Нагрев провода током температура

Каких видов бывают

Прежде чем перейти к обсуждению видов изделий, необходимо изучить их основные преимущества:

  • Возможность эксплуатации при высоких температурных нагрузках.
  • Высокая механическая прочность.
  • Огнестойкость.
  • Высокая стойкость к коррозии.
  • Возможность работы в агрессивных средах.
  • Максимальная безопасность при эксплуатации.

Обратите внимание! Термостойкие кабели и провода для электропечей подвергаются воздействию высоких температур. Они могут также использоваться в грилях, обогревателях, инфракрасных сушилках и в другом оборудовании

Производители выпускают несколько видов изделий.


Расшифровка проводника РКГМ

Провод РКГМ

Как правило, РКГМ (маркировка) расшифровывается следующим образом:

  • Буква «А» в начале отсутствует, что означает — жилы медные;
  • Р — изоляция резиновая, причем ее тип кремнийорганический, о чем свидетельствует следующая буква «К»;
  • Г — кабель отличается гибкостью;
  • М — внешняя оплетка из стекловолокна. Для дополнительной защиты производитель использует жаростойкий кремнийорганический лак и эмаль.


Термостойкий проводник MVV

Провод термостойкий MVV

Область применения данного типа изделия:

  • нагревательные элементы (хомутовые, патронные и т.д.)
  • любое электротермическое оборудование (печи, сушильные шкафы и т.д.)

Имеет следующие технические характеристики:

  • Температура длительной эксплуатации: от −60 до +500 градусов. Кратковременно до +700 градусов.
  • Максимальная рабочая температура проводников из 99,20% никеля +600 градусов.
  • Номинальное напряжение питания: 300/500 В.
  • Тестовое напряжение питания: 2500 В.
  • Не горюч до +500 градусов.
  • Не воспламеняется в случае нахождения в открытом огне.


Как расшифровывать проводник ПРКА

ПРКА

Данную аббревиатуру можно расшифровать так:

  • П — провод, выполненный из медного материала,
  • РК — для надежности и защиты изоляции пропитывается противогнилостной смазкой,
  • А — эта буква характеризует высокую твёрдость.

Данный тип провода используется при подключении электрических обогревательных приборов, электродвигателей.

Изолятор не содержит галогенов. Отличается устойчивостью к грибку и плесени. Этот тип провода настолько эффективен, что его сложно разрушить даже при сильнейшем воздействии ультрафиолетовых лучей. ПРКА не выделяет газов. Такая изоляция способствует сохранению эксплуатационных качеств при достижении температуры до 180 градусов. Кроме этого показателя учитывается также уровень влажности, который должен составлять до 98 %.

Практические опыты

Для того чтобы проверить, как изменится температура проводника в зависимости от колебания параметров силы токи и сопротивления, можно провести некоторые опыты. Они носят следующий характер:

  • Собирается цепь, в которую включаются источник питания и 2 нагревателя с разным сопротивлением. При прохождении электричества нагреватель с большим сопротивлением нагревается сильней. Это доказывает, что нагрев зависит от величины сопротивления.
  • В электрическую цепь, кроме источника питания, подключаются лампочка, амперметр и реостат. Подается напряжение и лампочка загорается. Регулируя реостатом сопротивление при постоянном напряжении, нить накаливания будет изменять свою яркость. Это указывает на зависимость температуры проводника от силы тока.

Такие физические опыты должны проводиться в специальных лабораториях.

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины – первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку

Мощность и температура

Мощность саморегулирующегося греющего кабеля, используемого для бытовых водопроводных систем, редко превышает 25 Вт/м. Когда речь идет о внутреннем проводе для трубы, установленной в земле, обычно хватает 5 Вт/м. Если аналогичная магистраль обогревается снаружи, показатель возрастает до 10 Вт/м и дальше. Каналы, расположенные на открытом воздухе, требуют мощности от 20 Вт/м. Вне зависимости от положения трубы и провода, необходимо использовать изоляционный материал толщиной от 3 мм.

При какой температуре включать греющий кабель? Ответ на этот вопрос зависит исключительно от вас. Специалисты рекомендуют начинать обогрев уже при +5°С. Если у вас саморегулирующееся устройство, лучше включать его при первых признаках серьезного осеннего похолодания. С резистивными моделями менее удобно, так как они не оптимизируют потребление энергии. В любом случае, стоит активизировать систему заранее, чтобы она находилась в рабочем состоянии. До какой температуры нагревается греющий кабель саморегулирующийся, зависит от его характеристик. Если погода не будет ухудшаться, он будет использовать только минимум электричества. С окончательным приходом весеннего тепла любой провод, естественно, нужно отключать.

Пример расчета

Невозможно сказать точно, сколько потребляет саморегулирующийся нагревательный кабель в месяц, так как этот показатель напрямую зависит от температуры воздуха. Тем не менее попробуем получить определенное представление на конкретном примере провода с номинальным потреблением 16 Вт/м. Устройство устанавливается снаружи трубы диаметром 25 мм и протяженностью 12 м.

Такой греющий кабель при температуре нагрева 10°С потребляет до 192 Вт (16х12). Учитывая слой теплоизоляции, показатель можно смело разделить надвое. Для простоты расчета договоримся, что нашему проводу требуется 100 Вт или 0,1 кВт. Если у нас бесперебойно работающий греющий кабель потребление электроэнергии составит 72 кВт⋅ч в месяц. Для Москвы одноставочный тариф равен 5,04 руб. Умножаем его на 72 кВт⋅ч и получаем 362,88 руб. в месяц. Для жителей других городов аналогичная услуга обойдется в 2-2,5 раза дешевле.

Преимущества и недостатки

Саморегулирующий кабель — не идеальный продукт, ведь у него имеются не только плюсы, но и слабые места.

Преимущества:

  1. Надежность и простота конструкции.
  2. Равномерность и однородность нагрева по всей длине с возможностью изменения температурного режима на холодных/теплых участках.
  3. Устойчивость к резким изменениям напряжения, отсутствие боязни к резким скачкам этого параметра.
  4. Экономия электричества. Даже при работе на максимальной мощности расходы на оплату электроэнергии будут сравнительно небольшими.
  5. Безопасность. Наличие нескольких защитных слоев надежно защищает от повреждения электрическим током. Кроме того, такая продукция не боится перехлеста и надежно защищена от перегрева.
  6. Нет необходимости в дополнительном обслуживании и расходах.
  7. Отсутствуют ограничения по длине, что позволяет подобрать решение для конкретных ситуаций.

У саморегулирующих греющих проводников имеется и ряд недостатков:

  1. Более высокая цена из расчета на один метр изделия.
  2. Кабель пускается в больших объемах и зачастую без заводских муфт и сальников для подключения. Также отсутствуют соединительные трубки, которые необходимо подключать самостоятельно.

Главным недостатком для многих покупателей является стоимость, но при длительной эксплуатации саморегулирующийся проводник экономнее конкурентов. Это достигается, благодаря способности менять мощность в зависимости от условий эксплуатации.

Расчет параметров нагревателей из нихрома и фехрали

Расчет длины проволоки для спирали

Требуемая мощность нагревателя Вт

Напряжение питания В

Выберете диаметр проволоки из стандартных промышленных размеров.

Полученные результаты не учитывают рост электрического сопротивления проводника с ростом его температуры. Поэтому фактическая мощность (как и потребляемый ток от сети) всегда несколько ниже расчетных величин.

Расчет веса и длины

Нихром и фехраль являются самыми распространенными материалами для создания резистивного нагревателя. Нихром (в частности, нихром 80) изготавливается из смеси никеля и хрома. Фехраль или другое название Кантал представляет собой сплав железо-хром-алюминий (FeCrAl).

Выбор проводников

Как вы можете понять из всего выше написанного, проводники следует выбирать из условий нагрева. Дабы при определённом токе их температура не превышала максимально допустимую. Сделать это можно своими руками, благодаря таблицам в ПУЭ. Но и в этом вопросе сначала необходимо разобраться.

В ПУЭ приведены таблицы, по которым можно осуществить выбор проводников по нагреву, экономической плотности тока, способу прокладки и другим параметрам. Но для начала мы точно должны знать условия монтажа и работы провода. Давайте разберем, зачем это нужно.

Но прежде разберемся с током. Ни для кого не секрет, что в течение времени ток в проводнике будет меняться. И какой из них следует рассматривать в качестве результирующего для выбора сечения проводника, непонятно. На этот вопрос нам отвечает п. 1.3.2 ПУЭ, который гласит, что для выбора следует применять средний ток в течении получаса, наиболее нагруженного в течении суток.

  • Теперь давайте определимся с температурой. В разных местах монтажа она может достаточно сильно отличаться от рабочей температуры. Это следует учитывать. Поэтому в табл. 1.3.3 ПУЭ приведены поправочные коэффициенты для различной кабельно-проводниковой продукции, если температуры в которых будет работать кабель, отличается от рабочей.
  • Выбор проводников по нагреву, плотности тока, обязательно учитывает способ прокладки проводника. Это может быть одиночная прокладка по воздуху, а может быть монтаж в земле или в трубах. Согласитесь, теплоотведение у таких проводников будет существенно отличаться. И это обязательно стоит учитывать.
  • Так же следует учитывать количество жил проводника. То ли у нас охлаждается одна жила, то ли три, которые соприкасаются.

В итоге мы сможем воспользоваться таблицами 1.3.4. – 1.3.11 ПУЭ, которые предписывают, проводники какого сечения использовать для различных токов, и при использовании проводников с различными типами изоляции.

Но эти таблицы можно применять для не самых мощных линий. При расчётах межсистемных высоковольтных линий с напряжением в 330кВ и выше, опираться на эти таблицы нельзя. В этом случае используют таблицу 1.3.36 ПУЭ, которая позволяет выбрать сечение проводников, исходя из экономической плотности тока.

Из этого видео Вы узнаете о требованиях к проводникам.

Почему греется ноль в электропроводке

Сильное нагревание нуля, как правило, происходит в распределительном щитке или на вводе кабеля в дом. Нагрев происходит на пробках с предохранителями (автоматах), либо на клеммниках для подсоединения проводов в доме.

Чтобы выяснить причину нагревания электропроводки в доме, следует пойти от простого к сложному:

Провода греются из-за нагрузки — самая распространённая причина, это старая электропроводка в доме. Раньше, когда не было 2 кВт чайников, стиральных машин, водонагревателей и т. д., никто не думал наперёд. Поэтому сечение проводов для электропроводки выбиралось минимального диаметра, не то, что теперь.

Кстати, данная проблема характерна и в случае плохого напряжения в электросети, поскольку трансформаторные подстанции и поселковые линии электропередач, попросту не рассчитаны на «сегодняшние» нагрузки. Говоря другими словами, отказавшись от печного отопления, все кинулись устанавливать электрокотлы, из-за чего электросеть не выдерживает чрезмерно возникших нагрузок.

Поэтому, если в доме беспокоит сильно нагревающиеся провода, то стоит подумать над тем, как давно они менялись и какого диаметра заложены. Возможно, включая одновременно — чайник, электропечь и водонагреватель, проводка просто не выдерживает нагрузки, порядка 6 кВт. В данном случае достаточно поменять электропроводку на новую.

Неисправности электропроводки или плохой контакт

Весьма распространённой причиной, по которой греется ноль в электропроводке, это плохой контакт. Возможно, со временем ослабли винты креплений, а возможно, на проводах образовался нагар. В любом случае, проблема сама по себе никуда не исчезнет, и стоит проверить, насколько хороший контакт на вводе, на автоматах, клеммах и в распределительных коробках.

Плохой контакт — это всегда лишнее сопротивление, как и при соединении алюминия с медью. А, как известно, любому сопротивлению свойственно нагреваться. Со временем, это приводит к отгоранию нуля и различным другим неисправностям электропроводки.

Чтобы устранить плохой контакт, его сначала нужно найти, для чего следует осмотреть все доступные соединения проводов. После того, как слабое место найдено, необходимо будет его разобрать, зачистить, и подключить заново. Для зачистки контактов можно использовать мелкий надфиль или наждачную бумагу.

Само собой разумеется, что при любых работах связанных с ремонтом электропроводки, необходимо полностью обесточить электросеть. Всегда нужно помнить о том, что при отключении всего лишь одного провода (нуля), через включенный выключатель, все равно может пройти ток, что приведёт к появлению опасного потенциала для жизни на нулевом проводнике.

Параметры, влияющие на нагрев

Процесс нагрева проводов относится к негативному явлению, с которым требуется бороться. В противном случае произойдет повышенный расход энергии или возгорание цепи. Чтобы этого не происходило, нужно контролировать следующие показатели:

  • Сечение провода. Этот размер должен выдерживать максимально допустимую нагрузку без нагрева. Расчет ведется с учетом влияния окружающей среды, поскольку проводник находится не в вакууме.
  • Теплопроводность материала. Для проводников используется цветной металл: медь, алюминий.
  • Разность температур между проводником и окружающей средой. Металл быстрее отдает тепло при большом температурном перепаде.

При разработке электрических цепей все эти факторы должны приниматься во внимание

Область использования кабелей

Благодаря широкой номенклатуре выбрать изделия для конкретных целей довольно просто. Его успешно применяют в промышленности и быту, на улице и в помещениях. Поэтому кабель часто используют в условиях тропической жары, умеренных климатических зонах.

Важно! В жилом строительстве провод этой марки используют для прокладки электропроводки в ванных комнатах, при строительстве бань и саун. Промышленные предприятия применяют провод для подключения мощных машин к системе электропроводки и основному источнику питания

Его используют для изготовления обмоток при производстве крупной электрической техники

Промышленные предприятия применяют провод для подключения мощных машин к системе электропроводки и основному источнику питания. Его используют для изготовления обмоток при производстве крупной электрической техники.

Широко применяется на химических предприятиях, так как изоляционные материалы не боятся воздействия лаков и красок, которые могут попасть на поверхность кабеля. Так как резина пропитана слоем лака, внешняя обмотка не растворяется под воздействием агрессивных сред, остаётся целостной. Это обеспечивает стабильную работу всей электрической системы.

В завершение следует отметить, что у данного вида кабелей и проводов высокий срок службы. Для дополнительной защиты, термостойкие провода и кабели можно оснастить гибкой термостойкой металлической оплеткой диаметром 3 или 6 мм.

Нагревание проводников электрическим током. Закон Джоуля—Ленца

На одном из прошлых уроков мы с вами говорили о действиях электрического тока, которые он способен оказывать, протекая в различных средах:

Также мы с вами говорили о том, что тепловое действие ток производит и любой среде: твёрдой, жидкой и газообразной. Нагревание среды происходит потому, что разогнавшиеся под действием электрического поля свободные электроны в металлах, или ионы в проводящих ток растворах, сталкиваются с молекулами или атомами проводника и отдают им часть своей энергии. Так, энергия электрического поля переходит во внутреннюю энергию проводника.

Обратимся теперь к количественной стороне вопроса: сколько теплоты выделяется при прохождении тока определённой силы в данном конкретном проводнике?

Ответ на него мы найдём, применив закон сохранения энергии. Если в результате протекания тока в проводнике увеличивается только внутренняя энергия проводника, то есть если ток произведёт лишь тепловое действие, то выделенное в проводнике количество теплоты должно быть равно работе, совершенной за это время электрическими силами. Тогда мы можем рассчитывать выделенную теплоту по формулам, полученными нами для работы электрического тока:

Гораздо сложнее будет ситуация, когда протекание тока в проводнике вызывает не только его нагревание, но и создаёт другие виды энергии. Примером этому является работа любого электродвигателя или электромотора. Согласно закону сохранения и превращения энергии работа, совершенная электрическими силами за некоторый промежуток времени, вызывает не только нагревание обмотки электродвигателя (кстати, не очень большое), но и появление весьма значительного количества механической энергии:

Аналогичная ситуация возникает при зарядке аккумулятора, где за счёт работы электрических сил происходит не только нагревание заряжаемого аккумулятора, но и накопление в нем химической энергии:

Однако очевидно, что количество теплоты, выделяющееся в проводнике, должно зависеть от сопротивления проводника. Проверим это предположение на опыте. В цепь из источника тока, амперметра и реостата включим последовательно три проводника одинаковой длины и площади поперечного сечения: из нихрома, никелина и меди. При увеличении силы тока заметим, что нихромовый проводник нагревается почти до белого каления, никелиновый лишь слегка краснеет, а медный остаётся темным.

Действительно, ведь чем больше сопротивление проводника, тем «труднее» двигаться зарядам. При этом совершается большая работа по их перемещению и, следовательно, проводник больше нагревается.

А как узнать количество выделенной теплоты в таких случаях, ведь здесь очевидно только то, что эта теплота меньше работы электрических сил? Ответ на этот вопрос был найден в 1841 г. английским учёным Дж. Джоулем и независимо от него в 1842 г. русским учёным Э. Х. Ленцем. На основании многочисленных опытов ими было установлено, что количество теплоты, выделяемое при прохождении электрического тока в любом проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени протекания тока:

Это и есть закон Джоуля — Ленца.

Проверить его справедливость можно с помощью следующей экспериментальной установки. В калориметр, содержащий 100 г воды при температуре 20 оС, поместим нихромовую проволоку, концы которой подключим в цепь, состоящую из источника тока, амперметра и ключа. С помощью вольтметра будем измерять напряжение на концах проводника, а с помощью секундомера — время эксперимента.

Как видим, количество теплоты, полученное водой, равно количеству теплоты, которое выделилось в проводнике

, что подтверждает правоту закона Джоуля — Ленца.

Формулой Q=I2Rt удобно пользоваться при расчёте количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же. Поэтому при последовательном соединении нескольких проводников в каждом из них выделяется количество теплоты, пропорциональное сопротивлению проводника:Q~R. При параллельном соединении проводников ток в них различен, а вот напряжение на концах этих проводников одно и то же. Поэтому расчёт количества теплоты при таком соединении удобнее вести по формуле:

Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется количество теплоты, обратно пропорциональное сопротивлению проводника: Q~ 1/R.

Вывод

Мы очень надеемся, что теперь вы знаете, как можно объяснить нагревание проводника электрическим током, и понимаете сам процесс. Так же вы должны понимать, с чем связаны определенные ограничения при выборе сечения проводников, и не будет ли слишком велика цена игнорирования этих правил.

Ведь все из них основаны на реальных практических и научных обоснованиях, а электротехника очень жестоко наказывает тех, кто их игнорирует.

При прохождении по проводу электрического тока происходит преобразование электрической энергии в тепловую. Скорость процесса преобразования электрической энергии в тепловую характеризуется мощностью P=UI.

Количество тепла, выделяемого током в проводнике, пропорционально квадрату тока, сопротивлению проводника и времени прохождения тока: Q = I 2 rt (Закон Джоуля-Ленца).

Преобразование электрической энергии в тепловую имеет большое практическое значение для создания ламп накаливания, нагревательных приборов и электрических печей. Однако выделение тепла в проводах и обмотках электрических, машин, трансформаторов, измерительных и других приборов не только бесполезная трата электрической энергии, но и процесс, который может принести к недопустимо высокому повышению температуры и к порче изоляции проводов и даже самих устройств.

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается и окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среду к увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловоз равновесие: за одинаковое время количество выделяющегося в. проводе тепла становится равным рассеивающемуся во внешнюю среду.

При дальнейшем прохождении неизменяющегося тока температура провода не изменяется и называется установившейся температурой .

Время нагревания до установившейся температуры неодинаково для различных проводников: нить лампы накаливания нагревается за доли секунды, электрическая машина – за несколько часов (как показывает анализ, теоретически время нагревания бесконечно велико, мы под временем нагревания будем понимать время, в течение которого провод нагревается до температуры, обличающемся от установившейся не более чем на 1%).

Для изолированных проводов нормами установлена предельная температура нагрева 55 – 100° С в зависимости от свойств изоляции и условий монтажа. Ток, при котором установившаяся температура соответствует нормам, называется предельно допустимым или номинальным током провода. Значение номинальных токов для различных сечений проводов приводится в специальных таблицах в ПУЭ и электротехнических справочниках.

Мощность, развиваемая током в проводе, при которой наступает тепловое равновесие к устанавливается допустимая температура, называется допустимой мощностью рассеивания .

Если по проводу проходит ток больше номинального, то провод оказывается «перегруженным». Однако, поскольку установившаяся температура достигается не сразу, кратковременно можно допустить в цепи ток больше номинального (до момента, пока температура провода не достигнет предельного значения). Слишком большая температура провода, как правило, получается при коротком замыкании.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий