Нарисуйте схему необходимую для измерения сопротивления лампы укажите направление тока в цепи

Процесс подключения

Что измеряет вольтметр

Для снятия показаний напряжения сети на определенном участке цепи вольтметр подсоединяют к ней только параллельно, вне зависимости от типа прибора, так как в этом случае он оказывает минимальное влияние на движение электротока. Контроль напряжения этим измерителем можно проводить как у нагрузки, так и у источника питания.

Схема параллельного подключения вольтметра в сеть

Когда вольтметр вклинивается в электроцепь последовательно, то получается фактический ее разрыв из-за большого внутреннего сопротивления, соответственно, полученные измерения будут некорректными, а во многих случаях может случиться вообще короткое замыкание или выход элементов цепи из строя, в том числе и измерителя.

На заметку. Не стоит путать вольтметр с амперметром, который подключается к электросети последовательно, так как сопротивление при измерении силы тока должно быть минимальным.

Подключение прибора к двум участкам цепи производится посредством зажатия проводков специальными электродами или зажимами.

Если нужно измерить участки электроцепи постоянного тока с заведомо высоким напряжением или требуется получить сверхточные данные этого параметра, то следует воспользоваться добавочным сопротивлением, за создание которого отвечают резисторы – простейшие делители напряжения.

Подключение добавочного сопротивления (резисторов) на схеме для увеличения точности вольтметра

Проводя измерения в электросетях переменного тока с высоким напряжением, можно использовать в качестве добавочного сопротивления не только резисторы, но и измерительные трансформаторы. Именно с переменным током обычно электрики применяют трансформаторы напряжения, так как они не только уменьшают напряжение для конечного потребителя, но еще и разделяют измерительную цепь от силовой.

Внешний вид трансформатора напряжения

Правила подключения вольтметров в цепь:

Следует выбирать верный диапазон измерений прибора

Нельзя измерять большое напряжение вольтметром, который предназначен для измерений параметров микросхем; Если показание прибора близко к предельному значению, следует работать с ним осторожно, так как скачек ЭДС может повредить его обмотки; Стрелочный прибор нужно располагать согласно инструкции: или вертикально, или горизонтально. При контроле показаний рекомендуется исключить воздействие электромагнитных полей на прибор и вибрационных волн; Подключение вольтметров можно совершать в цепь, которая уже находится под напряжением, однако при опасных величинах этого показателя нелишним будет применение специальных перчаток и диэлектрического полотна (коврика); Если стрелка в аналоговом приборе перед началом снятия показаний выдает ненулевой результат, то необходимо произвести его сброс регулирующим элементом – винтом; Периодически нужно проводить над прибором калибровочные мероприятия, что будет гарантом точности измерений, которые он выдает; При первом использовании прибора стоит проводить его включение в обесточенную сеть – только лишь при подсоединении всех клемм и проводов устройства включается ток; При измерительных процедурах во избежание травм рекомендуется ознакомиться с мерами предосторожности, которые указываются в инструкции

При контроле напряжения в разных цепях могут применяться различные вольтметры и дополнительные устройства (резисторы, трансформаторы к ним), для получения сверхточных результатов измерений важно учитывать особенности каждого из них

Ошибка №4 – Выбор неправильного диапазона

Что будет, если перепутать и замерить мультиметром напряжение в режиме силы тока? Как уже говорилось выше — ничего хорошего.

Объясняем физику процесса. Дело в том, что когда вы вставляете щупы в розетку, вы фактически через мультиметр соединяете фазу с нолем.

Чтобы не спровоцировать при этом КЗ, тестер должен иметь большое внутреннее сопротивление. Это как раз и достигается переключением прибора в положение “замер напряжения” и установкой щупов в правильные гнезда.

На практике R-мультиметра в этом положении может составить десятки мегаом. При замерах тока все совсем наоборот. Мультиметр в этом случае подключается последовательно нагрузке.

Ток, который начинает течь через тестер не должен искажаться и остаться таким же, каким он был бы и без мультиметра. Поэтому в режиме замера силы тока внутреннее сопротивление мультиметра очень мало.

Если в таком положении попытаться измерить напряжение, то это все равно что закоротить между собой фазный провод с нулевым.

Когда щупы находятся в разъемах COM и mA, сработает встроенный предохранитель.

А вот при нахождении второго щупа в разъеме 10А, все закончится гораздо печальнее. В самых дешевых китайских моделях, типа DT830B в этом положении у мультиметра вообще нет никакой защиты. Между гнездами COM и 10А стоит шунт!

Также будьте внимательны при измерениях переменного (АСV) и постоянного напряжения (DCV). Очень многие ставят переключатель вроде бы на вольты, но не замечают, что это постоянка (DCV).

После чего суют щупы в розетку.

Поэтому перед любыми измерениями десять раз перепроверяйте положение колесика режимов и куда вставлены сами щупы.

Даже опытные мастера советуют дополнительно маркировать эту риску сразу после покупки прибора.

Именно из-за этого некоторые производители начали делать переключатели с зеркальной шкалой, дабы 100% исключить эту ошибку.

Приборы с автовыбором и минимальным набором кнопок тоже не всегда спасают.

В более дорогих моделях мультиметров гнезда под щупы при неправильном выборе переключателя автоматически закрываются защитными шторками. Например, у HoldPeak HP890CN.

Если щупы уже стоят там, где не нужно, то вы просто не сможете провернуть колесико в неправильные режимы (защита от дурака). Подробнее

Элементы электрической цепи

Источники тока и напряжения относятся к активным элементам электрической схемы. К ним же причисляют полупроводниковые приборы, например, транзисторы, диоды. Индуктивность, конденсатор, сопротивление, напротив, считают пассивными элементами.

В зависимости от частей, входящих в схему она может быть пассивной или активной. В первом случае она состоит только из электрически независимых элементов, если же в ней есть хотя бы один активный, то цепь считается энергозависимой.

Каждый прибор в электрической схеме можно охарактеризовать с двух сторон:

  • качественной — зависит от физических параметров, определяет назначение и функцию элемента;
  • количественной — характеризует величину прибора.

Источники питания разделяют на первичные и вторичные. К первым относят генераторы, то есть устройства, преобразующие энергию различного вида в электричество. Ими могут быть аккумуляторы, электромашины, гальванические батареи. Вторичные же источники преобразуют электричество из одного вида в другой. К ним можно отнести блоки выпрямления, инвертирования, трансформирования.

Вспомогательные элементы — это те, что обеспечивают правильную работу электрической схемы. Это всевозможные проводники, коммутационные устройства, измерительная и защитная аппаратура. Потребителем же является оборудование преобразующее электричество в полезную работу. Например, устройство нагрева, вентилирования, двигатели, различная бытовая и промышленная техника.

Другими словами, от источника ток начинает течь по проводникам через ряд электронных устройств, приводящих его характеристику к нужному виду. Затем он подаётся на нагрузку оказывающую сопротивление и выполняющую работу. Далее через потребитель ток возвращается к источнику. Замкнутость линии, вне зависимости от используемых элементов необходима, так как в ином случае не возникает разность потенциалов.

Подключение элементов в цепи может быть реализована тремя способами:

  • параллельным — начало различных устройств соединены в одной точке, а концы в другой;
  • последовательным — все части цепи подключаются поочерёдно друг к другу;
  • смешанным — комбинация двух предыдущих видов.

Ошибка №3 – Измерение без отключения из розетки

Прежде чем проводить какие-либо замеры мультиметром проверьте, отключили ли вы измеряемое оборудование от сети 220В (за исключением проверки схем в режиме вольтметра).

То же самое относится и к девайсам, питаемым от источника постоянного напряжения 12/24V. Казалось бы, вполне логичное правило и все его исполняют   

Однако здесь есть один подвох

Обратите внимание, что в этом случае всегда нужно именно вытаскивать вилку из розетки, а не просто щелкать встроенным переключателем на переноске или самом приборе

Дело в том, что такой выключатель зачастую разрывает не два провода (фаза и ноль), а всего один. Это касается удлинителей с двухполюсными (они более узкие), а не четырехполюсными выключателями.

И тут все будет зависеть, каким образом вы вставили вилку от переноски или сетевого фильтра в розетку. При одном положении будет разрываться фаза, а при другом – ноль!

Как вы понимаете, во втором случае фаза по-прежнему будет присутствовать на приборе, не зависимо от того, щелкнули вы выключателем на удлинителе или нет.

Задачи на Параллельное соединение проводников с решениями

Формулы, используемые на уроках «Задачи на Параллельное соединение проводников»

Задача № 1.
 Два проводника сопротивлением 200 Ом и 300 Ом соединены параллельно. Определить полное сопротивление участка цепи.

Задача № 2.
 Два резистора соединены параллельно. Сила тока в первом резисторе 0,5 А, во втором — 1 А. Сопротивление первого резистора 18 Ом. Определите силу тока на всем участке цепи и сопротивление второго резистора.

Задача № 3.
 Две лампы соединены параллельно. Напряжение на первой лампе 220 В, сила тока в ней 0,5 А. Сила тока в цепи 2,6 А. Определите силу тока во второй лампе и сопротивление каждой лампы.

Задача № 4.
 Определите показания амперметра и вольтметра, если по проводнику с сопротивлением R1 идёт ток силой 0,1 А. Сопротивлением амперметра и подводящих проводов пренебречь. Считать, что сопротивление вольтметра много больше сопротивлений рассматриваемых проводников.

Задача № 5.
 В цепи батареи параллельно включены три электрические лампы. Нарисуйте схему включения двух выключателей так, чтобы один управлял двумя лампами одновременно, а другой — одной третьей лампой.

Ответ: 

Задача № 6.
 Лампы и амперметр включены так, как показано на рисунке. Во сколько раз отличаются показания амперметра при разомкнутом и замкнутом ключе? Сопротивления ламп одинаковы. Напряжение поддерживается постоянным.

  

Задача № 7.
 Напряжение в сети 120 В. Сопротивление каждой из двух электрических ламп, включенных в эту сеть, равно 240 Ом. Определите силу тока в каждой лампе при последовательном и параллельном их включении.

Задача № 8.
Две электрические лампы включены параллельно под напряжение 220 В. Определите силу тока в каждой лампе и в подводящей цепи, если сопротивление одной лампы 1000 Ом, а другой 488 Ом.

Задача № 9.
 В цепь включены две одинаковые лампы. При положении ползунка реостата в точке В амперметр А1 показывает силу тока 0,4 А. Что показывают амперметры А и А2 ? Изменятся ли показания амперметров при передвижении ползунка к точке А?

Задача № 10.
  ОГЭ
 В сеть напряжением U = 24 В подключили два последовательно соединённых резистора. При этом сила тока составила I1 = 0,6 А. Когда резисторы подключили параллельно, суммарная сила тока стала равной I2 = 3,2 А. Определить сопротивления резисторов.

Задача № 11.
   ЕГЭ
 Миллиамперметр, рассчитанный на измерение тока до IА = 25 мА, имеющий внутреннее сопротивление RA = 10 Ом, необходимо использовать как амперметр для измерения токов до I = 5 А. Какое сопротивление должен иметь шунт?

Это конспект по теме «ЗАДАЧИ на Параллельное соединение проводников». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Работу электрического тока
  • Посмотреть конспект по теме Соединение проводников
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Другие вопросы из категории

По назначению схемы электрических цепей делятся на следующие виды: структурные, функциональные, принципиальные, монтажные, однолинейные. Порядковые номера должны быть присвоены в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо.
Задание
Рекомендуемая толщина линий связи — 0.
При сборке электрических цепей избегайте пересечения проводов. При замыкании SA1 например, это может быть выключатель, которым мы все зажигаем дома свет лампа HL1 загорится, подпитываясь энергией батареи GB1, и гореть она будет до тех пор, пока не разомкнется ключ SA1, либо не кончится заряд аккумулятора. Приведем пример такой схемы: Рисунок 7.
Закон Ома для участка цепи Расчет силы тока, напряжения, сопротивления в электрической цепи по закону Ома для участка цепи. Чаще всего используют принципиальную схему электрической цепи. Давайте исходя из описанных выше правил попробуем составить простейшую принципиальную схему, состоящую из трех элементов: источника аккумуляторная батарея , приемника лампа накаливания и выключателя.

Ваш комментарий к вопросу:

Так же, согласно ГОСТ 2. Позиционные обозначения проставляют на схеме рядом с условными графическими обозначениями элементов и или устройств с правой стороны или над ними.

Вам предстоит выполнить практическую работу. Задание 5.

Памятка по технике безопасности при работе с электрическим током. Чаще всего используют принципиальную схему электрической цепи. При сборке электрических цепей избегайте пересечения проводов. Знакомиться с ними будем по мере необходимости, чтобы сразу не забивать голову лишней, пока не нужной информацией. Пример подобной схемы электрической цепи приведен на следующем рисунке: Дополнительные материалы по теме: Схема электрической цепи.
Электрические цепи (часть 3)

Активные и пассивные элементы электрической цепи

Эти же соображения относятся и к многофазным электродвигателям. Если ток изменяется в определённых пределах которые зависят от детали , то нижняя граница всегда равна нулю, и эта составляющая начинает отдавать энергию внешней цепи.

Третья часть состоит из передающих устройств — проводов и других установок, обеспечивающих уровень и качество напряжения. Особенности нанесения разметок на схемы: Для ЭДС источников они указываются произвольно. Каждый активный элемент характеризуется только одним параметром — ЭДС или током на выходных зажимах источников.

А определить мощность можно, умножив ток на напряжение. Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника.

Законы, которые понадобятся при работе с цепями постоянного тока Анализ и расчет будут гораздо эффективнее, если одновременно использовать закон Ома, а также первый и второй законы Кирхгофа. А выключатели или приборы защиты всегда подсоединяются последовательно, т. Трехфазные системы в настоящее время получили наибольшее распространение.

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается. Вторая — элементами, преобразующими электричество в другие виды энергии.

Параллельное соединение конденсаторов

Если в электрическую цепь были включены источники напряжений, то данный показатель будет равен нулю. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой ВАХ. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных.

В ней содержатся условные обозначения элементов, а также способы из соединения. Основные элементы электрической цепи, в зависимости от конструкции и роли в схемах, могут быть классифицированы по разным системам. Во всех практических случаях реальные источники ЭДС или источники питания не являются идеальными, так как обладают внутренним сопротивлением. Различают два типа источников: первичные, когда в электрическую энергию превращается другой вид, и вторичные, которые на входе, и на выходе имеют электрическую энергию в качестве примера можно привести выпрямительное устройство.

Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. Рассмотрим процесс возникновения синусоидальной ЭДС. Так, когда элемент нагревается, то сопротивление начинает возрастать. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1.

КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Вольтметры

Высокочастотный среднеквадратичный милливольтметр В предлагаемом милливольтметре преобразователь среднеквадратичного значения переменного напряжения произвольной формы в постоянное собран на ОУ и диодах Шоттки. Применены высокочастотные диоды Шоттки без смещения по постоянному току с использованием квадратичности их ВАХ …

1 753 2

Цифровой вольтметр для лабораторного блока питания (КР571ПВ2А, АЛС324Б)

Схема самодельного цифрового вольтметра на микросхеме КР571ПВ2А и светодиодных индикаторах АЛС324Б. Налаживая ту или иную конструкцию желательно постоянно держать под контролем напряжение питания или ток потребления схемой. Поэтому, во многих лабораторных источниках питания имеются встроенные …

1 1215 0

Схема цифрового вольтметра на микросхеме КР571ПВ2А и индикаторах АЛС324Б

Этот вольтметр предназначен для индикации выходного напряжения лабораторного блока питания, с плавной регулировкой напряжения от 0 до +20V. При незначительной переделке этот прибор можно использовать и как вольтметр для точного измерения напряжения в бортовой сети автомобиля или на аккумуляторной …

1 862 0

Схема приставки к мультиметру для измерения ВЧ-напряжений

Приставка представляет собой ВЧ-детектор, с диодами, смещенными постоянным током. Цепь R3-VD3-VD4 компенсирует постоянную составляющую, так чтобы она не влияла на показания мультиметра. Резистором R3 балансируют мост на нулевые показания мультиметра при замкнутом входе. Источник питания …

0 658 0

Настройка на резонанс, схема широкополосного вольтметра (100 кГц-30МГц)

Каждый радиолюбитель желает иметь прибор, позволяющий не только проследить прохождение высокочастотного сигнала, но и,при необходимости, настроить контур в резонанс до установки в схему. Выбирая изюминку из уже ранее опубликованных схем (1) мне удалось собрать прибор, позволяющий …

1 1980 0

Вольтметр действующего значения для цепи накала кинескопа

Почему все-таки лампочка? Напряжение на накале кинескопа имеет большой динамический диапазон, ввиду большой его амплитуды во время обратного хода. Мостик, приведенный на рисунке, и обозначеные как А, В,С и D, балансируется при напряжении 2,7 В, что, по сравнению с номинальным напряжением …

1 1110 0

Схема ВЧ милливольтметра 0-300мВ (К574УД1)

Принципиальная схема самодельного высокочастотного милливольтметра для измерения напряжений в диапазоне до 300мВ. Прибор предназначен для измерения переменного напряжения в трех поддиапазонах — до 10 mV, до 30 mV, до 100 mV идо 300mV. Диапазон частоты измеряемого переменного напряжения от 20 Hz …

1 2842 0

Двухсегментный цифровой индикатор напряжения (К554СА3, К561ИЕ14)

В большинстве случаев результаты измерений аналоговых величин лучше всего считывать с цифрового индикатора. С этой целью при необходимости применяют различные преобразователи (например, температура-напряжение, фаза напряжение), выходной сигнал которых подают на АЦП и далее на цифровой индикатор …

0 3894 0

Милливольтметр переменного напряжения ЗЧ со стрелочным индикатором (0,01-1В)

Прибор предназначен для измерения низкочастотного напряжения переменноготока частотой от 10 Hz до 50 kHz. Можно измерять в трех пределах измерения: до 0,01 V, до 0,01 V и до 1V. Входное сопротивление составляет 910 kOm независимо от предела измерения. Вход прибора от перенапряжения защищен …

1 3390 0

Высокоомный вольтметр со стрелочным индикатором (741)

Схема высокоомного вольтметра, который предназначен для измерения напряжения постоянного тока. Можно измерять в четырех пределах измерения: до 0,1 V, до 1V, до 10V и до 100V. Входное сопротивление составляет на пределе 0,1V = 100 kOm, на 1V = 1 MOm, на 10V = 10МОm, на 100V = 100Mom. Вход прибора от перенапряжения защищен …

0 4065 0

1

Ошибка №7 – Продолжительность замеров

Ток в пределах до 10А нельзя измерять более 10 секунд. Даже китайцы делают об этом предупреждающую надпись на корпусе.

Очень часто такие токи появляются при проверке работоспособности батареек. Батарейка через мультиметр замыкается накоротко и контролируется ее ток.

Токоизмерительный шунт при измерениях больших величин сильно разогревается и может перегореть.

И вообще запомните – мультиметры не предназначены для длительного мониторинга измеряемых величин. Все замеры с их помощью делаются кратковременно.

Приложил щупы, увидел показания, убрал. Нельзя мультиметром непрерывно контролировать ток или напряжение наподобие стационарных приборов.

В сети при отключении-включении оборудования зачастую происходят коммутационные перенапряжения. Кратковременный импульс от них иногда может достигать нескольких киловольт.

Мультиметры, не имеющие никакой защиты от таких импульсов, просто выйдут из строя при первой же серьезной коммутации.

Вольтметр. Прибор для измерения напряжения в электрической цепи

Все мы знаем, что напряжение в бытовой розетке 220 В (стоит помнить, что не во всех странах). Но ведь оно иногда может быть больше или меньше и возникает логичный вопрос — а как померять напряжение? Для этого нам и нужен вольтметр. И так, вольтметр — это прибор, который измеряет разность потенциалов (в Вольтах) или напряжение. Принцип работы классического вольтметра довольно прост — ток, который индуцируется в катушке при подключении к источнику напряжения, создает вращающий момент, который перемешает стрелку электроизмерительного прибора. Отклонение стрелки всегда прямо пропорционально разности потенциалов между измеряемыми точками. Стоит помнить, что вольтметр ВСЕГДА подключается параллельно к цепи, в которой ведется измерение напряжения.

Меры безопасности

В отличие от других приборов, например, омметра или мегометра, работая с вольтметром, приходится иметь дело с напряжением. При небольших значениях оно не представляет опасности для человека

Измеряя напряжения, способные создать опасный ток, протекающий через тело человека, необходимо соблюдать повышенную осторожность

Повсеместное использование измерения напряжения в электротехнике привело к созданию вольтметров различных конструкций. Они отличаются как по принципу работы, так и по точности. Наибольшую популярность получают универсальные устройства, способные автоматически выбрать не только предел, но и тип контролируемой величины.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий