – паяльная станция готова к использованию.

Рис. 9: паяльная станция готова

Типы установок

По количеству подключаемых к блоку питания паяльников станции могут быть одно- или двухканальные. В комплект последнего из этих образцов могут входить как основной, так и дополнительный (демонтажный) паяльники, отличающиеся по своей мощности и рабочим температурам.

Иногда один из них имеет функцию быстрой смены рабочего наконечника («жала»), что позволяет пользоваться им для пайки различных видов радиодеталей.

С внешним видом некоторых из моделей паяльных установок можно ознакомиться на фото.

При классификации оборудования этого типа также различают цифровые паяльные станции, в которых управление рабочими режимами пайки осуществляется посредством специальных электронных модулей.

Особый интерес представляет компрессорная паяльная установка, оборудованная специальным нагнетателем воздуха, используемым при работе с феном.

В таких паяльных станциях сфокусированный с помощью специального устройства воздушный поток сначала нагревается в термическом канале, а затем направляется через выходное сопло в зону пайки.

Наличие встроенной системы контроля температуры обеспечивает формирование более равномерной струи горячего воздуха.

Помимо образцов с компрессорной накачкой воздушной струи, выпускают установки турбинного типа, которые по причине своей дороговизны встречаются очень редко и не пользуются потребительским спросом.

Изготовление инфракрасного паяльника

Паяльные станции, работающие на инфракрасном излучении, за редким исключением, используются для прогрева распаявшегося процессора, моста или проца на видеокарте. Как известно, процессоры очень плохо переносят перегрев, и зачастую, при интенсивной нагрузке и плохом теплоотводе, происходит распаивание низкотемпературного припоя контактов от площадки.

Одним из варварских способов восстановления контакта является прогрев «тела» процессора дозированным тепловым излучение. Это можно сделать обычным феном или даже утюгом, но после подобных процедур положительный эффект достигается в одном из трех случаев. Поэтому специалисты-самодельщики предпочитают строить паяльные станции инфракрасного нагрева.

Изготовление корпуса и нагревательных элементов

Конструктивно паяльная станция состоит из четырех основных элементов:

  • Нижнего нагревательного блока;
  • Верхнего нагревательного блока;
  • Штатива и блока управления нагревателями.

Между верхним и нижним корпусом укладывается материнская плата компьютера так, чтобы инфракрасный поток от верхней системы нагрева был направлен преимущественно на цель — корпус процессора. Остальная часть платы закрывается от нагрева алюминиевой пластиной или фольгой с вырезанным окном под процессор.

Нижний корпус паяльной станции применяется для создания теплового экрана, проще говоря, для дополнительного подогрева платы, чтобы уменьшить потери тепла за счет конвекции воздуха.

Важно! Вся хитрость паяльной станции заключается в том, чтобы сделать нагрев не только эффективным, но и управляемым, то есть, нельзя допустить перегрева корпуса, поэтому в конструкции используется термопара и интерфейс управления галогенками. В качестве нагревателей можно использовать обыкновенную нихромовую спираль, уложенную внутрь кварцевых трубок или галогенки R7S J254

В качестве нагревателей можно использовать обыкновенную нихромовую спираль, уложенную внутрь кварцевых трубок или галогенки R7S J254.

Для изготовления корпуса нижнего блока можно использовать любой подходящий по размеру стальной коробок, на который устанавливаются разъемы для ламп. В итоге, после сборки и подключения проводки получается конструкция паяльной станции, как на фото.

Аналогичным способом изготавливается верхний нагревательный блок.

Все устройство и управление монтируется на штативе от старого советского фотоувеличителя, у которого есть регулировка положения верхнего блока по высоте. Остается собрать систему управления паяльной установки.

Термопары и управление

Для того чтобы не допустить перегрева, в паяльной станции используются две термопары – для корпуса процессора и остальной поверхности материнской платы. Для управления паяльной станцией используется плата интерфейса Arduino MAX6635, которая подключается к последовательному порту домашнего ноутбука или ПК, для которого приходится искать соответствующее программное наполнение –обеспечение или сделать его самому.

Управление паяльной станции выполняется следующим образом. Компьютер через интерфейс и термопару получает информацию о температуре и меняет мощность теплового потока с помощью импульсов включения-выключения галогенок станции. По мере перегрева продолжительность периода горения лампы будет снижена, а при остывании, наоборот, увеличена.

В собранном виде паяльная станция выглядит, как на фото. Стоимость постройки обошлась чуть более 80 долл.

Сборка термофена своими руками


Нагрев пластика

Сборка термофена своими руками начинается с создания спирали нагревательной части. Спираль накручивается на стальную проволоку сечением 4-7 мм с натяжкой. Спираль желательно наматывать проволокой из фехраля или нихрома сечением 0,5-0,6 мм. Размер спирали высчитывается с учетом условия, что ее электрическое сопротивление будет составлять приблизительно 75-95 Ом.

Собранный нагревательный элемент устанавливается во внутренний канал корпуса термофена. Но предварительно нужно место установки проложить кварцевыми пластинами, слюдой или асбестом, для дополнительной термоизоляции. Выходы спирали, с помощью винтового крепления, соединяются с проводом электрического питания. Этот электропровод обязан иметь теплостойкую изоляцию – волокнистую изоляцию либо фторопласт. Провод нужно проложить через пусковой включатель и реостат для регулирования напряжения, которое подается на спираль.

В обратной части корпуса закрепляется воздушный нагнетатель четко соосно с отверстием нагревательного элемента. Если компрессор или нагнетательный элемент не может поместиться в корпусе, то его можно зафиксировать снаружи торца корпуса. В данном случае к нему нужно присоединить направляющую трубке для потока воздуха. Данная трубка обязана проходить к нагревательному элементу изнутри корпуса и устанавливаться четко соосно его каналу.

От нагнетателя выводятся провода для электрического питания, которые подсоединяются с проводом для нагревателя таким образом, чтобы включатель одновременно мог управлять питанием двух элементов. Реостат регулировки воздушного потока необходимо ввести в цепь электропровода для нагнетателя – его работа не зависит от включения нагревателя.

Электропровод питания выводится наружу внизу рукояти корпуса, а клавиша или кнопка включателя и рычаги реостатов крепятся в удобном вам месте с наружно стороны корпуса. После половинки корпуса соединяются и крепятся между собой. Монтируется концевая часть из термоизоляционного материала в форме конуса или цилиндра. Крепится металлическое сопло. В конструкции лучше всего предусмотреть сменные сопла с различным выходным диаметром.

Принцип работы термофена

Фен для пайки своими руками работает таким образом. Во время нажатия на спусковую кнопку включается нагреватель и вентилятор. Нагретый воздух узким потоком перемещается в необходимую точку. При достижении установленной температуры, воздушный поток расплавляет флюс и припой, а также нагревает соединяемые детали. Таким образом, происходит спайка деталей.

Пайка микросхем


повысить до 750-800С

В значительной мере увеличивается требование к термической устойчивости материала корпуса аппарата, а рукоять при этом обязана иметь температуру, которая комфортна для рук человека, чтобы пайка не превратилась в муку. В некоторых конструкциях фенов для удобства эксплуатации и в роли дополнительной тепловой защиты устанавливается резиновое покрытие рукояти.

Инструмент для сборки термофена

Во время изготовления фена своими руками будет необходим такой инструмент:

  • лобзик;
  • ножницы;
  • плоскогубцы;
  • ножовка по металлу;
  • электрическая дрель;
  • тиски;
  • кисточка;
  • отвертка;
  • штангенциркуль;
  • паяльник;
  • метчики;
  • плашки;
  • омметр;
  • тестер.

Термофен сможет помочь во многих работах, которые связаны с пайкой микросхем и маленьких деталей. При помощи его можно спаять линолеум, полимерные пленки и сделать еще множество полезных дел. Термофен можно собрать своими руками с небольшими затратами.

Основные виды

Паяльные станции имеют существенные отличия по функциональным возможностям и, конечно, их стоимости. Классификация таких устройств определяется сразу несколькими основными параметрами.

Контактные станции

Традиционное паяльное оборудование, отличающееся прямым контактом с рабочей поверхностью. Устройство имеет специальный электронный блок для управления и регулировки температурного режима. Паяльный прибор представлен парой подвидов, которые предназначены для работы со свинцовыми и бессвинцовыми припоями. Бесконтактные паяльные установки представлены тремя разновидностями, отличающимися принципом действия.

Устройство состоит из электронного блока для управления и контроля температуры

Термовоздушные устройства

Современные термовоздушные фены, работающие на основе сильного воздушного потока, генерируемого компрессором и затем прогреваемого нагревательной спиралью до нужного температурного режима. Термовоздушные станции позволяют выполнять эффективную пайку на самых труднодоступных участках с единовременным прогревом нескольких поверхностей.

В этой установке компрессором генерируется воздушный поток, который потом нагревается до нужной температуры

Инфракрасные приборы

Инфракрасные модели характеризуются наличием специального нагревательного кварцевого или керамического ИК-излучателя, что позволяет осуществлять пайку сложных профильных элементов с равномерным прогревом рабочей зоны.

Инфракрасные станции представлены кварцевым или керамическим излучателем

Конструкция комбинированных паяльных станций очень удачно сочетает в себе сразу несколько видов оборудования, а наличие ручки энкодера позволяет легко задавать оптимальный температурный режим.

Выпускаемые в настоящее время паяльные станции или установки представлены монтажными и демонтажными, а также комбинированными и ремонтными моделями:

  • монтажные установки предназначены для пайки деталей;
  • демонтажные станции позволяют отпаивать элементы;
  • комбинированные приборы способны выполнять монтажно-демонтажные работы;
  • ремонтные паяльные станции осуществляют единовременные или автономные операции, связанные с пайкой.

В зависимости от особенностей механизма, стабилизирующего температурный режим, а также типовых характеристик управляющих блоков, паяльные станции представлены аналоговыми и цифровыми моделями.

Аналоговые модели обладают нагревательным элементом, находящимся во включённом положении до момента достаточного прогрева, после чего питание установки отключается. После понижения температурного режима до выставленных показателей происходит очередной разогрев нагревательного элемента. Этот вид отличает вполне доступная цена, а к минусам относится низкая точность выполняемой пайки.

Минусом аналоговых станций является не очень точная пайка элементов

Цифровые паяльные станции характеризуются контролем и управлением нагревательного процесса при помощи PID-регулятора и программы, заложенной в микроконтроллере. Такие устройства отлично стабилизируют температурный режим и являются наиболее точными, по сравнению с любыми аналоговыми моделями.

Цифровые устройства оснащены специальным регулятором и программой, которая позволяет им управлять

Рекомендации по изготовлению

Без переделки устройство фена для просушивания волос не принесет успехов при эксплуатации, поэтому рекомендуется использовать только мотор с вентилятором и спираль, которая будет наматываться с учетом требований к самодельному приспособлению. Сильный нагрев совместно со снижением вращения вентилятора и уменьшением диаметра сопла приводит к перегоранию спирали и расплавлению пластикового корпуса, а также, при плохой изоляции может произойти короткое замыкание.

Установив дополнительную кнопку включения для вентилятора, можно ускорить процесс остывания паяльника. Если выключить нагревательный элемент, а кулер оставить включенным, то нагревающаяся часть устройства будет продуваться воздухом, тем самым охлаждая всю систему. Для удобства в работе с устройством рекомендуется изготовить подставку с металлическим основанием, а также с использованием магнитов. Благодаря использованию неодимового магнита, термофен будет надежно удерживаться в нужном положении.

Конструктивные особенности

Паяльные фены позволяют расплавлять пластик и различные металлы с невысокой температурой плавления. Размягчение сплавов осуществляется посредством обдува горячим воздухом, который нагревается специальной спиралью. Из чего может быть создана паяльная станция с феном своими руками? Atmega328, например, как и любое другое аналогичное устройство, состоит из следующих элементов:

  • корпус;
  • нагревательный элемент;
  • нагнетатель воздуха;
  • ручка;
  • выключатель.

Некоторые приборы также могут быть оснащены датчиком и регулятором уровня нагрева, а также специальными насадками, позволяющими выполнять паяльные работы различного уровня сложности.

Сборка комплекта на жалах Hakko

Простая паяльная станция, а точнее комплекты для ее сборки на специальных жалах Hakko, популярные на торговой площадке Алиэкспресс. На сайтах продавцов также есть инструкция и схема соединений. Пользователю останется только найти корпус и соединить детали.

Особенность установки — инновационные жала HAKKO T12 которые чрезвычайно быстро разогреваются и не прогорают.

Потребуется выключатель, разъем для питающего шнура тип AS-Евровилка. Эти элементы могут быть в комплекте или же их можно заказать вместе с основными частями. На лицевую сторону выносятся разъемы для паяльника, пульт управление температурой и иными параметрами.

На плате дорожка («test») для управления настройками не соединенная, для доступа к регулировке ее контакты надо спаять.

В настройках есть возможность выставлять шаг регулировки t°, делать ее программную калибровку. Такая функция доступная прямо в процессе работы паяльника — реж. Р10, Р11. Как это сделать: нажать на энкодер, удерживать его пару сек., перейдем в Р10, затем кратковременным нажимом меняем шаг (сотни, десятки, единицы). Поворачивая ручку, меняем значение, потом снова жмем и пару сек. держим селектор энкодера — настройка сохраняется и совершается переход в Р11 и так далее. А двухсекундное нажатие возвращает в рабочий режим.

Если зажать включатель энкодера и подавать питание к контроллеру, то попадем в более объемное меню:

Блок питания надо докупить отдельно, хватит на 24 В, в зависимости от значения, на которое рассчитан паяльник. Можно обойтись и внешним БП 24 В, выдающим до 4 А.

БП можно создать и самостоятельно из следующего:

  • понижающий советский трансформатор;
  • готовая сборка с диодным мостом KBPC5019;
  • сетевые фильтры, они же электролитические конденсаторы для сглаживания пульсаций;
  • три параллельно соединенных полевых транзистора IRF730;
  • микросхема LM317;
  • радиатор охлаждения, вентилятор, подключенный через свой диодный мост.

Напряжение в нашем случае подается на управляющую плату (24.4 В). Опишем, как работает схема. На трансформатор идет напряжение от сети (220 В, 50 Гц), понижается им до 28 В. Выпрямляется диодным мостом, фильтруется конденсаторами, значение возрастает до 35 В. Далее, подается на плату регулировки из полевых транзисторов на основе микросхемы lm317. Подстраиваем подстроечным резистором, получаем 24.4 В постоянного напряжение, которое и запитывает установку.

Простая паяльная станция с диммером

Рассмотрим более простой вариант аналоговой паяльной станции без фена, только с паяльником. Работа может быть выполнена пользователем с минимальными навыками.

Что вам нужно:

  • диммер – устройство для регулировки напряжения, например, для регулировки интенсивности света от ламп накаливания. Поскольку дешевое диодное освещение является обычным явлением, устройство может не понадобиться в бытовых отходах, его можно купить и оно дешевое. Диммер по размеру, принцип установки аналогичен розетке, только циферблат диммера находится вверху;
  • шнур питания с вилкой. Возьмите любое сломанное устройство, купите гибкую вилку и 2- или 3-жильный кабель (с заземляющим проводом.
  • обычные сварщики с нихромовой нитью. Лучше брать с большой мощностью, например 60, 80Вт, диапазон регулировки будет шире;
  • розетка (внутренняя), подойдет старая советская 5 А;
  • корпус: ДВП, лобзик, саморезы, силиконовый клей. Можно взять старый корпус для блока питания компьютера, паяльную коробку;

Далее этапы сборки проиллюстрированы с пояснениями.

Вырезаем из ДСП и собираем корпус. Используем силиконовый клей, саморезы, болты снизу, делаем эту деталь съемной. Отверстия: спереди для розетки, а точнее для ее крепежного винта и проводов, закрепим на поверхности узел, сверху – большой, для балласта диммера.

Внутри соединяем диммер и розетку проводами. Далее подключаем провод с вилкой для сети 220 В, вынимаем из корпуса. В этом случае порядок подключения, полярность значения не имеют.

Устройство готово к работе, подключаем паяльник к разъему базы, устройство подключается к сети. Установку можно использовать таким образом, но лучше всего выполнить калибровку диммера, чтобы четко определить, в каком положении произойдет перегрев или желаемая температура.

Используем амперметр, параллельно подключить не получается: просто прощупайте дырочки подключенной розетки, иначе она перегорит. Амперметр подключается только последовательно с нагрузкой, то есть наш паяльник должен быть включен в схему. Поэтому берем еще одну откидную вилку со снятыми контактами, подключаем к розетке станции.

При деактивированной установке прикручиваем один вывод изолентой к зубцам вилки паяльника, второй – к одному из щупов амперметра. Подключаем станцию ​​к сети. Второй зубчик вилки паяльника прикасаемся к другому щупу. Определяем величину тока, степень нагрева, делаем (ножом, напильником, маркером и т.п.) градуировку возле селектора. Перед измерениями на амперметре необходимо установить параметр тока, соответствующий сети 220 В (переменного) и его предельное значение для существующей сети.

Изготовление своими руками

Высокая стоимость ИК паяльной станции (60-150 тыс. руб.) стимулирует домашних мастеров к изготовлению такого оборудования самостоятельно. При наличии определённого опыта сделать своими руками самодельный инфракрасный паяльник вполне реально. Материальные затраты обычно не превышают 10 тыс. руб. Нужно подготовить материалы и компоненты, необходимые для сборки ИК станции.

Детали для самодельного прибора

Для сборки инфракрасной паяльной станции своими руками понадобится следующее:

  • лист жести;
  • гибкая спиральная металлическая трубка светильника;
  • рычажный штатив от старой настольной лампы;
  • галогеновые лампы;
  • оцинкованная мелкая сетка;
  • алюминиевый профиль в виде узких реек;
  • 2 термопары;
  • плата Ардуино Mega 2560 R3;
  • плата SSR 25-DA2x Adafruit MAX31855K – 2 шт.;
  • адаптер постоянного тока 5 вольт, 0,5 А;
  • провода.

Сборка

Монтаж паяльной станции состоит из нескольких этапов:

  1. Термостол;
  2. Инфракрасный нагреватель;
  3. ПИД-регулятор на Ардуино.

Термостол

Делать термостол своими руками желательно в условиях оборудованной домашней мастерской. Конструкция представляет собой нижний нагреватель, состоящий из следующих компонентов:

  • корпус, отражатель, лампы;
  • система крепежа платы;
  • гибкая трубка термопары;
  • светильник.
Корпус
  1. Основу термостола изготавливают в виде рамы из Г-образного жестяного профиля. Можно полосы металла согнуть уголком. Ножницами делают вырезы и по ним сгибают металл, соединяя части саморезами.
  2. Проём закрывают металлической сеткой. Чтобы она не прогибалась, над сеткой протягивают металлические прутки в поперечном и продольном направлениях.

Установка металлической сетки

  1. Старый галогеновый светильник разбирают, освобождая отражатель от ламп. Его обрезают по внутреннему периметру корпуса.
  2. Лампы возвращают на место. Нагреватель вставляют в опорную раму снизу.

Монтаж отражателя

Система крепежа платы

Алюминиевую рейку разрезают на несколько отрезков. В них просверливают монтажные отверстия.

Два отрезка профиля закрепляют на широких бортах корпуса, в канавках которых будут передвигаться винтовые фиксаторы поперечных реек. Всё станет понятно из нижнего фото.

Крепёж платы

Гибкая трубка термопары

Спиральную металлическую трубку устанавливают в одном из углов рамы, протягивают провода термопары. Длина трубки должна обеспечивать доступ термопары ко всей рабочей зоне станции.

Светильник

На конце гибкой трубки закрепляют патрон с пятивольтовой лампочкой с отражателем. Основание металлического шланга крепят в углу рамы так же, как и в предыдущем случае.

Верхний нагреватель

Инфракрасный излучатель состоит из двух элементов, это:

  1. Керамическая пластина в корпусе.
  2. Держатель.

Крепление штатива к корпусу верхнего нагревателя

Керамическая пластина в корпусе

Дополнительная информация. Вмонтированный в верхнюю плоскость корпуса ИК пластины кулер от компьютера поможет предохранить радиодеталь от перегрева.

Держатель

Для держателя идеально подходит двухсекционный кронштейн настольного светильника. Основание кронштейна крепят к раме станции. Верхний поворотный шарнир соединяют с корпусом верхнего нагревателя.

ПИД-регулятор на Ардуино

Сделанная ИК станция своими руками обязательно комплектуется блоком управления. Для него нужно сделать отдельный корпус. Внутри помещают плату Ардуино и ПИД регулятор. Примерная схема компоновки деталей блока управления станцией видна на фото.

Блок управления ИК станции

Микропроцессорная платформа Arduino Mega 2560 R3 управляет режимами нагрева керамического ИК излучателя и платформы термостола. К плате Ардуино присоединены провода вентиляторов (верхний и нижний), ПИД регулятора, термопар и светильника.

Программирование паяльной станции осуществляется через интерфейс контроллера. Его экран отражает текущий процесс нагрева печатной платы с обеих сторон.

Самодельная ИПС

В роли тестера выступают термопары. Они, в конечном счёте, являются источниками информации о состоянии уровня нагрева тыльной стороны печатной платы и верхней поверхности микропроцессора.

Общее представление о паяльной станции

В целом рассматриваемые инструменты производятся в различной комплектации и потому вопрос выбора чрезвычайно важен.

Условно представленные на рынке станции позволительно разделить на две категории:

  • контактные;
  • и, соответственно, бесконтактные.

Работают они также и на разных принципах. Существуют, в частности:

  • индукционные (они компактные и достаточно мощные);
  • термовоздушные (для пайки используется специальный фен);
  • инфракрасные (предназначены для микросхем);
  • импульсные (подходят для смартфонов и планшетных компьютеров).


Говоря о контактных станциях, фактически имеют в виду классический паяльник, снабженный отдельным терморегулятором. Работают им так же, как и обычным инструментом, и особых навыков тут не требуется.

В целом станции допустимо использовать не только для электроники, но и для других целей. Ими, к примеру, удобно:

  • снимать старый лак с электропроводки;
  • высушивать клеи;
  • обрабатывать пластмассу;
  • греть термоусадочную изоляцию.

Вне зависимости от производителя, все станции, снабженные термофеном, устроены одинаково:

  • компрессор подает воздух непосредственно на нагреватель;
  • далее он проходит через форсунку.

Расширяет функциональность набор дополнительных насадок.

В профессиональных станциях есть точный терморегулятор и надежная защита от перегрева. Дополнительное удобство использования обеспечивают светодиодные индикаторы или же жидкокристаллические дисплеи. Последний вариант идеально подходит для работы с электронными высокотехнологичными компонентами.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий