Мигающий светодиод: как сделать, подключить и где применять

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана – закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Моргающий световой сигнал находит широкое применение – от особого режима работы фонарей до индикации сложной аппаратуры. В его основе все чаще используется мигающий светодиод, как надежная и долговечная альтернатива любым другим видам светоисточников.

Рассмотрим, каков его принцип действия, какие готовые решения подобного прибора доступны сегодня на рынке, как сделать, чтобы лед-элемент, функционирующий в обычном режиме, стал работать в мерцающем ритме, какова общая сфера их применения, а также как своими руками на их основе изготовить гирлянды и бегущие огни.

Обычные светодиоды

Современные светодиоды способны стать полноценной заменой лампам накаливания, что обусловлено различными характеристиками таких источников света, изготовленных на основе искусственного полупроводникового кристаллика.

Основные параметры светодиодов представлены:

  • напряжением питания;
  • показателями мощности;
  • рабочими токовыми величинами;
  • эффективностью или световой отдачей;
  • температурой свечения или цветом;
  • углом излучения;
  • размерами;
  • сроком деградации.

При подключении световых диодов должны соблюдаться определенные правила. В зависимости от характеристик и типа источника питания, различается пара вариантов подключения устройства к сети 220В: посредством драйвера со стандартным токовым ограничителем или при помощи хорошо стабилизирующего напряжение, специального блока питания.

Сборка конструкций на основе нескольких LED-осветителей предполагает использование схем последовательного или параллельного подсоединения.

Срок службы отремонтированной лампы

Как
долго проработает такая лампочка с “шунтированным” светодиодом?

Все будет зависеть от двух факторов. Во-первых, какое напряжение у вас в сети (нормальное, повышенное (>230V) или пониженное).

Во-вторых, где стоит эта лампочка. Если это коридор, туалет, подсобка, сарай и т.п., где она включается на непродолжительное время, то лампа может спокойно прослужить несколько месяцев.

Если
это зал, спальня, кухня, то здесь речь идет о гораздо меньшем сроке.

Есть мнение, что отсутствующий элемент вызовет повышение тока во всей цепочке. Что зачастую на самом деле и происходит.

А
это уже приводит к последовательному выходу из строя остальных светодиодов один
за другим.

Но
если драйвер в лампе выполнен качественно и имеет хороший импульсный
стабилизатор тока, то работоспособность лампочки будет поддерживаться очень
долгое время.

Вот вам наглядное сравнение силы тока в “зашунтированной” лампе…

и в лампе, где вместо сгоревшего светодиода были впаяны несколько добавочных резисторов, которые как раз и должны были снизить ток.

Как
видите, разницы практически не наблюдается. Думаете стоит подобным образом
заморачиваться и беспокоиться о меньшем сроке службы?

Но опять же повторимся, это только при наличии хорошего драйвера.

При классической дешевой схеме питания светодиодной лампы на гасящем конденсаторе, срок службы сокращается в разы.

Стабилизация тока в таких лампах очень условная.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось только подключить батарейку) — можно попробовать собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг. Действительно может встать проблема, не задача, сделать мигающий светодиод. Замаячь на горизонте акция «голубых ведерок».

Программа и скетч мигающего светодиода

Давайте теперь рассмотрим программу, которую мы загрузили из примеров и проанализируем.


Пример программы мигалки Blink

Во-первых, давайте пока уберем большой блок комментарий – они обозначены в Arduino IDE серым цветом. На данном этапе они немного мешают нам, хотя они крайне важны и вы всегда должны писать комментарии к своим программам.


Программа Blink без комментариев

Если вы обратите внимание на блок loop, то именно в нем и сосредоточены наши команды, управляющие светодиодом:


Функции setup и loop в коде программы Blink

digitalWrite – это название функции, которая отвечает за подачу напряжения на пин. Подробнее о ней можно прочитать в отдельной статье о digitalWrite.

LED_BUILDIN – это название внутреннего светодиода. В большинстве плат за этим названием прячется цифра 13. Для плат Uno, Nano можно смело писать 13 вместо LED_BUILDIN.

HIGH – условное название высокого уровня сигнала. Включает светодиод. Можно заменить цифрой 1.

LOW – условное обозначение низкого уровня сигнала. Выключает светодиод. Можно заменить цифрой 0.

delay – функция, которая останавливает выполнение скетча на определенное время. Крайне нежелательно использовать ее в реальных проектах, но в нашем простом примере она отработает замечательно. В скобках мы указываем цифру – это количество микросекунд, которые нужно ждать. 1000 – это 1 секунда. Подробнее можно прочитать в нашем материале о delay() .

// LED_BUILTIN — встроенная константа, определяющая номер пина. В Arduino Uno и Nano это 13 пин. void setup() { pinMode(LED_BUILTIN, OUTPUT); // Установка пина в режим OUTPUT } // Этот блок команд выполняется постоянно void loop() { digitalWrite(LED_BUILTIN, HIGH); // Включение светодиода delay(1000); // Задержка digitalWrite(LED_BUILTIN, LOW); // Выключение светодиода delay(1000); // Задержка // Когда программа дойдет до этого места, она автоматически продолжится сначала }

Как только программа дойдет до конца, контроллер перейдет в начало блока loop и будет выполнять все команды заново. И так раз за разом, целую вечность (пока есть свет). Наш светодиод мигает без остановки.

Проект “Маячок” с мигающим светодиодом

В этом проекте мы с вами практически повторим предыдущий, но при этом добавим самую настоящую схему. Подключим светодиод и токоограничивающий резистор. Чтобы не повторяться, отправим вас за подробным описанием в статью о правильном подключении светодиода к плате Ардуино.

Вам понадобится:

  • Плата Arduino Uno или Nano
  • Макетная плата для монтажа без пайки
  • Резистор номиналом 220 Ом
  • Светодиод
  • Провода для соединения

Сложность: простой проект.

Что мы узнаем:

  • Как подключить светодиод к ардуино.
  • Повторим процедуру загрузки скетча в микроконтроллер.

Для монтажа элементов мы будем использовать макетную плату. Если вы еще не очень хорошо понимаете, что это такое, то рекомендуем предварительно ознакомиться с отдельной статьей, посвященной макетным платам.

Соедините все элементы согласно следующей схемы для Arduino UNO. Для Arduino Nano светодиод подключается по той же схеме – к пину 13.


Схема подключения мигающего светодиода к Ардуино

Если вы не меняли программу с предыдущего шага, то можно считать, что все сделано. Подключаем плату к компьютеру – светодиод должен немного помигать хаотично, а затем с точно установленным периодом.

Если вы еще не загружали программу, то вам надо повторить ту же последовательность действий, что и для работы со встроенным светодиодом. Загружаем пример, затем программу в контроллер и наблюдаем за результатом.

Попробуйте внести изменения в программу. Сделайте так, чтобы маячок мигал медленней и быстрее (чаще). Добейтесь того, чтобы частота мигания стала такой, что мигание света стало бы незаметным.

Простые схемы мигалок на основе мигающих светодиодов для сборки своими руками

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Готовые мигающие светодиоды и схемы с их использованием

Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе.

Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах.

Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

Принцип действия светодиода

Прежде, чем подключить светодиод, необходимо знать минимум теории. В районе p-n перехода за счёт существования дырочной и электронной проводимости образуется зона с нестандартными для толщи основного кристалла энергетическими уровнями.

При рекомбинации носителей заряда освобождается энергия, и если величина её равна кванту света, то спай двух материалов начинает лучиться. Оттенок зависит от некоторых величин, а соотношение выглядит следующим образом:

E = h c / λ, где h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, а греческой буквой лямбда обозначается длина волны (м)

Из этого утверждения следует, что может быть создан диод, где разница энергетических уровней составляет Е.

Это и будет искомое. Именно так изготавливаются светодиоды. А в зависимости от разницы уровней, цвет может быть синим, красным, зелёным и пр.

Причём не все светодиоды обладают одинаковым КПД. Самыми слабыми являются синие, которые и исторически появились одними из последних.

КПД светодиодов сравнительно мал (для полупроводниковой техники) и редко дотягивает даже до 45%.

Но при всем этом удельное превращение электрической энергии в полезную световую просто потрясающее.

Каждый Вт энергии может давать фотонов в 6-7 раз больше, нежели спираль накала в тех же условиях потребления. Это объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Именно по этой же причине и создание мигалки на основе этих полупроводниковых элементов несравненно проще. Достаточно сравнительно малых напряжений, чтобы схема начала работать.

Все остальное сводится к тому, чтобы правильным образом подобрать ключевые и пассивные элементы для создания пилообразного или импульсного напряжения нужной формы:

Амплитуда.
Скважность.
Частота следования.

Как это сделать? Очевидно, что подключение светодиода к сети 220В будет не лучшей идеей.

Имеются подобные схемы, но заставить их мигать достаточно сложно, потому что элементная база для этого ещё не создана.

Обычно светодиоды работают от гораздо более низких питающих напряжений. Из них самыми доступными являются:

Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, а также iPad и других гаджетов.

Правда, выходной ток в этом случае невелик, но в большинстве случаев это и не нужно. Кроме того, +5 В можно найти на одной из шин блока питания персонального компьютера.

В этом случае с ограничением по току никаких проблем не будет. Провод в этом случае красного цвета, а землю ищите на чёрном.

Напряжение от +7 до +9 В часто встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями.

Великое множество фирм, и у каждой свои стандарты

На наш взгляд схема подключения светодиода будет лучше всего работать от +12 В.

Это стандартное напряжение в микроэлектроники, его можно встретить во многих местах. Также компьютерный блок содержит вольтаж -12 В. Изоляция жилы синяя, а сам провод оставлен для совместимости со старыми приводами.

В нашем случае он может понадобиться в том случае, если не окажется под рукой элементной базы для питания +12 В. Тогда будет достаточно найти комплементарные транзисторы и включить их вместо исходных. Номиналы пассивных элементов остаются теми же. Сам светодиод также включается обратной стороной.

Номинал -3,3 В на первый взгляд кажется невостребованным.

Но если посчастливится достать на aliexpress RGB светодиоды SMD0603 по 4 рубля за штуку, то можно будет не воротить горы.

Однако! Падение напряжения в прямом направлении не должно превышать 3 В (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Теперь, когда устройство светодиода нам вполне понятно, а условия горения известны, приступим к реализации нашей задумки. А именно – заставим элемент мигать.

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Собираем мигалку «на коленке»

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Ремонт шунтированием

Проще
всего это сделать при помощи капельки олова. Кто-то припаивает сюда тоненький
проводок или даже накладывает кусочек фольги.

Но
все это сложнее и менее надежно.

Поэтому
берете паяльник, подносите олово и капаете на место, где раньше стоял
светодиод.

А
если нет под рукой паяльника, что делать в этом случае?

Возьмите
олово, которое продается в виде тонкой проволоки на катушке, разогрейте его “реактивной”
газовой зажигалкой и капните на контактную площадку.

Если нет в наличии ни паяльника, ни олова, можно попробовать капнуть токопроводящий клей.

Весь
ремонт со вскрытием лампы займет у вас не более 5 минут. Для проверки
работоспособности можете не ставить колбу на место, а прямо так вкрутить
лампочку в патрон и включить свет.

Особой
разницы в свечении вы даже не заметите.

Программа и скетч мигающего светодиода

Давайте теперь рассмотрим программу, которую мы загрузили из примеров и проанализируем.


Пример программы мигалки Blink

Во-первых, давайте пока уберем большой блок комментарий – они обозначены в Arduino IDE серым цветом. На данном этапе они немного мешают нам, хотя они крайне важны и вы всегда должны писать комментарии к своим программам.


Программа Blink без комментариев

Если вы обратите внимание на блок loop, то именно в нем и сосредоточены наши команды, управляющие светодиодом:


Функции setup и loop в коде программы Blink

digitalWrite – это название функции, которая отвечает за подачу напряжения на пин. Подробнее о ней можно прочитать в отдельной статье о digitalWrite.

LED_BUILDIN – это название внутреннего светодиода. В большинстве плат за этим названием прячется цифра 13. Для плат Uno, Nano можно смело писать 13 вместо LED_BUILDIN.

HIGH – условное название высокого уровня сигнала. Включает светодиод. Можно заменить цифрой 1.

LOW – условное обозначение низкого уровня сигнала. Выключает светодиод. Можно заменить цифрой 0.

delay – функция, которая останавливает выполнение скетча на определенное время. Крайне нежелательно использовать ее в реальных проектах, но в нашем простом примере она отработает замечательно. В скобках мы указываем цифру – это количество микросекунд, которые нужно ждать. 1000 – это 1 секунда. Подробнее можно прочитать в нашем материале о delay() .

// LED_BUILTIN — встроенная константа, определяющая номер пина. В Arduino Uno и Nano это 13 пин. void setup() { pinMode(LED_BUILTIN, OUTPUT); // Установка пина в режим OUTPUT } // Этот блок команд выполняется постоянно void loop() { digitalWrite(LED_BUILTIN, HIGH); // Включение светодиода delay(1000); // Задержка digitalWrite(LED_BUILTIN, LOW); // Выключение светодиода delay(1000); // Задержка // Когда программа дойдет до этого места, она автоматически продолжится сначала }

Как только программа дойдет до конца, контроллер перейдет в начало блока loop и будет выполнять все команды заново. И так раз за разом, целую вечность (пока есть свет). Наш светодиод мигает без остановки.

Проект “Маячок” с мигающим светодиодом

В этом проекте мы с вами практически повторим предыдущий, но при этом добавим самую настоящую схему. Подключим светодиод и токоограничивающий резистор. Чтобы не повторяться, отправим вас за подробным описанием в статью о правильном подключении светодиода к плате Ардуино.

Вам понадобится:

  • Плата Arduino Uno или Nano
  • Макетная плата для монтажа без пайки
  • Резистор номиналом 220 Ом
  • Светодиод
  • Провода для соединения

Сложность: простой проект.

Что мы узнаем:

  • Как подключить светодиод к ардуино.
  • Повторим процедуру загрузки скетча в микроконтроллер.

Для монтажа элементов мы будем использовать макетную плату. Если вы еще не очень хорошо понимаете, что это такое, то рекомендуем предварительно ознакомиться с отдельной статьей, посвященной макетным платам.

Соедините все элементы согласно следующей схемы для Arduino UNO. Для Arduino Nano светодиод подключается по той же схеме – к пину 13.


Схема подключения мигающего светодиода к Ардуино

Если вы не меняли программу с предыдущего шага, то можно считать, что все сделано. Подключаем плату к компьютеру – светодиод должен немного помигать хаотично, а затем с точно установленным периодом.

Если вы еще не загружали программу, то вам надо повторить ту же последовательность действий, что и для работы со встроенным светодиодом. Загружаем пример, затем программу в контроллер и наблюдаем за результатом.

Попробуйте внести изменения в программу. Сделайте так, чтобы маячок мигал медленней и быстрее (чаще). Добейтесь того, чтобы частота мигания стала такой, что мигание света стало бы незаметным.

Как подключить светодиод к ардуино

Подключение к ардуино желательно делать через резистор. В arduino подключение возможно и через встроенный резистор, но это требует специальный синтаксис команд и лучше его не использовать. Ограничительный резистор между выходом порта и светодиодом берем на 150 — 200 Ом.

Плавное включение светодиода

Для плавного включения используем новую команду ШИМ-модуляции сигнала.

Что бы понять принцип работы шим-модуляции, представьте резиновую трубку через которую в стакан течет вода. Если мы будем каждую секунду зажимать и отпускать трубку, за равный промежуток количество набранной воды уменьшиться в два раза. Если зажимать на одну секунду один раз в четыре секунды – ограничим объем жидкости на четверть.

В Ардуино модуляция сигнала происходит с частотой около 500 импульсов в секунду.

Команда analogWrite (порт, частота модуляции) подает на заданный порт модулированный сигнал. При частоте 255 выдается 100% мощности, при частоте 127 соответственно 50%. Изменяя частоту модуляции мы можем менять яркость. Для модулированного сигнала используют аналоговые входы-выходы.

void setup() // процедура setup { pinMode (6, OUTPUT); // включаем аналоговый порт 6 на вывод } void loop() {

Цикл увеличения частоты модуляции с 0 до 255

For (int i=0; i<=255;i++) { analogWrite(6, i); delay(20); // задержка 20 миллисекунд. Светодиод «разгорится» за 5 сек. }

Цикл уменьшения частоты модуляции с 255 до 0

for(int i=255;i>=0;i—) { analogWrite(6, i); delay(20); }

В этом примере светодиод плавно разгорается за 5 сек. потом постепенно гаснет в течении 5 сек.

Для подключения большого количества светодиодов либо мощного светодиода требуются коммутаторы: транзисторный ключ, опотрон, микросхема коммутатор. Они позволяют подавать питание от внешнего источника достаточной мощности.

Оцените, пожалуйста, статью. Мы старались:)

Схемы светодиодных ламп

Прежде всего, следует выработать вариант сборки. Существует два основных способа, каждый из которых имеет собственные плюсы и минусы. Ниже мы рассмотрим их подробнее.

Вариант с диодным мостом

Схема включает четыре диода, которые подключаются разнонаправленно. Благодаря этому мост приобретает возможность трансформировать сетевой ток в 220 V в пульсирующий.


Схема светодиодного моста отличается простотой и логичностью. Выполнить ее может даже начинающий мастер, осваивающий азы самостоятельной работы

Происходит это следующим образом: при проходе по двум диодам синусоидальных полуволн, они изменяются, что вызывает потерю полярности.

При сборке к плюсовому выходу перед мостом подключается конденсатор; перед минусовой клеммой – сопротивление на 100 Ом. Еще один конденсатор устанавливается позади моста: он понадобится для сглаживания перепадов напряжения.

Изготовление светодиодного элемента

Наиболее простым способом создания LED светильника является выполнение источника света на основе сломанного светильника. Необходимо проверить работоспособность обнаруженных деталей, что можно сделать с помощью аккумулятора на 12 V.

Неисправные элементы нужно заменить. Для этого следует распаять контакты, убрав перегоревшие элементы, поставить на их место новые

При этом важно соблюдать чередование анодов и катодов, которые крепятся последовательно

Если требуется поменять лишь 2-3 штуки чипа, достаточно просто припаять их на участки, где ранее находились вышедшие из строя компоненты.

При полной самостоятельной сборке нужно соединять в ряд по 10 диодов, соблюдая правила полярности. Несколько выполненных цепей припаиваются к проводам.

При изготовлении лампы можно воспользоваться платами со светодиодами, которые можно найти в перегоревших устройствах

Важно лишь проверить их работоспособность. При сборке схем важно следить, чтобы спаянные концы не касались друг друга, поскольку это может привести к замыканию прибора и выхода системы из строя

При сборке схем важно следить, чтобы спаянные концы не касались друг друга, поскольку это может привести к замыканию прибора и выхода системы из строя

Приспособления для более мягкого света

Чтобы избежать мерцания, свойственного LED-светильникам, описанную выше схему можно дополнить несколькими деталями. Таким образом, она должна состоять из диодного моста, резисторов на 100 и 230 Ом, конденсаторов на 400 нФ и 10 мкФ.

Чтобы защитить устройство от перепадов напряжения в начале схемы помещается резистор в 100 Ом, за которым впаивается конденсатор 400 нФ, после него устанавливается диодный мост и еще один резистор на 230 Ом, за которым идет собранная цепочка светодиодов.

Приборы с резисторным сопротивлением

Подобная схема также вполне доступна начинающему мастеру. Для ее выполнения требуются два резистора 12k и две цепочки из одинакового числа светодиодов, которые припаиваются последовательно с учетом полярности. При этом одна полоса со стороны R1 подсоединяется катодом, а другая – с R2 – анодом.

Выполненные по этой схеме светильники имеют более мягкий свет, поскольку действующие элементы зажигаются по очереди, благодаря чему пульсация вспышек почти незаметна невооруженному глазу.


Для расчета мощности лампы необходимо знать величину тока, который проходит через светодиоды. Эту величину можно рассчитать по приведенной формуле. При этом нужно учесть, что на показатель падения напряжения в последовательно соединенных 12 светодиодах составляет примерно 36В

Устройства успешно применяются в качестве настольной лампы и в других целях. Для создания оптимального освещения специалисты рекомендуют применять ленты из 20-40 диодов. Меньшее количество дает небольшой световой поток, соединение большего числа элементов технически довольно сложно выполнить.

Что нужно для изготовления

Можно купить готовый светодиод, который при подаче питающего напряжения начнет мигать. В таком приборе, помимо обычного p-n перехода, имеется встроенная электронная схема, выполненная по следующему принципу:

Устройство мигающего светодиода.

Основой прибора служит задающий генератор. Он вырабатывает импульсы с относительно высокой частотой – несколько килогерц или десятков килогерц. Рабочая частота определяется параметрами цепочки RC. Емкость и сопротивление конструктивные – ими служат элементы устройства светодиода. Таким способом большую емкость получить не удается без существенного увеличения габаритов прибора. Поэтому произведение RC невелико, и работа на высоких частотах – вынужденная мера. При частоте в несколько килогерц человеческий глаз не различает мигание светодиода, и воспринимает его как постоянное свечение, так что вводится дополнительный элемент – делитель частоты. Последовательным делением он снижает частоту до нескольких герц (зависит от напряжения питания). Такое решение по массогабаритным показателям выгоднее применения конденсатора с большой емкостью. Наименьшее напряжение питания готового мигающего светодиода — около 3,5 вольт.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector