Определить плотность тока по табл

Расчет плотности тока в веществе

Свободные токи

Носители заряда, которые могут свободно перемещаться, составляют плотность свободного тока , которая задается выражениями, такими как приведенные в этом разделе.

Электрический ток – это грубая средняя величина, которая говорит о том, что происходит во всем проводе. В позиции г в момент времени Т , то распределение по заряду течет описываются плотностью тока:

j(р,т)знак равноρ(р,т)vd(р,т){\ displaystyle \ mathbf {j} (\ mathbf {r}, t) = \ rho (\ mathbf {r}, t) \; \ mathbf {v} _ {\ text {d}} (\ mathbf {r} , t) \,}

где j ( r ,  t ) – вектор плотности тока, v d ( r ,  t ) – средняя скорость дрейфа частиц (единица СИ: м ∙ с −1 ), и

ρ(р,т)знак равноqп(р,т){\ Displaystyle \ ро (\ mathbf {г}, т) = д \, п (\ mathbf {г}, т)}

– плотность заряда (единица СИ: кулоны на кубический метр ), в которой n ( r ,  t ) – количество частиц в единице объема («числовая плотность») (единица СИ: м −3 ), q – заряд отдельные частицы с плотностью n (единица СИ: кулоны ).

Обычное приближение к плотности тока предполагает, что ток просто пропорционален электрическому полю, что выражается следующим образом:

jзнак равноσE{\ Displaystyle \ mathbf {J} = \ sigma \ mathbf {E} \,}

где E – электрическое поле, а σ – электропроводность .

Проводимость σ является обратным ( обратным ) электрическим сопротивлением и имеет единицы СИ сименсов за метр (S⋅m -1 ), и Е имеют СИ единиц ньютонов на кулоны (N⋅C -1 ) или, что эквивалентно, вольт на метр (V⋅m −1 ).

Более фундаментальный подход к расчету плотности тока основан на:

j(р,т)знак равно∫-∞т∫Vσ(р-р′,т-т′)E(р′,т′)d3р′dт′{\ displaystyle \ mathbf {j} (\ mathbf {r}, t) = \ int _ {- \ infty} ^ {t} \ left {\ text {d}} т ‘\,}

указывающий на запаздывание реакции зависимостью σ от времени и нелокальный характер реакции на поле посредством пространственной зависимости σ , оба вычисляются в принципе на основе лежащего в основе микроскопического анализа, например, в случае достаточно малых полей , функция линейного отклика для проводящего поведения в материале. См., Например, Giuliani & Vignale (2005) или Rammer (2007). Интеграл распространяется на всю прошлую историю до настоящего времени.

Указанная выше проводимость и связанная с ней плотность тока отражают фундаментальные механизмы, лежащие в основе переноса заряда в среде как во времени, так и на расстоянии.

Преобразование Фурье в пространстве и во времени , то результаты в:

j(k,ω)знак равноσ(k,ω)E(k,ω){\ Displaystyle \ mathbf {J} (\ mathbf {k}, \ omega) = \ sigma (\ mathbf {k}, \ omega) \; \ mathbf {E} (\ mathbf {k}, \ omega) \, }

где σ ( k ,  ω ) теперь .

Во многих материалах, например, в кристаллических материалах, проводимость является тензором , и ток не обязательно имеет то же направление, что и приложенное поле. Помимо свойств самого материала, приложение магнитных полей может изменить поведение проводимости.

Токи поляризации и намагничивания

Токи возникают в материалах при неравномерном распределении заряда.

В диэлектрических материалах существует плотность тока, соответствующая чистому движению электрических дипольных моментов на единицу объема, то есть поляризации P :

jпзнак равно∂п∂т{\ displaystyle \ mathbf {j} _ {\ mathrm {P}} = {\ frac {\ partial \ mathbf {P}} {\ partial t}}}

Аналогично магнитным материалам , циркуляция магнитных дипольных моментов на единицу объема, то есть намагниченности M, приводит к токам намагничивания :

jMзнак равно∇×M{\ Displaystyle \ mathbf {j} _ {\ mathrm {M}} = \ набла \ раз \ mathbf {M}}

Вместе эти члены складываются, чтобы сформировать связанную плотность тока в материале (результирующий ток из-за движений электрического и магнитного дипольных моментов на единицу объема):

jбзнак равноjп+jM{\ displaystyle \ mathbf {j} _ {\ mathrm {b}} = \ mathbf {j} _ {\ mathrm {P}} + \ mathbf {j} _ {\ mathrm {M}}}

Общий ток материалов

Полный ток – это просто сумма свободного и связанного токов:

jзнак равноjж+jб{\ displaystyle \ mathbf {j} = \ mathbf {j} _ {\ mathrm {f}} + \ mathbf {j} _ {\ mathrm {b}}}

Ток смещения

Также существует ток смещения, соответствующий изменяющемуся во времени электрическому полю смещения D :

jDзнак равно∂D∂т{\ displaystyle \ mathbf {j} _ {\ mathrm {D}} = {\ frac {\ partial \ mathbf {D}} {\ partial t}}}

который является важным членом в законе оборота Ампера , одном из уравнений Максвелла, поскольку отсутствие этого члена не предсказывает распространение электромагнитных волн или временную эволюцию электрических полей в целом.

Расчет сечения кабеля по мощности и длине

Правила устройства электроустановок описывают все факторы, оказывающие влияние на выбор сечения кабеля для монтажа электропроводки. Основным из них является нагрузка, используемая в сети. Получить ее можно, зная мощность электрооборудования.

Влияние оказывают и другие факторы:

  • Количество жил: от этого зависит, насколько сильно нагревается провод.
  • Способ укладки: кабели, уложенные под землей, выдерживают большую нагрузку. Провода, уложенные в короб, нагреваются друг о друга. Если в коробе находится больше четырех проводов, для расчета сечения применяется поправочный коэффициент, указанный в ПУЭ.
  • Процент падения напряжения.
  • Температура воздуха, при которой будет эксплуатироваться сеть.

К электрическим сетям предъявляются следующие требования:

  • безопасность;
  • надежность;
  • экономичность.

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода – это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( “Правила устройства электроустановок“). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность – в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину – 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно “Правилам устройства электроустановок“, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на порядок больше, чем у ВА.

Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.

При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:

  1. Длина провода, единица измерения – м. При её увеличении растут потери.
  2. Площадь поперечного сечения, измеряется в мм². При её увеличении падение напряжения уменьшается.
  3. Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.

Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:

  1. В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
  2. С помощью таблиц ПУЭ определяют сечение провода по току.
  3. Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ – удельное сопротивление материала, l – длина проводника, S – площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
  4. Находим падение напряжения из соотношения: ΔU=I*R.
  5. Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Выбор электрического проводника по допустимому нагреву рабочим током

Для расчета сечения электрического проводника по допустимому нагреву следует рассчитать величину электрического тока, протекающего по данному проводнику. Расчетный электрический ток определяется по выражению:

Iрасч=Ррасч / (√(3 ) ∙ Uном ∙ cos⁡φ ) ,А;

– где Р расч – расчетная мощность, Вт;

– cos⁡φ – средневзвешенный коэффициент мощности.

По результатам расчетов в зависимости от напряжения и конструкции электрических проводников согласно ПУЭ, ГОСТ и технических данных завода-изготовителя выбираем сечение токопроводящей жилы и тип проводника.

Расчетный электрический ток должен быть меньше допустимого:

Iдоп ≥ Iрасч;

где I доп – допустимый ток электрического проводника выбираем из справочных данных, с учетом всех поправочных коэффициентов согласно ПУЭ;

В расчете применяем следующие коэффициенты:

0,93 – поправочный коэффициент для 4-х ,5-ти жильного кабеля (ГОСТ Р 53769-2010 «Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия.»);

0,8 –поправочный коэффициент на количество проложенных работающих кабелей лежащих в земле, в трубах, или без труб (табл. ПУЭ 1.3.26).

Таблица 1.3.26. Поправочный коэффициент на количество работающих кабелей, лежащих рядом в земле (в трубах или без труб)

Расстояние между кабелями в свету, мм Коэффициент при количестве кабелей
1 2 3 4 5 6
100 1,00 0,90 0,85 0,80 0,78 0,75
200 1,00 0,92 0,87 0,84 0,82 0,81
300 1,00 0,93 0,90 0,87 0,86 0,85

1,15 – допустимая перегрузка кабеля в аварийном режиме (ПУЭ 1.3.6. «На период ликвидации послеаварийного режима для кабелей с полиэтиленовой изоляцией допускается перегрузка до 10 % а для кабелей с поливинилхлоридной изоляцией до 15 % номинальной на время максимумов нагрузки продолжительностью не более 6 ч в сутки в течение 5 сут, если нагрузка в остальные периоды времени этих суток не превышает номинальной.»);

Как измерить диаметр провода.

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.

Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке.
Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.

Таблица данных обмоточных проводов.

Диаметр без изоляции, ммСечение меди, мм²Сопротив-ление 1м при 20ºС, ОмДопустимая нагрузка при плотности тока 2А/мм²Диаметр с изоляцией,
мм
Вес 100м с изоляцией, гр
0,030,000724,7040,00140,0450,8
0,040,001313,920,00260,0551,3
0,050,0029,290,0040,0651,9
0,060,00286,440,00570,0752,7
0,070,00394,730,00770,0853,6
0,080,0053,630,01010,0954,7
0,090,00642,860,01270,1055,9
0,10,00792,230,01570,127,3
0,110,00951,850,0190,138,8
0,120,01131,550,02260,1410,4
0,130,01331,320,02660,1512,2
0,140,01541,140,03080,1614,1
0,150,01770,990,03540,1716,2
0,160,02010,8730,04020,1818,4
0,170,02270,7730,04540,1920,8
0,180,02550,6880,0510,223,3
0,190,02840,6180,05680,2125,9
0,20,03140,5580,06280,22528,7
0,210,03460,5070,06920,23531,6
0,230,04160,4230,08320,25537,8
0,250,04910,3570,09820,27544,6
0,270,05730,3060,1150,3152,2
0,290,06610,2бб0,1320,3360,1
0,310,07550,2330,1510,3568,9
0,330,08550,2050,1710,3778
0,350,09620,1820,1920,3987,6
0,380,11340,1550,2260,42103
0,410,1320,1330,2640,45120
0,440,15210,1150,3040,49138
0,470,17350,1010,3460,52157
0,490,18850,09310,3780,54171
0,510,20430,08590,4080,56185
0,530,22060,07950,4410,58200
0,550,23760,07370,4760,6216
0,570,25520,06870,510,62230
0,590,27340,06410,5470,64248
0,620,30190,0580,6040,67273
0,640,32170,05450,6440,69291
0,670,35260,04970,7050,72319
0,690,37390,04690,7480,74338
0,720,40720,0430,8140,78367
0,740,43010,04070,860,8390
0,770,46570,03760,930,83421
0,80,50270,03481,0050,86455
0,830,54110,03241,0820,89489
0.860,58090,03011,160,92525
0,90,63620,02751,270,96574
0,930,67930,02581,360,99613
0,960,72380,02421,451,02653
10,78540,02241,571,07710
1,040,84950,02061,71,12764
1,080,91610,01911,831,16827
1,120,98520,01781,971,2886
1,161,0570,01662,1141,24953
1,21,1310,01552,261,281020
1,251,2270,01432,451,331110
1,31,3270,01322,6541,381190
1,351,4310,01232,861,431290
1,41,5390,01133,0781,481390
1,451,6510,01063,31,531490
1,51,7670,00983,5341,581590
1,561,9110,00923,8221,641720
1,622,0610,00854,1221,711850
1,682,2170,00794,4331,771990
1,742,3780,00744,7561,832140
1,812,5730,00685,1461,92310
1,882,7770,00635,5551,972490
1,952,9870,00595,982,042680
2,023,2050,00556,4092,122890
2,13,4640,00516,922,23110
2,264,0120,00448,0232,363620
2,444,6760,00379,3522,544220

Как рассчитать количество витков первичной обмотки?

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом.

Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пор, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то можно рассчитать количество витков по приведённой формуле. Эта формула валидна для частоты 50 Герц.

ω = 44 / (T * S)

ω – число витков на один вольт,

44 – постоянный коэффициент,

T – величина индукции в Тесла,

S – сечение магнитопровода в квадратных сантиметрах.

Пример.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / (1,5 * 6,25) = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.

Величину индукции можно определить по таблице.

Тип магнитопроводаМагнитная индукция max (Тл) при мощности трансформатора (Вт)
5-1515-5050-150150-300300-1000
Броневой штампованный1,1-1,31,31,3-1,351,351,35-1,2
Броневой витой1,551,651,651,651,65
Тороидальный витой1,71,71,71,651,6

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Страницы

3

1.3.31

Выбор экономических сечений проводов воздушных и
жил кабельных линий, имеющих промежуточные отборы мощности, следует производить
для каждого из участков, исходя из соответствующих расчетных токов участков.
При этом для соседних участков допускается принимать одинаковое сечение
провода, соответствующее экономическому для наиболее протяженного участка, если
разница между значениями экономического сечения для этих участков находится в
пределах одной ступени по шкале стандартных сечений. Сечения проводов на
ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой
производится ответвление. При большей длине ответвления экономическое сечение
определяется по расчетной нагрузке этого ответвления.

Основные понятия

Электрический ток, продвигая электроны через кристаллическую решётку металла, совершает работу, которая превращает электричество в тепло. Это выгодно, когда тепло используется для нагрева или освещения. Совсем нежелательно, когда оно вызывает перегрев проводов или кабелей, разрушение изоляции и возгорание. Чтобы подобного избежать, необходимо производить подбор проводников на выдерживание длительных токовых нагрузок. При этом рассматривают два основных фактора:

  • сечение провода;
  • плотность тока.

Внимание! Нагрев проводника может быть связан с плохим контактом в местах присоединений или с окислением в точках, где скручены вместе алюминиевые и медные провода. Такое происходит даже при правильном подборе сечения

Сечение провода

Выбор сечения токопроводящей жилы рассматривают по двум характеристикам:

  • нагрев в допустимых пределах;
  • потеря напряжения.

Нагревание проводников критично для подземных и помещённых в шланговые или трубчатые футляры кабельных линий. Для воздушных линий электропередач (ЛЭП) серьёзное значение имеет потеря напряжения. На комбинированных участках из двух рассчитанных сечений выбирается большее с округлением до стандартной величины.

Важно! При выборе сечения из таблицы или расчётах по формулам необходимо предварительно определиться с условиями эксплуатации. Чтобы рассчитать допустимый нагрев, необходимо ориентироваться на длительную допустимую температуру

Её значение зависит от допустимой силы тока Iд. Полученный в результате вычислений расчётный ток Iр не должен соответствовать Iд и ни в коем случае не превышать его. Выбирая сечение, пользуются следующей формулой для расчётного тока:

Чтобы рассчитать допустимый нагрев, необходимо ориентироваться на длительную допустимую температуру. Её значение зависит от допустимой силы тока Iд. Полученный в результате вычислений расчётный ток Iр не должен соответствовать Iд и ни в коем случае не превышать его. Выбирая сечение, пользуются следующей формулой для расчётного тока:

где:

  • Pн – номинальная мощность оборудования, Вт;
  • Uн – номинальное напряжение, В.

Формула справедлива для токов, проходящих через проводник, когда температура уже установилась, и внешние температурные факторы на неё не оказывают влияния. Длительно допустимый ток зависит от: сечения, материала проводника, изоляции и способа прокладки кабеля.

Формула для проверки падения напряжения на линии выглядит так:

∆U = (U – Uном) *100/ Uном,

где:

  • U – напряжения источника;
  • Uном – напряжение в точке подключения приёмника.

Максимальное отклонение должно составлять не более 10%.

Плотность тока

Это физическая величина, имеющая векторный характер. Обозначается буквой J и имеет формулу для расчета в виде:

где:

  • I – ток, А;
  • S – площадь поперечного сечения, мм2.

Иными словами, плотность тока – это количество тока проходящего через сечение проводника за единицу времени. Единица измерения – ампер на мм квадратный (А/мм2).

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий