Меры защиты от блуждающих токов

Правила выполнения замеров

Выполнение замера Чтобы оценить всю степень сложившейся ситуации с утечкой электрозарядов необходимо выполнить ряд мероприятий:

  • измерение напряжения и устремление тока по оболочкам кабелей магистрали;
  • определение разности потенциалов между контактными рельсами и находящимися в почве трубопроводами;
  • проверка уровня изоляции рельсов от грунтового покрытия, использовав для эксперимента участок полотна;
  • оценка плотности утечки энергии с оболочки кабелей в грунт.

Чтобы выполнить замеры, применяется специальный прибор, если мероприятия проводить на железнодорожных полотнах необходимо выбирать час пик движения транспорта.

Инструменты для замера

Для проверки применяют трансформаторы и подстанции у линии движения – электрод, подключенный к прибору, соединяют с ЗУ и втыкают в 10 метрах от подстанции. Вся возникающая разность фиксируется прибором.

Если предстоит укладка линии труб для водоснабжения важно выявить локацию блуждающих токов, с этой целью определяется разность потенциалов между двумя выборочными точками поверхности земли, размещенными перпендикулярно друг к другу с соблюдением равного расстояния. Такое определение важно выполнять систематически с разрывом в километр

При этом используемые приборы обязательно должны иметь класс точности не ниже 1,5, а сопротивление оборудования от 1 МОм. Применение измеряющих электродов с разностью потенциалов выше 10 мВ. Время проведения одного замера обязательно проходит в пределах 10 мин, а разрыв между процессами 10 сек.

Методы измерений

При прокладке трубопровода, блуждающие токи вычисляются путем измерения разности потенциалов между двумя точками поверхности земли, перпендикулярных друг другу и находящимся на равно удалении в 100 м. Измерения производятся через каждый километр.

Приборы для измерений должны обладать классом точности не менее 1,5 и собственным сопротивлением от 1 МОм. Разность потенциалов между измерительными электродами не должна превышать 10 мВ. По времени одно измерение должно продолжаться не менее 10 мин, с фиксированием результата каждые 10 с.

Измерения в зоне действия электротранспорта нужно проводить во время наибольшей нагрузки. Если разность показаний потенциалов будет превышать 0,04В, то это является признаком наличия блуждающих токов.

В качестве приборов для измерения можно использовать пару электродов сравнения: медно-сульфатный переносной и соединительный. Помимо этого понадобится цифровой мультиметр для выполнения замеров, а также гибкий изолированный провод, длина которого должна быть не менее 100 метров.

Несмотря на свои небольшие значения, это явление может нанести существенный урон подземным (и не только) коммуникациям. Источники блуждающих токов могут быть самые различные. Поэтому необходимо предпринимать все профилактические мероприятия по устранению этого нежелательного эффекта.

Напоследок рекомендуем просмотреть полезное видео, на котором наглядно показывается, как защититься от данного явления:

Вот мы и рассмотрели причины возникновения блуждающих токов и защита от них. Теперь вы знаете, что это такое и как избавиться от данного явления даже в домашних условиях!

Наверняка вы не знаете:

1. Сущность метода

Сущность метода заключается в измерении на трассе проектируемого сооружения разности потенциалов между двумя точками земли через каждые 1000 м по двум взаимно перпендикулярным направлениям при разносе измерительных электродов на 100 м для обнаружения блуждающих токов.

Вольтметры с внутренним сопротивлением не менее 20 кОм на 1 В шкалы с пределами измерений: 0,5-0-0,5 В; 1,0-0-1,0 В; 5,0-0-5,0 В или другими близкими к указанным пределам. Медносульфатные электроды сравнения.

(Измененная редакция, Изм. № 1).

3. Проведение измерений

Измерительные электроды располагают параллельно будущей трассе сооружения, а затем перпендикулярно к оси трассы.

Показания вольтметра снимаются через каждые 5-10 с в течение 10-15 мин в каждой точке.

Если наибольший размах колебаний разности потенциалов (абсолютной разности потенциалов между наибольшим и наименьшим значениями) превышает 0,50 В, это характеризует наличие блуждающих токов.

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 5 Рекомендуемое

Особенности заземления ванн из разных материалов

Заземление в ванной комнате – довольно сложный процесс, поэтому желательно обратиться за помощью к специалисту. Но если нет возможности или желания, провести заземление можно и самостоятельно.

Следуя правилам электромонтажа заземлить ванну в квартире следует путем соединения ванны и шины заземления, которая обычно располагается на входном распределительном щитке. Эти действия должно производиться в каждой ванной комнате, независимо он установленного электрического оборудования.

Особенности заземления ванн из разных материалов:

  1. Чугунная ванна. Идеальный проводник тока. Такую ванну необходимо заземлять первоочередно. Если ванна старого образца – провод заземления устанавливается путем присоединения его к металлической ножке ванны. В ножке просверливается отверстие, в котором нужно зафиксировать заземляющую перемычку. Современные ванны заранее оборудованы заводской накладкой на внешней поверхности.
  2. Акриловая ванна. Полиметилметакрилат, из которого производят акриловые ванны — не проводник тока. Однако акриловое покрытие имеет свойство накапливать статическое электричество. Многие акриловые ванны армируются с помощью металлического каркаса, который нуждается в заземлении.
  3. Гидромассажные джакузи. Вода в такие ванны подается под разными уровнями давления посредством системы джетов. Для полноценной работы джакузи требуется насос, который в свою очередь работает от обычной розетки. Правила эксплуатации таких ванн включают в себя локализацию розетки не ближе 0,5 метра от уровня земли и края самой купели и наличие защиты не меньше чем IP44. Помимо стандартных правил необходимо соединить джакузи с устройством заземления, для получения полной безопасности.

О том, как заземлить ванну и какие инструменты необходимы – читайте далее в этой статье.

Конструкция прибора

Прибор изготовлен в металлическом корпусе, герметичен, предназначен для работы при температуре окружающей среды от — 30 до+60 °С при относительной влажности 100 %. Масса прибора не более 300 г, габаритный размеры 190х83х35 мм. На передней панели имеются кнопка включения-отключения прибора, три клеммы для подключения источников сигналов, кнопка ручного запуска измерений, герметичный разъем RS-232, двухцветный светодиод для индицирования ждущего режима работы прибора.

При включении кнопки питания, прибор самотестируется и проверяет заложена ли в него программ измерений.

Кнопка ручного запуска измерений заблокирована от случайного нажатия при переносе прибора. Прибор начинает производить измерения, если кнопку «Ручной пуск» держать включенной не менее 4-5 с.

Программное обеспечение «ДАР» позволяет установить автоматический или заданный диапазон измерения напряжения, блуждающих токов, катодной защиты трубопроводов на каждый канал, интервал между измерениями, количество каналов измерения 1-2, дату включения прибора и время.

Это интересно: Скалодром для детей: описание, виды и способ самостоятельного изготовления

Подключенный прибор может ждать дату включения день, неделю, месяц. Просмотр результатов измерений блуждающих токов трубопровода может быть в виде графиков, таблиц. Имеется масштабирование по осям «амплитуда», ‘время», электронная лупа, вывод на печать. Случайное выключение прибора не приводит к потере измеренных данных и установленного режима.

Способы выявления блуждающих токов

Выявить наличие в грунте блуждающих токов позволяет специальная аппаратура. В используются надежные современные приборы, предназначенные для электрохимической защиты.

В комплект приборов для определения блуждающих токов входят:

  • универсальный мультиметр;
  • электрод сравнения медно-сульфатный переносной;
  • соединительный изолированный гибкий провод длиной не менее 100 м.

С помощью такого набора можно определить наличие постоянных токов в земле, опасное влияние переменного и блуждающего тока.

Если прокладка коммуникаций только планируется, то на стадии проектирования по трассе через каждую 1000 м измеряют разность потенциалов между точками. При обследовании действующих объектов измеряют сопротивление металла под воздействием стационарного и блуждающего токов.

Виды и появления блуждающих токов

Одна из причин связана с массовым применением рельсового электротранспорта. Электрифицированные ЖД магистрали, трамваи и метро, рудничная локомотивная контактная откатка становятся причиной появления блуждающих токов и наносят ущерб газовым трубопроводам, водопроводным линиям, бронированным кабельным сетям, металлоконструкциям.

Общая схема происходящего в этом случае следующая:

  1. Рельсовый путь используется в качестве проводника, по которому ток возвращается к обратному фидеру тяговой подстанции.
  2. На участках, которые плохо изолированы от земной поверхности, происходит утечка части энергии в грунт. Так как потенциал в этой точке максимален, появляется блуждающий ток, который движется в зону с небольшим потенциалом. А таким участком и становится труба или кабель в оплётке, любая металлическая конструкция, расположенная в земле.
  3. Пройдя по металлу, как по пути наименьшего сопротивления, в зону, где потенциал существенно уменьшается, ток выходит в грунт и возвращается в рельсовый путь.

В результате таких процессов в анодных зонах, участки выхода токов из рельсов и трубопровода, возникает процесс электрохимической коррозии. При этом скорость разрушения металлов может достигать десятка миллиметров в год. Для рельсового пути такие повреждения несущественны из-за большой толщины стали, хотя также снижают срок службы конструкции.

А вот для труб с небольшой стенкой такие повреждения становятся критичными. Выглядят они как сквозные отверстия небольшого диаметра. Если трубопровод находится в зоне длительного воздействия блуждающих токов без надлежащей защиты, может возникнуть ситуация, когда его поверхность напоминает решето.

Среди двух других потенциальных источников возникновения блуждающих токов выделяют:

  1. Трансформаторные подстанции, распределительные устройства с заземляющим оборудованием, линии ЛЭП с глухозаземлённой нейтралью. В случае постоянных небольших утечек на землю, уровень которых не достигает предела срабатывания защитных устройств, в зоне вокруг этих сооружений также возникают паразитные блуждающие токи.
  2. Электрокабельные сети подземного заложения также становятся причиной подобного эффекта при снижении диэлектрических свойств изоляции или её пробое.

Объяснение схемы выше: нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Понятно, что в большинстве случаев разрушающее воздействие в таких условиях будет меньше, чем в зонах расположения рельсовых путей электротранспорта, но оно также оказывает своё влияние.

Причина появления тока в домашнем быту

Существует ещё один вид блуждающего тока, который правда не связан с процессами, происходящими в земле. Речь идёт о появлении аналогичных повреждений на стальных полотенцесушителях, радиаторов отопления, установленных в обычных зданиях. Основной причиной становится разница потенциалов на этих устройствах и заземлённых участках водопровода или системы отопления.

Раньше все эти сети монтировались из металлических труб и обязательно заземлялись. Поэтому в пределах одного здания разницы потенциалов на отдельных участках или элементах системы не существовало или она была настолько минимальной, что не приносила никакого вреда.

Сейчас ситуация кардинально изменилась, и причиной этого стало массовое применение полипропиленовых и металлопластиковых труб. Полимерные материалы обладают высоким удельным сопротивлением, поэтому их можно считать хорошими диэлектриками. В результате получают изолированные друг от друга участки сети. При этом вода остаётся хорошим проводником, она отлично переносит скапливающийся статический заряд.

Поэтому и происходит появление эффекта блуждающих токов, вызванного разницей потенциалов на заземлённом участке сети и отдельных полотенцесушителях или батареях. В этом случае электрохимическая коррозия быстро разрушает тонкостенные металлические устройства.

Характеристики прибора измерения блуждающих токов трубопровода

  • «Дар» имеет два независимых измерительных входа, каждый из которых содержит четыре диапазона измерений: ± 100, ± 10, ± 1 и ±0,1 В. Выбор диапазона измерений производится прибором автоматически в зависимости от величины сигнала или фиксировано при программировании прибора. Погрешность измерения в каждом из диапазонов не более 0,2% от максимального значения диапазона.
  • «ДАР» по входу имеет защиту от перенапряжения ± 200В. Входное сопротивление каждого канала — 10 МОм. Значение интервала между измерениями задается предварительно и может находится в диапазоне от 0,5 до 120 с.
  • Память прибора позволяет запоминать до 110 000 измеренных значений блуждающих токов.
  • Питание пpибора осуществляется от аккумуляторных батарей 4,5-6,2 В.
  • Время работы без подзарядки аккумулятора 60-90 дней в зависимости от интервала измерений.
  • Прибор снабжен внутренним таймером с минимальным потреблением энергии и только на время измерения одной величины включается питание всего прибора.
  • Каждое 257 измерение, помимо измеряемой величины блуждающего тока или параметров катодной защиты, в память прибора записывается величина напряжения питания прибора.
  • При разряде аккумуляторной батареи до величины 4,4 В прибор автоматически отключается и переходит в режим минимального потребления сохраняя все измеренные величины.
  • Полученные результаты измерения переписываются в ПЭВМ по последовательному каналу — RS-232. Это может быть стационарная ПЭВМ или портативная»Nоtе book», если время разряда аккумуляторов позволяет ему продолжать работу на трассе.

Способы защиты от блуждающих токов

Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.

Видео про различные защиты от блуждающих токов

Защита водопроводных труб

Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.

Пример защитного покрытия трубы для подземной укладки

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию. Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.

Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока. В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5). Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.

Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.

Рисунок 5. Варианты реализации катодной защиты

Обозначения:

  1. Применение жертвенного анода.
  2. Метод поляризации.
  3. Проложенная в земле металлоконструкция.
  4. Закладка в грунте жертвенного анода.
  5. Источник постоянного тока.
  6. Подключение к источнику малорастворимого анода.

Защита полотенцесушителей

Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.

Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.

Защита газопроводов

Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.

Способы устранения

Единственный способ предотвращения появления блуждающих токов — убрать возможность утечки из проводников, в качестве которых выступают те же рельсы, в землю. Для этого и устраивают насыпи из щебня, устанавливают деревянные шпалы, которые нужны не только для получения прочного основания под рельсовый путь, но и повышают сопротивление между ним и грунтом.

Дополнительно практикуется монтаж прокладок из диэлектрических материалов. Но все эти способы больше подходят для ЖД магистралей, трамвайные пути изолировать таким способом сложно, так как это приводит к увеличению уровня рельсов, что в городских условиях нежелательно.

В случае с распределительными пунктами и подстанциями, ЛЭП, ситуацию можно исправить применением более совершённых систем автоматического отключения. Но возможности такого оборудования ограничены, да и постоянное отключение электроснабжения, особенно в промышленных условиях, нежелательно.

Поэтому в большинстве случаев прибегают к защите трубопроводов, бронированных кабелей и металлических конструкций, расположенных в зоне действия блуждающих токов.

Активная и пассивная защита

Существует два основных способа защиты:

  1. Пассивная — предупреждает контакт металла за счёт применения покрытий из диэлектрических материалов. Именно для этой цели применяют обмазку битумными мастиками, обмотку диэлектрическими изолентами, комбинацию этих способов. Но такие трубы стоят дороже, а проблема полностью не решается, потому что при глубоких повреждениях подобных покрытий защита практически не работает.

    Пассивная защита

  2. Активная — основана на отводе блуждающих токов от защищаемых магистралей. Может быть выполнена несколькими способами. Считается наиболее эффективным решением.

    Активная защита

В различных условиях применяют отличающиеся способы защиты от электрохимической коррозии. Рассмотрим несколько основных примеров.

Защита полотенцесушителей

Главное отличие — находятся на открытом воздухе, поэтому изоляция не поможет, а отвести блуждающие токи некуда. Поэтому единственно допустимый вариант — выравнивание потенциалов.

Для решения этой проблемы применяют простое заземление. То есть восстанавливают те условия, которые были до разрыва цепи при помощи полимерных труб. При этом требуется заземление каждого полотенцесушителя или радиатора отопления.

Защита водопроводных труб

В этом случае больше подходит протекторная защита с применением дополнительного анода. Такой способ применяется и для предотвращения образования накипи в электрических водонагревательных баках.

Анод, чаще всего магниевый, соединяется с металлической поверхностью трубы, образуя гальваническую пару. При этом блуждающие токи выходят не через сталь, а через такой жертвенный анод, постепенно разрушая его. Металлическая труба при этом остаётся целой. Следует понимать, что время от времени требуется замена защитного анода.

Защита газопроводов

Для защиты этих объектов применяют два способа:

  • Катодная защита, при которой трубе придают отрицательный потенциал за счёт применения дополнительного источника питания.
  • Электродренажная защита предполагает соединение газопровода с источником проблем проводником. При этом предотвращается образование гальванической пары с окружающим магистраль грунтом.

Отметим, что ощутимый ущерб, наносимый металлическим конструкциям, требует применения комплексных мер. Они включают защиту и предотвращение появления опасных факторов.

Причины и источники блуждающих токов

Вне зависимости от источника блуждающих токов главная причина — появление разницы потенциалов в двух разных точках. При этом во всех случаях главным проводником выступает земля.

Если говорить о самих источниках, их несколько: электрифицированный транспорт, ЛЭП и даже некоторые элементы быта.

Как выглядит блуждающий ток – видео.

Как выглядит блуждающий ток

Разные виды транспорта

Один из основных источников блуждающих токов считаются виды транспорта, работающие на электричестве:

  • трамваи;
  • электрички на железной дороге;
  • транспорт, используемый на карьерах, рудниках и в промышленности;
  • метрополитен и т. д.

Основным источником является тяговая подстанция, которая выдает ток и передает его на контактный провод, а далее — через токовый приемник к электрическому двигателю.

Дальнейший цикл подразумевает прохождение потенциала через колеса, а после к рельсам и обратно к тяговой подстанции.

При прохождении через рельсы ток сталкивается с определенным сопротивлением, из-за чего некоторые элементы конструкции имеют потенциал. По ходу приближения к подстанции он уменьшается до нуля.

Схема распределения токов показана ниже.

Где:

  • a – контактный провод, по которому поступает напряжение к силовой установке электротранспорта;
  • b – питающий филлер, подключенный к питающему проводу;
  • c – одна из тяговых подстанций, питающая сети электротранспорта;
  • d – дренажный филлер, который подключен к рельсам;
  • e – рельсы;
  • f – трубопровод на пути прохождения блуждающих токов;
  • g – положительные потенциалы в анодной зоне;
  • h – отрицательные потенциалы в катодной зоне.

Металлические рельсы установлены на поверхности без дополнительной изоляции, что приводит к появлению блуждающих токов.

Последние растекаются по почве и повреждает все, что попадается на пути:

  • газопроводы;
  • металлические конструкции;
  • водопроводные и канализационные трубы;
  • металл кабельной продукции и т. д.

Под «удар» попадают все металлические элементы, имеющие низкое удельное сопротивление. Параметр последнего должен быть меньше, чем у почвы.

Негативное воздействие испытывают и рельсы в точках, где ток протекает в землю. Результатом становится появление коррозии.

Линия электропередач

Еще одним источником блуждающих токов может быть ЛЭП с изолированной нейтралью. Чаще всего к такой категории относятся линии 6, 10 и 35 киловольт.

Их особенность состоит в отсутствии заземления нейтрали трансформатора, что в случае падения одного из проводов на землю не приводит к появлению короткого замыкания и работе защиты.

В этом случае через землю протекают сравнительно небольшие блуждающие токи, величина которых зависит от сопротивления линии до места заземления и мощности источника.

При появлении таких повреждений, как правило, срабатывает автоматика, после чего бригада работников выезжает на объект для осмотра и устранения проблемы.

Из-за повышения напряжения на двух целых фазах возникает риск повреждения еще одного провода. В случае падения второго проводника появляется двухфазное КЗ, что приводит к срабатыванию защиты.

Кроме того, блуждающие токи возле упавшего провода ЛЭП могут привести к появлению шагового напряжения.

В случае приближения человека между стопами ног может появиться потенциал, который может оказаться смертельным для жизни. Вот почему такие ситуации должны устраняться в максимально сжатые сроки.

Статическое электричество в быту

Нельзя расслабляться и в обычной жизни, ведь на металлических элементах (батареи, водопровод, ванная и прочие) может накапливаться статическое электричество.

В результате появляются блуждающие токи, которые могут привести к повреждению металла.

Причиной проблем чаще всего становится отсутствие заземления, ошибки в монтаже проводки по стояку и т. д.

Заключение

Вычислением потенциала и определением места локализации блуждающих электрических частиц не следует пренебрегать, так как от этого зависит качество работы водопроводной системы, кроме этого следует применять одновременно оба способа защиты, которые урегулируют возникающее напряжение и обеспечат полную защиту трубопровода.

Источники

  • https://stroi-mario.ru/montazh-i-obsluzhivanie/elektrokorroziya-polotencesushitelya-2.html
  • https://pechiexpert.ru/polotencesushitel-s-zashhitoj-ot-bluzhdajushhih-tokov-01/
  • https://rusenergetics.ru/polezno-znat/bluzhdayuschie-toki
  • https://ZnatokTepla.ru/truby/bluzhdayushhie-toki-v-vodoprovodnyh-trubah.html
  • https://OmShantiDom.ru/radiatory-otopleniya/bluzhdayushchie-toki-v-vodoprovodnyh-trubah.html
  • https://OFaze.ru/teoriya/bluzhdayushhie-toki
  • https://ProFazu.ru/provodka/bezopasnost-provodka/zazemlenie-vanny-v-kvartire.html
  • https://sovet-ingenera.com/elektrika/zemlya/zazemlenie-vanny-v-kvartire.html
  • https://ues-company.ru/opyt/zazemlenie-polotencesushitelya-iz-nerzhavejki.html
  • https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/bluzhdayushhie-toki.html
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий